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Abstract

A cable model that includes polarization-induced capacitive current is derived for modeling

the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure

containing endoplasmic membranes. A solution of the nonlinear cable equation modified for

fissured intracellular medium with a source term representing charge ‘soakage’ is used to

show how intracellular capacitive effects of bound electrical charges within mitochondrial

membranes can influence electrotonic signals expressed as solitary waves. The elastic colli-

sion resulting from a head-on collision of two solitary waves results in localized and non-dis-

persing electrical solitons created by the nonlinearity of the source term. It has been shown

that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of

charges held by the microstructure (i.e., charge ‘soakage’) have a slower velocity of propa-

gation compared with solitons in neurons with microstructure, but without endoplasmic

membranes. When the equilibrium potential is a small deviation from rest, the nonohmic

conductance acts as a leaky channel and the solitons are small compared when the equilib-

rium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting

the amplitude of the endogenously generated solitons. These findings demonstrate a func-

tional role of quasi-electrostatic interactions of bound electrical charges held by microstruc-

ture for sustaining solitons with robust self-regulation in their amplitude through changes in

the mitochondrial membrane equilibrium potential. The implication of our results indicate

that a phenomenological description of ionic current can be successfully modeled with

displacement current in Maxwell’s equations as a conduction process involving quasi-

electrostatic interactions without the inclusion of diffusive current. This is the first study in

which solitonic conduction of electrotonic potentials are generated by polarization-induced

capacitive current in microstructure and nonohmic mitochondrial membrane current.
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Introduction

The electrophysiological applications of cable theory led Hodgkin and Huxley (H-H) [1]

to quantitatively describe voltage-dependent currents obtained by using the voltage-clamp

technique. The remarkable success of the H-H model is a mathematical description that

relates the microscopic dynamics of gated ion channels to the macroscopic behavior of mem-

brane potential. The H-H equations are foundational because they capture crucial points of

analogy between the squid giant axon and in other species both in vivo and in vitro environ-

ments. Although the H-H model portrays the nerve as an electrical analogue in terms of capac-

itors and conductors, it does not incorporate a physico-chemical understanding of ionic

diffusion within the excitable membranes. The Frankenhaeuser and Huxley (F-H) model

developed in 1964 [2] was an attempt to include in the H-H model electrodiffusion of ions

within the plasma membrane. The F-H model includes electrodiffusion of membrane ion

channel permeability based on a description for ionic concentration across membranes where

the spatial distance reflects charge spread within the membrane and not within the cytoplasm.

Analytical solutions to the F-H equations were obtained when voltage-dependent ionic

channels are distributed at discrete positions throughout the membrane based on ionic cable

theory [3].

The H-H model is based on electrical cable theory and it would need to be fundamentally

revised or replaced if it were based on a physico-chemical footing. This problem is the inability

to unify electrodiffusion of ions in electrolytes with cable theory (cf. [4]). Although there were

earlier attempts to show electrodiffusive effects on membrane potentials they were fortuitous

because of the erroneous equivalence between spatial spread of ionic diffusion and electrical

conduction [5]. Since electrodiffusion of ions in an electrolyte applies only at short distances

within cellular membranes, therefore a mismatch exists between electrodiffusion models that

rely on electrochemical processes based on advection-diffusion equations and electrical con-

duction that relies on cable equations [6]. Such fortuitous attempts which draw parallel

between the electrical representation and electrochemical representation have appeared as

‘molecular models of action potentials’ [7, 8].

Subsequently, there have been more fortuitous attempts at reconciling electrodiffusion

models with cable modeling approaches [9–15]. For instance, the diffusive currents have been

included in these studies to model electrodiffusion of ions in cylindrical geometries through a

single spatial variable that is identical with the conduction of electrical charge in the cable

equation. Indeed, the electrodiffusion models based on the classical Nernst-Planck system of

equations simply do not provide a description for ionic current flow beyond the width of

membranes (nanometers) [6, 16]. In fact, the coupling of cable theory with anomalous electro-

diffusion through so-called ‘fractional’ cable equation and ‘fractional’ Nernst-Planck equations

[13] can also be fortuitous through attempts at mismatching variables by including separate

scaling exponents for both anomalous diffusion across the membrane as in the cystol at the

same temporal scale; thereby rendering the approach inadequate for action potentials operat-

ing on a much faster time scale in comparison to electrodiffusion of ions.

Despite 60 years of progress [17] still dendritic integration relies on cable theory that

excludes microstructure and treats the intracellular medium of neurons as a homogeneous

resistive fluid of 70 Ocm (cf. [18]). However, a resistive fluid is only an approximation to the

electrolyte solution. For example, when an ion is attached to a protein-molecule such charged

proteins allow for the displacement of ions, where they give rise to polarization-induced capac-

itive currents. Recent cable models [19] ignore the effects of polarization currents in neurons

or include only capacitive effects in the extracellular space [20].

