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Summary Efficacy of cancer immunotherapy with cultured tumour-infiltrating lymphocytes (TILs) depends upon infused TILs migrating into
tumour-bearing tissue, in which they mediate an anti-tumour response. For TILs to enter a tumour, they must first bind to tumour endothelium,
and this process depends on TILs expressing and regulating the function of relevant cell-surface receptors. We analysed the cell-surface
phenotype and endothelial binding of TILs cultured from human melanoma and compared them with peripheral blood T cells and with
allostimulated T cells cultured under similar conditions. Compared with peripheral blood T cells, TILs expressed high levels of five integrins,
two other adhesion molecules, including the skin homing molecule CLA, and several activation markers and showed markedly enhanced
integrin-mediated adhesion to a dermal microvascular endothelial cell line in vitro. Compared with the allostimulated T cells, TILs expressed
higher levels of the cutaneous lymphocyte antigen (CLA), the adhesion molecule CD31 and the activation markers CD30 and CD69, but lower
levels of several other adhesicn and activation molecules. These phenotypic and functional properties of TILs should have complex effects on
their migration in vivo. Expression of CLA, the skin homing receptor, may increase migration to melanoma (a skin cancer), whereas integrin
activation may cause non-specific binding of TILs to other endothelium. Manipulation of the culture conditions in which TILs are expanded
might result in a phenotype that is more conducive to selective tumour homing in vivo.
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T lymphocyte-mediated mechanisms are believed to be an impor-
tant part of the immune defence against certain human tumours,
including the skin cancer malignant melanoma. Evidence for this
comes from several sources: firstly, melanomas that regress ‘spon-
taneously’ are usually heavily infiltrated with T cells; secondly,
T cells in melanomas are clonally expanded and show cytotoxicity
against tumour cells bearing tumour-associated antigens (van der
Bruggen et al, 1991); thirdly, adoptive immunotherapy with in
vitro expanded tumour-infiltrating T lymphocytes (TILs) has
proved successful in preliminary trials in patients with metastatic
melanoma (Rosenberg et al, 1986, 1988), although some recent
studies have been disappointing (Ravaud et al, 1995).

Adoptive immunotherapy involves isolation of TILs from
resected tumour, expansion in vitro by culturing in the presence of
interleukin 2 (IL-2) and then reinfusion into the patient. In one
study, radiolabelled TILs were detected in melanoma tumour
deposits in 68% of cases (Pockaj et al, 1993). However, only a
small proportion of infused TILs migrate to tumour, and the
majority are trapped in the liver, lungs and spleen (Griffith et al,
1989; Whiteside and Herberman, 1992). This means that large
numbers of TILs need to be infused to ensure that at least
some reach the tumour. Little is known about the mechanisms that
determine the migration of infused TILs in vivo, and a better
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understanding of this process might suggest strategies to increase
the efficiency with which infused TILs reach tumour deposits.

Adhesion to endothelium is the first, crucial step in the migra-
tion of T cells from the circulation into tissue, and this process is
carefully regulated by sequential molecular steps (Adams and
Shaw, 1994; Springer, 1994; Butcher and Picker, 1996). Initially,
selectin-mediated interactions cause circulating cells to slow their
flow and roll along the vessel wall. Here, the T cell encounters
‘triggering’ factors (principally cytokines) present on the vessel
wall that activate T-cell integrins (Springer, 1994; Tanaka et al,
1993). This step is crucial as integrins on circulating T cells do not
bind well until activated (Shimizu et al, 1991a; Hynes, 1992).
Once activated, the integrins bind to endothelial adhesion mole-
cules and bring the cell to a halt, allowing it to flatten and then
migrate into tissue in response to local chemotactic factors.

The tethering step of T-cell adhesion is mediated by selectins in
some circumstances and by integrins in others (Butcher and
Picker, 1996). Strong adhesion is mediated predominantly by two
T-cell integrins; the B2 integrin LFA-1, which binds to endothelial
counter-receptors ICAM-1 and ICAM-2, and the B1 integrin
VLA-4, which binds to VCAM-1 (Shimizu et al, 1991a).
Selectivity is introduced by the existence of tissue-specific adhe-
sion molecules on T cells that direct migration to particular organs
(Butcher and Picker, 1996). This is particularly relevant for the
skin, in which T cells activated in peripheral lymph nodes express
the cutaneous lymphocyte antigen (CLA), which allows them to
bind to E-selectin expressed on dermal endothelium, thereby
promoting skin tropism (Picker et al, 1990a, 19934,b; Berg et al,
1991). There is recent evidence that tumour-/tissue-specific
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adhesion pathways can regulate the adhesion of TILs to tumour
endothelium, suggesting that tissue-specific factors may regulate
TIL recruitment to tumour in a manner analogous to that seen with
normal T-cell recirculation (Salmi et al, 1992; Salmi et al, 1995;
Yoong and Adams, 1996).

Thus, whether transfused TILs migrate back to sites of tumour
or are ‘lost’ elsewhere will be determined by (1) the adhesion
molecules expressed by the TILs and their state of activation; (2)
the adhesion counter-receptors expressed by tumour endothelium;
and (3) the adhesion counter-receptors on other host endothelium
which would trap or recruit them elsewhere. We have undertaken
an extensive phenotypic and functional analysis of TILs cultured
from human melanoma to determine which adhesion molecules
they express and use to bind endothelium in vitro. We have
demonstrated that, compared with peripheral blood T cells,
cultured TIL are highly activated with increased expression of
several adhesion molecules and activation-dependent antigens.
Furthermore, they bind avidly in vitro to both resting and
cytokine-activated endothelial monolayers. These characteristics
of cultured TILs are likely to have a profound influence on their
ability to migrate to tumours in vivo.

MATERIALS AND METHODS
TIL preparations

TIL preparations from seven patients with malignant melanoma
were studied. TILs were prepared as described previously
(Yannelli, 1991). Briefly, tumour biopsies were removed from
cancer patients in the Surgery Branch of the National Cancer
Institute. Tumour tissue was cut into 1- to 3-mm?3 chunks and
digested overnight in collagenase type IV (1 pg ml?),
hyaluronidase (0.1 pg ml-') and DNAase (30 ug ml-'). After diges-
tion, the single-cell suspensions were passed through a sterile wire
screen grid, washed three times in calcium- and magnesium-free
Hanks’ balanced salt solution (HBSS) and passed over
Ficoll-Hypaque gradients to remove dead cells and red blood
cells. The TIL cell cultures were established with 5.0 x 105 total
cells ml-! in 24-well culture plates (Costar) in RPMI-1640 with
10% human AB serum (Bio-Whitaker, Walkersville, MD, USA)
and antibiotics. This medium was mixed 1:1 (v/v) with AIM-V
serum-free medium (Gibco, Grand Island, New York, NY, USA)
and supplemented with 7200 IU ml-!' IL-2 (Cetus Emeryville, CA,
USA) and 10% (v/v) lymphokine-activated killer cell-conditioned
medium prepared as previously described (Yannelli, 1991). TIL
densities were maintained at 5.0 x 105 ml! by splitting every
3-5 days with fresh medium containing IL-2. TILs used in the
study had been in culture for between 30 and 45 days.

Cells and culture reagents

Allostimulated T cells were used for comparison in the phenotypic
studies. These cells were originally expanded for use in HLA
typing by allostimulation with DP mismatched feeder cells. After
2 days, 15-20% T-cell growth factor (IL-2) was added to the
cultures and the cells were then maintained in T-cell growth factor
and restimulated with antigen every 7-10 days. Cells were
cultured for a total of 24 days before being cryopreserved. The
T-cell growth factor used was supernatant from 0.08% phyto-
haemagglutinin (PHA)-P activated peripheral blood lymphocytes
that contained IL-2. These cells were chosen for comparison with
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TIL in the phenotypic studies because they had been stimulated
with specific antigen and subsequently cultured in high doses of
IL-2 and cryopreserved under similar conditions. However, there
are obviously important differences between the two cell types, the
allostimulated cells were CD4 T cells derived from peripheral
blood, whereas TILs are usually CD8 and are derived from tissue.

Human peripheral blood T cells (PBTs) were isolated from
normal donors by rigorous negative immunoselection with
magnetic beads as previously described (Horgan and Shaw, 1991)
using a cocktail of monoclonal antibodies (MAbs) against HLA
class II on B cells, activated T cells and monocytes (IVA12),
CD20 on B cells (1F5), CD16 on NK cells (3GS8), CD11b on
monocytes (NIH11b-1), CD14 on monocytes (MMA) and
glycophorin on erythrocytes (10F7). Purity of the T cells was
greater than 98%.

Human umbilical venous endothelial cells (HUVECs) were
isolated and cultured as previously described (Shimizu et al,
1991a) in M199 media containing 20% fetal calf serum (FCS,
Hyclone), 90 ug ml-! preservative-free porcine heparin, 20 ug ml-!
endothelial cell growth supplement and antibiotics. All studies
were done on confluent monolayers at passage 2 or less in 24-well
plates (Costar).

The HMEC-1 dermal microvascular cell line was cultured as
previously described (Ades et al, 1993) in EBM media (Clonetics)
containing 10% FCS, 10 ng ml-! epidermal growth factor (EGF)
and 100 ng ml-! hydrocortisone plus antibiotics. All studies were
done using confluent monolayers in 48-well plates (Costar).

Monoclonal antibodies

The antibodies used for the phenotypic studies are listed in Table 1.
Monoclonal antibodies were used as ascites fluid, culture supernatant
or purified antibody. All were used in saturating concentrations.

The following MAbs were used at 10 ug ml-! purified antibody
to block adhesion: NIH11b-1 (CD116/MAC-1 a-chain) (Horgan et
al, 1990), MHM24 (CD11a/LFA-1 a-chain) (Hildreth et al, 1983),
MHM23 (CD18/B2 integrin B-chain) (Hildreth et al, 1983), 2G7
(VCAM-1) (Graber et al, 1990), 7A9 (E-selectin) (Graber et al,
1990), NIH45-2 (CD45) (Shimizu et al, 1991b), MAb 84H10
(ICAM-1) (Makgoba et al, 1988), L25 (VLA-4 o-chain)
(Clayberger et al, 1987; Takada et al, 1989), MAB-13 (Matsuyama
et al, 1989) and 4B4 (Coulter Electronics, Hialeah, FL, USA)
(CD29/VLA B-chain) (Matsuyama et al, 1989), MAb-16 (VLA-5
a-chain) (Matsuyama et al, 1989), Act-1 (04B7) (Lazarovits et al,
1984), HML-1 (oELB7) (Schieferdecker et al, 1990).