Solitonic conduction in a neuronal branchlet
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In the same context, cable modeling efforts have included capacitive effects of free charge in

the intracellular fluid representative of an electrolytic solution [21]. In this modeling approach,

the conduction of free charge of unipolar ions within a passive membrane results in polariza-

tion current arising from capacitive charge-equalization and axial capacitive effects. However,

the model of Poznanski [21] did not take into account polarization current due to the disper-

sion of bound charge held by microstructure. An instance where charge dispersal is not

ignored, the voltage created by charge ‘soakage’ due to intracellular capacitive effects has been

modeled through voltage-dependent capacitors [22, 23].

There are other models that explicitly incorporate voltage-dependent capacitance based on

compressive forces acting on the membrane (electrostriction) which are electromechanical in

nature (see [24]). In presence of an electric field, changes in membrane thickness due to com-

pressive effects of the electric field are based on the assumption that the membrane bilayer is

elastic and can be deformed by an electrostatic force generated by the electric field (electro-

striction or electrocompression) resulting in changes to the electrical capacitance of the mem-

brane. Electrostriction is expected to contribute less than 1% of the total capacitance [25] and

therefore electromechanical effects can be ignored.

The inclusion of microstructure in the neuronal branchlet is similar, though not identical

to electronic analogue, a superconductive ‘neuristor’, with inductor parallel with a resistor

component for the intracellular medium (see [26] for a review). However, cable models of neu-

rons include nonlinear capacitors instead of inductors and unlike the ‘neuristor’ models, they

form a dispersionless system. The microstructure possesses voltage—dependence at slow vary-

ing electric fields (e.g., quasi-electrostatic conditions) which enables the capacitor to hold

more electric charge than a linear capacitor, resulting in absorption of charge (or charge ‘soak-

age’) and enhanced electrical signaling. Therefore the polarizibility of the microstructure

affects the electrical conduction of electric current through intracellular capacitive effects.

Electrodiffusion models based on the classical Nernst-Planck equations impose a constant-

field assumption or the electroneutrality condition [12] rendering it inapplicable for electric

potentials within the Debye layer where charge density is neither zero nor constant. For this

reason, an alternative route is necessary in terms of a phenomenological description of ionic

concentration gradients in an electrolytic microenvironment. One such alternative approach

is to modify the cable equation to include the effects of polarized microstructure. This is done

by treating the microstructure as a homogenized core-conductor where intracellular capacitive

effects arise due to polarization effects of bound charge [23]. The microstructure included

polarization-induced capacitive current of charged proteins without endoplasmic membranes

[22]. An electrical model of electrolyte solution with endoplasmic membranes in the cytoplasm

as a subcellular reticulum cable encased within a core-conductor developed by Shemer et al.

[27] did not explicitly take into consideration intracellular capacitive effects due to polarized

microstructure.

In this paper, we extend the above approaches by deriving a cable model that considers the

effects of changes to ionic concentration gradients through a conduction process, which leads

to changes in equilibrium potentials when ions are in solution and ionic flow is inhomoge-

neous [28]. This is the first study in which electrical conduction of polarization-induced capac-

itive current in a homogenous core-conductor reflects upon ionic concentration gradients

without explicitly modeling electrodiffusion of ions (since cable theory ignores the effects of

changes in ionic concentrations that lead to changes in Nernst potentials when molecular ions

are in bulk solutions). Consequently, we derive a cable model modified for fissured intracellu-

lar medium as illustrated in Fig 1, which includes large organelles like mitochondria in small

neuronal branchlets [29].

Solitonic conduction in a neuronal branchlet
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Model

The proposed model is not electrochemical as it ignores concentration gradients in electrolyte

solutions and lumps all positive and negative charged ions in the cytoplasm (which are not the

result of polarization) as free charge. Also included are polarized proteins with electric dipoles

that can align to enhance or anti-align to reduce the endogenous electric field caused by the

accumulation of bound charge and the bound charge within mitochondrial membranes.

Fig 1. A schematic illustration of the neuronal microstructure. This diagram, drawn more than 110 years ago by Santiago Ramón y

Cajal, indicates a pyramidal cell from the cerebral cortex. The inset is a longitudinal section of the neuronal branchlet to illustrate how

branchlets are fissured at subcellular scale. The submicron-diameters of the most distal neuronal processes contain a dense meshwork of

proteinaceous structures referred to as the microstructure. The microstructure consists of cytoplasm (e.g., water, electrolytes, and polarized

free proteins), cytoskeleton (e.g., cytoskeletal bounded proteins, microtubules), and endoplasmic membranes (e.g. mitochondria).

Illustrated are mitochondria and the cytoskeleton—interlinking actin filaments, intermediate filaments, and microtubules. The mitochondrion

is the largest organelle (* 0.2μm) within the microstructure and dominates the constituency of the proteinaceous structures since

endoplasmic reticulum does not enter into branchlets below a micron.

https://doi.org/10.1371/journal.pone.0183677.g001
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Inhomogeneities in the conductivity due to irregular movement of electrical charge in the

intracellular fluid of neurons are neglected and displacement current involves the flow of con-

tinuous macroscopic charge densities within the Debye layer in the longitudinal direction

along the cable.