Flow cytometry

Cell surface phenotyping was done on TILs and PBTs as described
previously (Schweighoffer et al, 1993). Approximately 1-2 x 106
cells were washed twice with FACS medium (HBSS containing
0.2% human serum albumin and 0.2% sodium azide), incubated
with specific MAD at saturating concentrations for 30 min at 4°C,
washed twice with medium, stained with goat anti-mouse or anti-rat
fluorescein isothiocyanate (FITC) for 30 min at 4°C, washed twice
and analysed on a modified Becton Dickinson FACS-II. Analysis
was carried out using Reproman (TrueFacts Software, Seattle, WA,
USA). Cryopreserved TILs were used for the studies as in cryopre-
served T cells the L-selectin of the molecules that we looked at was
markedly lower compared with fresh T cells (data not shown).
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Table 1 Median channel fluorescence for the 55 antibodies studied on cultured TiLs from seven patients, PBT from a healthy control and cultured human
allostimulated T cells.

Specificity MAb TILs (n=7) TIL Allostimulated PBTs
Mean s.d. (median) T cells

Control 1.9.9 50 10 52 41 32

CD1b 100-1A5 65 8 62 116

CD2 49 137 15 141 172 117

CD3 UCHT1 135 25 145 158 152

CD7 3A1 127 1 131 108 147

CD8 B9.8 132 44 143 72 41

CD9 50H19 44 12 50 64 65

CD11A MHM24 143 16 137 161 137

CD11B NIH11b 84 26 101 157 43

CD11C SHCL3 60 5 57 60 41

CD15s SNH3 66 19 68 27

CD18 MHM23 141 13 148 170

CD21 B2 32 8 32 37

CD25 TAC 67 23 55 139 32

CD26 TA1 136 3 136 127

CcD27 CLB2711 61 17 68 130

CD29 4B4 118 12 11 148

CD30 BERH6 88 16 84 74 34

CD31 NIH31-2 70 24 ’ 79 34 96

CD38 OK10 44 15 44 149 88

CD38 WM32 58 12 57 57

CD39 OKT28 129 16 127 137 30

CD41 UR-1663 45 5 45 58

CD43 OTH71C5 129 18 134 176 173

CD44 NIH44 131 12 128 178 169

CD45RA G1.15 81 4 83 106

CD45RB PD7 98 23 95 123

CD45R0O UCHL-1 144 9 149 204

CD4%A VLA-1 61 18 60 51 29

CD49B CLB-THR-4 105 11 105 134 48

CD49C PIBS 73 26 64 52 31

CD43sD L25 99 14 102 141 86

CD49E P1D6 60 10 62 74 50

CD49F GOH3 48 7 49 48 69

CD49F DC5-6 61 19 53 72

CD54 84H10 86 6 85 133 63

CD55 F2B72 105 14 112 122

CD58 TS2/9 90 19 98 123 43

CD60 UM4D4 50 5 53 41

CD61 CLBthr-1 45 4 44 37

CDeé2L LEU8 60 15 62 52 134

CD65 VIM-8 42 6 39 33

CD69 L78 73 14 79 39 34

CD70 Kl24 110 13 112 107

CD71 L5.1 45 7 45 85

CD73 AD-2 46 7 48 37

CD75 LN-1 65 31 50 28

CD76 CRIS-4 50 9 51 39

CD99 TU12 111 48 82 171 75

CD103 HML-1 7 27 65 120 29

CDw109 LDA-1 69 16 70 75

CD122 MIKB2 86 1 86 130

Unclustered antigens

CLA HECA-452 82 24 75 31 31

Alphadbeta7 ACT-1 66 12 57 113

Class | W6/32 189 5 184 197

Class Il IVA12 169 29 182 201

The mean, s.d. and the median values for the seven TIL are shown. CD4 is omitted because only one of the seven TIL preparations consisted of CD4* TIL.
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Cell adhesion assays

Binding to endothelium

Binding of TILs and PBT to HUVECs was assessed as previously
described (Shimizu et al, 1991a). Briefly, HUVECs were plated
onto gelatin-precoated 24-well plates (Costar) and cultured for
48 h until confluent, activated by exposure to 1 ng ml-! IL-1f in
medium (RPMI/10% FCS) for 4 h at 37°C and then washed twice
with medium immediately before addition of T cells. TILs or PBTs
were labelled with 5'Cr, and 300 000 T cells were added to each
well in a final volume of 300 pl. In order to assess adhesion of
acutely activated T cells, cells were preactivated by incubation for
20 min with 10 ng ml-' PMA (Sigma Chemical, St Louis, MO,
USA) before washing and addition to the HUVEC monolayer.
When blocking by MAbs was assessed, binding was carried out in
the continuous presence of antibody; all MAbs were used at a satu-
rating concentration of 10 ug ml-', which has been shown in
previous studies to maximally inhibit the relevant adhesive inter-
action (Graber et al, 1990; Shimizu et al, 1990a, b, c; van Seventer
et al, 1990). Plates were incubated for 30 min at 37°C and then
gently washed twice with RPMI/10% FCS media at room temper-
ature to remove non-adherent T cells. Contents of each well
containing adherent T cells were lysed with 300 ul of 1% Triton
X-100 and y-emissions were counted. Data are expressed as mean
per cent of cells binding [(counts from wells/counts from 300 000
lysed cells) x 100]. Because the differences observed between
freshly isolated TIL and TIL that had been cryopreserved were
small, cryopreserved TIL were used for most of the studies.
Binding to HMEC-1 was assessed in a similar assay, except that
cells were grown to confluence in EBM and then in RPMI/10%
FCS for the final 18 h during which activation was done using
50 units ml-! TNF-o which has previously been shown to induce
optimal activation of HMEC-1 (Swerlick et al, 1992).

Actin polymerization

The morphology of TILs and PBTs and the distribution of poly-
merized filamentous actin (F-actin) were assessed by rhodamine
phalloidin staining and laser scanning confocal microscopy. Cells
were settled for at least 60 min at 37°C on plastic slides that had

been coated with 20 pg ml- fibronectin. The cells were then fixed
with 3.7% formaldehyde for at least 1 h at 4°C, permeabilized by
incubating with 2 mg ml! lysophosphatidyl choline (LPC)
(Sigma) and total F-actin detected by staining with 300 units
rhodamine-phalloidin for 30 min at 4°C. Cells that were fixed and
stained with rhodamine-phalloidin were analysed with a Nikon
Microphot-FX microscope (plan 40x objective lens) connected to
a BioRad MRC 600 laser scanning confocal microscope (BioRad
Life Sciences Group, Melville, NY, USA).

Statistics

Comparisons between groups were analysed using the
Mann-Whitney U-test for non-parametric data. A level of
2P<0.05 was taken as significant. Trends were analysed using
Kruskal-Wallis one-way ANOVA.

RESULTS

TIL have an abnormal highly activated morphology and
cell surface phenotype

All the TIL preparations studied were T cells (> 95% CD3 posi-
tive); six were predominantly CD8* and one predominantly CD4+.
Although cultured TILs are T cells, they are markedly different
from resting PBTs, with respect to both overall morphology and
cell-surface phenotype. TILs are larger, more irregular and have
increased foci of filamentous actin in the cytoskeleton, consistent
with an activated state (Figure 1). TILs also have a markedly
different phenotype from PBTs with respect to the levels of
expression of cell-surface markers. We initially screened TIL
preparations using 57 MAD reactive with 54 different T-cell
surface molecules and compared them with activated cultured
T cells (SB6) (using all MAbs) and with PBTs (using 29 of the
MAbs). We have highlighted data obtained with 27 of these MAbs
in Figure 2 (PBTs compared with TILs) and 35 in Figure 3 (allo-
activated T cells compared with TILs). The selection of the MAb
was based on several criteria: (1) marked differences in expression
between TIL and SB6 or PBT; (2) heterogeneity of expression on

Figure 1 TILs are larger, more polarized and have increased filamentous actin compared with resting peripheral blood T cells. The figure shows rhodamine-
phalloidin staining of filamentous actin in (A) TiLs and (B) resting PBTs settled on fibronectin-coated slides. Images were collected with a Nikon Microphot-FX
microscope (plan 40x objective lens) connected to a BioRad MRC 600 laser scanning confocal microscope
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Figure 2 TILs have higher levels of many molecules than PBTs, consistent
with their activated state. This scatterplot shows the median channel
fluorescence of 27 antibodies to cell surface markers shown on TILs (median
of the seven preparations) compared with the median channel fluorescence
of each antibody on PBTs. The name of the molecule is positioned at the
appropriate co-ordinates. A solid line marks the position for molecules
expressed at equivalent levels on TILs and PBTs. The fine dotted lines
represent the staining for each cell type with 1.9.9, an irrelevant mouse
antibody. In all cases the background staining with 1.9.9 was higher on TILs
than on PBTs (Table 1)

TIL; or (3) probable relevance to migration. The excluded MAb
were generally either negative on TIL or expressed at roughly
equivalent levels on TIL and the other cell preps. Table 1 provides
a comprehensive tabulation of all the studies.

The cell-surface phenotype of TILs is very different
from that of peripheral blood T cells

The cell-surface antigens studied can be divided into three groups
based on their staining patterns on TILs compared with PBTs
(Figure 2):

1. those that were expressed at least twofold higher on TILs than
on PBTs, comprising five integrins (CD49a, CD49b, CD49c,
CD11b, CD103), two additional adhesion molecules (CLA and
CD58) and four activation markers (HLA class II, CD30,
CD39, CD69);

2. those with higher expression on PBTs, including three
adhesion molecules (CD43, CD44 and CD62L) and an
activation/signalling molecule (CD38);

3. the rest, showing smaller differences between PBTs and TILs
or being expressed at similar levels.

Thus, there are marked differences between TILs and PBTs with
respect to nine different adhesion molecules, as well as five activa-
tion markers.

Is the phenotype of the TILs simply a function of
activation during in vitro culture?

To answer this question we compared TILs with a preparation
of allostimulated T cells that had been expanded in vitro for
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Figure 3 TiLs have higher levels of several potentially important molecules
than alloantigen-stimulated T cells. The median value of the seven TiLs
preparations for median channel fluorescence of 35 antibodies to cell surface
markers is shown and compared with the same antibodies on allostimulated
T cells (human T cells activated by alloantigen and cultured under similar
conditions to TILs). The fine dotted lines represent the staining for each cell
type with 1.9.9, an irrelevant mouse antibody

approximately the same time and with similar IL-2 supplementa-
tion (Figure 3). The allostimulated cells were predominantly
CD4; however previous studies have shown that CD4 and CD8 T
cells are similar in their surface phenotype with respect to many
markers (Shaw et al, 1994). While we accept that these cells are
not an ideal cell type for comparison with the TILs, we believe
that they do provide useful information about the regulation of the
markers studied. Many of the molecules were expressed at similar
levels on both TILs and allostimulated T cells, reflecting similari-
ties in culture and activation between the two T-cell preparations.
However, marked differences were observed for other markers.
Firstly, three molecules were expressed at twofold higher levels
on TILs than allostimulated T cells: (a) the cutaneous lympho-
cyte-associated antigen, CLA; (b) CD69, an acute activation
marker; and (c) CD31, an adhesion-inducing molecule (Tanaka et
al, 1992). Secondly, 12 molecules were expressed at higher levels
on allostimulated T cells than on TIL: (a) the integrins 47,
oIELB7, CD49b, CD49d, and CD11b; (b) the adhesion molecules
CD99 (E2), CD43, CD44 and CD54; and (c) activation antigens
CD25, CD38 (OKT10) and CD71.

Adhesion molecules show heterogeneity of expression
within and between TIL preparations

Median channel fluorescence provides a statistical summary of
complex data that conceal heterogeneity both within a given cell
preparation and between preparations. Both kinds of heterogeneity
are illustrated in Figure 4. One of the least heterogeneous mole-
cules is the integrin LFA-1; although median fluorescence is
consistent between the three profiles, there is marked hetero-
geneity within one of the TIL preparations, demonstrating that
even LFA-1 is differentially regulated on different cells. Such
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Figure 4 Histograms of selected molecules comparing expression on TIL with PBT. Each panel shows staining for PBT (dashed line) and two TIL preparations:
the two TIL preparations shown for a marker are ones whose median channel fluorescence is either side of the median TIL for all seven patients

heterogeneity was seen with most of the markers. Heterogeneity
between TIL is illustrated by VLA-4. Even these two TILs that are
close to the ‘median TIL’ differ substantially from each other.
Because of the averaging process, VLA-4 does not appear to be
remarkable in Figure 2. As data are collected on a four-decade log
scale, a twofold difference corresponds to about 20 channels.
Thus, the TIL shown differ more than 10-fold in median expres-
sion of VLA-4.

Among the other adhesion molecules, we illustrate two that are
increased on TILs (CLA and HML-1) and two that are reduced
several-fold compared with PBTs. Among the traditional ‘activa-
tion markers’ (CD69, HLA class II, CD30, CD38), three are
increased but one is decreased from its low basal expression on
resting T cells (CD38).
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TILs display strong activation-independent binding to
endothelium

We investigated the capacity of TILs to bind to endothelium in
standard in vitro assay of leucocyte binding to cultured human
umbilical vein endothelial cells (HUVECS) (Figures S and 6) and a
transformed skin-derived microvascular endothelial cell line
(HMEC-1) (Figure 6). TILs bound avidly. More than 50% of TILs
bound to resting endothelium, whereas only 10-15% of resting
PBTs bound. Activation of TILs by phorbol ester did not cause a
further increase in binding, suggesting that integrins on TILs are
already fully activated. This contrasts with the marked increase in
PBT adhesion to both resting and activated endothelium after
phorbol ester stimulation (Figure 5).
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Figure 5 TIL binding to HUVEC is increased by activation of the endothelium
but not by activation of TILs. The bars show the per cent cells binding to
HUVEC monolayers in a representative experiment. The solid bars represent
PBT from a healthy donor and the hatched bars and open bars two
melanoma-derived cultured TIL preparations. The symbols on the left margin
indicate whether the lymphocytes were activated by PMA (10 ng mi-') or the
HUVECSs activated by exposure to IL-1 1 ng mi-* for 6 h. The binding of PBTs
is low when both cell types are resting and is increased by activation of both
cell types. TILs, on the other hand, show high binding without activation that
is increased by activating the endothelium but unaffected by phorbol ester
activation of TILs

TiLs bind to endothelium via activated integrin-
mediated adhesion

Combinations of blocking MAb were used to define the contribu-
tion of the three main adhesion pathways (Figure 6):

1. B1 integrin (VLA-4) on TILs to VCAM-1 on endothelium;

2. B2 integrin (LFA-1) on TILs to ICAM-1 or ICAM-2 on
endothelium;

3. E-selectin on endothelium to its carbohydrate ligand on TILs
(CLA and/or another carbohydrate receptor).

The blocking antibodies were used either alone or in combina-
tions of two and three antibodies to allow the contribution of
each pathway to be assessed as described previously (Shimizu
etal, 1991a).

TILs binding to resting endothelium involved B2 integrins and
to a lesser extent B1 integrins (Figure 6A). Adhesion was blocked
substantially by MADb against the P2 integrin chain
(Mann—Whitney U-test, 2P < 0.015), presumably by blocking
LFA-1 to ICAM-1 and ICAM-2. In contrast, MAb against 31 inte-
grins alone had a minimal effect (2P = 0.456). The use of the two
antibodies in combination to block both Bl and B2 integrins
caused a fall in binding compared with the use of the anti-B2 anti-
body alone (2P <0.05), confirming that Bl integrins are also
involved, although their contribution is masked by the dominant
binding via B2 integrins. Binding to resting HUVECs was similar
to that for HMEC-1 (Figure 6A). E-selectin is not expressed on
resting endothelium and was therefore not involved.
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Figure 6 TIL bind to two different endothelial cell monolayers, HUVEC and
HMEC-1, in a similar manner. (A) Binding of TILs to resting HMEC-1 can be
partly blocked using antibodies to CD18, the B2 chain of LFA-1 (MHM23).
Inhibition is enhanced by adding antibodies to CD29, the 81 chain of VLA-4
(MAb13). The pathways of TIL binding are similar to those of PMA-activated
PBTs. Resting PBTs show little binding. The bars represent mean

results £ s.e.m. from seven TILs and mean results of triplicate assay of one
representative PBT. (B) Binding of TILs to activated HMEC-1 was only
minimally inhibited by CD29 antibodies alone but was significantly reduced
when anti-CD18 MAbs were used and particularly when the antibodies were
used together. The bars represent mean results + s.e.m. from seven TIL
preparations and mean results of triplicate assay of one representative PBT.
(C) Binding of TILs to HUVEC monolayers showed a similar hierarchy of
pathways with the exception that MAb to E-selectin (7A9) had a greater effect
on activated HUVEC than on activated HMEC-1. This reflects the low levels
of E-selectin expressed by activated HMEC-1

Binding to activated endothelium involves integrins and selectin-
mediated pathways. Activation of endothelium by exposure to either
IL-1 (HUVEC) or TNF-a (HMEC-1) increased the percentage of
TILs that bound (Figure 6B vs 6A). As seen with resting endothe-
lium, binding to activated endothelium involved both B1 and (2
integrins, with the B2 integrin pathway dominating (B1 integrin
compared with control, 2P = 0.07; B2 integrin, 2P < 0.001; B1+32,
2P <0.0006; B1+B2 compared with B2 alone, 2P <0.002). E-
selectin MAD, by itself, had no effect on binding; however, addition
of E-selectin MADb to the mix of B1/B2 MADb caused a small but defi-
nite reduction in TIL binding to HUVECs compared with 31/B2 mix
alone but had no effect when HMEC-1 endothelial cells were used,
which is consistent with the very low levels of E-selectin expressed
on HMEC-1 in our culture system (data not shown). Overall, the
pattern of adhesion inhibition for unactivated TILs is similar to the
pattern with PMA-activated PBTs.

British Journal of Cancer (1997) 75(10), 1421-1431



1428 DH Adams et al

DISCUSSION

The goal of adoptive immunotherapy is to reconstitute patients
with cultured TILs that subsequently migrate back to tumour
deposits and generate an anti-tumour response (Rosenberg et al,
1986). The therapeutic efficacy of TILs will depend on two inter-
related factors: their ability to mount an effective anti-tumour
response on encountering tumour cells (Itoh et al, 1986; Spiess et
al, 1987; Aebersold et al, 1990; Yannelli, 1991) and, equally
important, their ability to reach tumour sites in sufficient numbers
to have a clinically significant effect. Relatively little is known
about the factors that regulate TIL recruitment to tumour sites,
despite the fact that such factors will be crucial for the clinical effi-
cacy of TILs (Whiteside and Herberman, 1992).

Before cultured TILs can migrate from the circulation into
tissue they must first recognize and bind to tumour endothelium, a
process determined by the adhesion molecules expressed on TILs
and the presence of appropriate ligands on tumour endothelium
(Butcher, 1991; Shimizu et al, 1992; Whiteside and Herberman,
1992). In the present study we determined the detailed phenotype
of cultured TILs, with particular reference to the adhesion mole-
cules they express, and assessed their ability to bind to endothe-
lium in vitro. We found gross differences between TILs and
normal circulating T cells that are likely to have a profound effect
on the migratory behaviour of infused TIL in vivo.

Cultured TILs showed enhanced binding to both resting and
activated endothelium that was mediated largely by LFA-1 and
VLA-4, the most important T-cell integrins in endothelial-binding
(Shimizu et al, 1991a, 1992). Furthermore, treatment of TILs with
phorbol ester did not increase binding, suggesting that integrins on
TILs are fully activated. This is in marked contrast to the low
levels of integrin-mediated binding seen with resting peripheral
blood T cells in the absence of activation (Figure 5; Shimizu et al,
1991a). This activation-independent adhesion is not merely a
reflection of increased surface expression of integrins on TIL
(Figure 2), but rather of an altered functional state of those integrins.

What are the potential implications of these findings for TILs
homing in vivo? Increased integrin activation on cultured TILs
will disrupt the normal regulation of endothelial binding. On the
one hand, this might increase the numbers of TILs binding to
tumour endothelium and thereby increase the numbers entering
tumour tissue. However, the specificity of endothelial binding will
be lost, with the consequence that TILs can bind to multiple
vascular beds as well as to tumour endothelium with a consequent
reduction in the specificity of TIL migration. In particular, this is
likely to occur in the sinusoids of the liver and spleen and in the
small vessels of the lung where cells come into intimate contact
with endothelium that constitutively expresses ICAM-1 and, in the
case of the lung and liver, low levels of VCAM-1 (Rice et al, 1991;
Adams et al, 1994; Dunkley et al, 1995). The larger, more irregular
shape of TILs (Figure 1; Whiteside and Herberman, 1992) will
reduce their deformability and lead to increased contact between
circulating TIL and the wall of small vessels, thereby allowing
time for the activated integrins to engage these endothelial ligands
(Adams and Nash, 1996). This is particularly likely to happen in
low-flow systems, such as the hepatic and splenic sinusoids
(Adams, 1996). In addition, the large size of TILs will result in
physical trapping in the small-calibre vessels of organs such as the
lung (Adams and Nash, 1996).

These concerns are supported by clinical studies in which
indium-labelled TILs were infused into patients and their in vivo
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distribution subsequently assessed by scanning with a gamma-
camera. The vast majority of the infused cells were detected in the
liver, spleen and lung within minutes of infusion, and only a small
proportion reached tumour deposits (Poppema et al, 1983; Griffith
et al, 1989). This inefficient trafficking of cultured TILs is in
contrast to the efficient removal of relevant T cells from the circu-
lation that occurs in normal homing (Fisher and Ottaway, 1990;
Picker and Butcher, 1992). Thus, it appears that cultured TILs
have an impaired ability to migrate selectively to their intended
tissue target. This explains why large numbers of cultured TILs
must be infused to insure that at least some reach the tumour.

In addition to the size and activation status of cultured TILs,
their altered cell-surface phenotype is likely to have a profound
effect on their migration in vivo. In the present study we report
phenotypic data on a large number of molecules, some of which
we predict will have a direct effect on TIL migration. The signifi-
cance of others is likely to become apparent as our understanding
of them increases.

One molecule of great potential relevance for homing to
melanoma, a skin-derived cancer, is the cutaneous lymphocyte
antigen (CLA), which is a ligand for E-selectin (Picker et al,
1990a). CLA, a heavily glycosylated carbohydrate epitope on cell
surface glycoproteins, is expressed at low levels on less than 20%
of PBT (Berg et al, 1991; Picker et al, 1993a). In vivo, CLA is
expressed on cutaneous lymphomas (Picker et al, 1990a) and on
85% of T cells at sites of skin inflammation (Picker et al, 1990q).
In contrast, it is detected on less than 5% of T cells in inflamed
non-cutaneous sites (Adams et al, 1996). CLA has therefore been
proposed as a skin homing receptor (Picker and Butcher, 1992). As
we found high levels of expression of CLA on most of the TIL
preparations and as melanoma endothelium expresses the CLA
receptor E-selectin (Rohde et al, 1992), the CLA-E-selectin inter-
action may facilitate TIL migration into melanoma. The fact that
we did not see a major contribution from E-selectin in the adhe-
sion assays may be because E-selectin/CLA mediates the initial
tethering adhesion that leads to rolling of the T cell on the vessel
wall. Static adhesion assays do not reflect the significance of this
step because integrin binding dominates in such systems (Spertini
et al, 1991). Thus, the small effect we saw with anti-E-selectin is
unlikely to be a true reflection of its contribution in vivo. The pres-
ence of CLA on TILs would promote binding to E-selectin on
tumour endothelium in vivo, resulting in tethering — the first step
in the adhesion cascade. The usual requirement for a second step
to trigger integrin activation would be bypassed because of the
preactivated status of TIL integrins, allowing them to engage their
ligands, ICAM-1 and VCAM-1, on tumour endothelium (Rohde et
al, 1992). LFA-1 might be expected to dominate as ICAM-1 is
expressed on tumour endothelium at far greater levels than
VCAM-1 (Rohde et al, 1992).

From our studies it would appear that CLA expression is a char-
acteristic of these TIL rather than an effect of their culture condi-
tions. The findings that support this conclusion are:

1. the expression of CLA does not increase on peripheral blood
T cells activated with mitogens in vitro (Picker et al, 1993a);

2. CLA was one of only three antigens that showed increased
expression on TIL compared with allostimulated T cells;

3. TILs may have a homing ‘phenotype’ characteristic of skin, as
TILs also expressed lower levels of the gut homing receptors
oIELB7 and 0:4B7 (Picker et al, 1990b; Schweighoffer et al,
1993) compared with alloantigen-stimulated T cells;
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4. CLA is not expressed by TILs derived from either primary
hepatic tumours or primary or secondary colonic carcinoma
(Yoong and Adams, unpublished observations; Yoong and
Adams, 1996; Yoong et al, 1996).

Thus, the CLA-high/LFA-1-high/a4B7-low/olELB7-low pheno-
type of TILs would be predicted to favour homing to skin tissues
(Picker and Butcher, 1992; Picker et al, 1993a; Schweighoffer et
al, 1993). If the highly activated state of LFA-1 and VLA-4 on
TILs could be reduced to prevent non-specific adhesion to other
vascular beds, this tissue-specific homing phenotype should result
in efficient recruitment of infused TILs to tumour. The endothelial
cell line we used in the adhesion studies, HMEC-1, is derived from
microvascular endothelium in the skin. However, this cell line may
differ substantially from the endothelium within melanoma tumour
tissue in vivo and, in the long run, it will be important to under-
stand details of interactions of TILs with various specialized kinds
of endothelium, including endothelium in tumour vessels.

Other molecules with potential roles in endothelial binding that
were detected on TILs included CD31, CD43 and CD44. CD31, a
member of the immunoglobulin superfamily, has a unique distrib-
ution on peripheral blood T cells, being expressed on all naive
CD8 T cells, 50% of CD8 memory cells and 50% of CD4 naive
cells. CD31 expression was heterogeneous both within and
between TIL preparations. The CD4 TIL preparation studied was
largely negative, as might be expected from the distribution of
CD31 in peripheral blood T cells. Although there was variation in
the expression of CD31 between different CD8 TIL preparations,
all of them contained a substantial subset of cells that were CD31
positive (Table 1), and it is possible that CD31 expression might
have facilitated the original entry of this TILs into tumour. This is
supported by the proposal that CD31 on T cells can act as an
amplifier of T-cell integrin function when it engages an, as yet
unknown, endothelial receptor (Shimizu et al, 1992; Tanaka et al,
1992) and by recent studies proposing a role for CD31 in the entry
of TILs into murine tumours (Schmitt-Verhulst, 1994) (B Imhof,
personal communication). However, CD31 expression cannot be an
absolute requirement for TIL recruitment as the CD31-dull CD4*
TILs that we studied (TIL6) migrated to tumour deposits in vivo.

Both CD43 and CD44 were reduced on TILs compared with
PBTs. CD44 is an abundant multifunctional cell surface molecule
that was initially inferred to be a tissue-specific homing receptor
(Jalkanen et al, 1987). However, because of its broad tissue distri-
bution it may have a more general role in facilitating binding to
endothelium via its ligand hyaluronate (Aruffo et al, 1990).
Decreased CD44 on TILs may therefore reduce efficiency of
endothelial binding. In contrast, reduced expression of CD43, the
predominant cell surface mucin on lymphocytes (/) on TILs might
be expected to increase endothelial adhesion (McLean, 1994). The
inference that mucins maintain a repulsive barrier around the cell
is based on findings with CD43 (Ardman et al, 1992; Manjunath et
al, 1993). For example, targeted disruption of the CD43 gene in the
T-cell line CEM enhances homotypic adhesion and binding to
fibronectin (Manjunath et al, 1993).

In addition to the ‘adhesion molecules’ discussed above, TILs also
differ from PBTs in their expression of ‘activation markers’. Most of
these activation markers are expressed more on TILs than on PBTs
(e.g. CD30, CD39, CD69, HLA class II). An exception is CD38,
usually considered to be an activation marker, which is expressed
at lower levels on TILs than on PBTs. These molecules may be
important for TIL function. For instance, CD69 is a C-type lectin
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(Lopez-Cabera et al, 1993) likely to contribute to adhesion and CD38
has been implicated in binding to endothelium (Xu et al, 1994).
Furthermore, both CD69 and CD38 are involved in signal transduc-
tion and cell activation (Nakamura et al, 1989; Moretta et al, 1991;
Tugores et al, 1992; Xu et al, 1994) and CD30, a member of the TNF
receptor family, could modulate TIL effector function by interacting
with the CD30 ligand in the tumour (Faustman et al, 1982).

Although all these molecules are expressed with cellular activa-
tion, they show different regulation with respect to which subsets
of cells express them, which signals induce them and the kinetics
of their expression (Crabtree, 1989). This is illustrated by the
contrast between TILs and alloactivated T cells (Figure 3); CD69
and CD30 are expressed at higher levels on TILs, whereas CD25
and CD38 are expressed at higher levels on allostimulated T cells.
Thus, the detailed phenotype of these activated T cells is regulated
in a complex manner that depends in part on the original character
of the activated cell as well as on the exact details/timing of
culture.

The fact that the phenotype of TILs is influenced by the details
of their culture implies that it is susceptible to modification. As
the physiological homing of T cells is highly selective and exquis-
itely regulated, the generation of TILs with a more physiological
phenotype might result in restoration of their specific homing
potential. The aim of such manipulation would be to maintain
expression of molecules that are unique to TIL, such as the skin
homing receptor CLA, while reducing the non-specific activation
of, for instance, integrins, thereby allowing the original character
of the TILs to emerge. Theoretically, such a strategy could
produce TILs that show reduced binding to endothelium in
normal tissues but maintain their ability to selectively bind
tumour endothelium, thereby increasing delivery to tumour sites.
These observations have wider implications with the increasing
use of cultured leucocytes and adoptive immunotherapy in other
clinical situations.
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