Cable theory finds its true theoretical foundation in Maxwell’s equations of the electromag-

netic field and remains the basis of deriving the cable equation from first principles (i.e., Max-

well’s equations with displacement currents) (see [30]). Application ofr.E = ρ/ε0 in a

cylindrical cable of volume (B) over a differential distance Δx and radius (r) as given in [31]:

1

ε0

ZZZ

B
r dv ¼

ZZZ

B
r:E dv ¼ pr2fEðx þ Dx; tÞ � Eðx; tÞg ð1Þ

where E is the electric field (V/cm) assumed to be polarized in the longitudinal direction

(along the cable length) E(x, t), ρ = ρfree + ρbound are the continuous polarization charge densi-

ties in the intracellular medium (C/cm3), ρfree is the distribution of free charge in positive x
along the cable (C/cm3) and ρbound is bound charge density held by microstrucure in the intra-

cellular space in the positive x—direction along the cable (C/cm3).

For an isotropic conductor (cf. [32, 33]), the polarization field P in the longitudinal direc-

tion (along the cable length) is the electric dipole moment surface density (C/cm3):

P ¼ ε0ðεr � 1ÞE ð2Þ

where εr = 81 is the relative permittivity of water (dimensionless) and fluid permittivity is

ε0 = 7 × 10−12(F/cm), χ = (1 − εr) is the susceptibility of the medium and the term ε = εrε0

denotes the permittivity that characterizes the response of the system in terms of separation of

charge in the presence of a quasi-electrostatic electric field (E), measured as a capacitance =

επΔx(μF) where Δx is a segment of cable. By the divergence theorem, Gauss’s law for the polar-

ization field can be stated as
@P
@x
¼ � rbound, then it can be shown upon differentiating Eq (1)

with respect to time and multiplying by −ε0 the following relation is obtained

�

ZZZ

B

@rfree

@t
dv ¼ � ε0pr

2
@

@t
fEðx þ Dx; tÞ� Eðx; tÞg � pr2

@

@t
fPðx þ Dx; tÞ� Pðx; tÞg ð3Þ

The equation of continuity for the charge density (ρ) and the current density (J) in a volume

(B) is given as [31]:

�

ZZZ

B

@rfree

@t
dv ¼

ZZZ

B
r:J dv ¼ pr2fJðx þ Dx; tÞ � Jðx; tÞg þ 2pr

Z xþDx

x
Imðx; tÞ dx; ð4Þ

where the last term is the positive outward membrane current density (A/cm2) and J(x, t) = JC+ JD
is the current density flowing along the cable in the x-direction (A/cm2). The conductivity cur-

rent density JC = σE = (Ohm’s law) where the electric conductivity σ(S/cm) is constant, neglects

ionic concentration gradients in the electrolytes and the nature of the different ionic species,

and therefore represents ionic homogeneity within the microstructure. The electric displace-

ment field is D = ε0E + P once differentiated with respect to time yields the displacement cur-

rent density JD ¼ ε0

@E
@t
þ
@P
@t

. Equating Eq (3) to Eq (4) and using mean-value theorem for the
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single integral in Eq (4) yields

� ε0pr2
@

@t
fEðx þ Dx; tÞ � Eðx; tÞg � pr2 @

@t
fPðx þ Dx; tÞ � Pðx; tÞg

¼ pr2fJðx þ Dx; tÞ � Jðx; tÞg þ 2prImð�; tÞDx; x < � < x þ Dx
ð5Þ

Dividing by Δx and letting Δx ! 0 yields

� ε0pr2
@

2Eðx; tÞ
@t@x

þ pr2@rboundðx; tÞ
@t

¼ pr2@Jðx; tÞ
@x

þ 2prImðx; tÞ; ð6Þ

where πr2ρbound(x, t) = q(x, t) is the surface bound charge per unit length of cable in the posi-

tive x—direction (C/cm).

The voltage-dependent charge transfer in the squid axon without microstructure, but due

to electrocompression, follows a quadratic dependence (see Fig 2), since the electrostatic force,

Fig 2. The polarization capacitance-voltage characteristic. A nonlinear capacitance-voltage relationship C(Vi) taken from the giant squid

axon [37] is approximated through a linear polarization capacitance-voltage characteristic as indicated by the dotted line and Eq (7) for

typical mitochondrial membrane potential range in cultured rat cortical neurons.

https://doi.org/10.1371/journal.pone.0183677.g002
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exerted on a membrane by voltage is given by [34]:

1

2
CmV

2=DM

where ΔM is the membrane thickness. Changes in capacitance due to compressive forces acting

on the membrane (electrostriction) are electromechanical. One such example is the voltage-

dependent longitudinal (axial) capacitance Ci(Vi) characterized by a quadratic dependence on

the voltage (see [25]):

CiðViÞ ¼ Cið1þ xV2
i Þ

where Ci is the voltage-independent longitudinal capacitance (F/cm), Vi is the intracellular

membrane potential (mV), and ξ is fraction increase in capacitance per square millivolt

(mV−2).

Mitochondrial membrane potential is regulated between −158mV and −108mV [35], which

means it is linearly proportional to Vi in the range (see Fig 2). This is the electrical potential

range where ion channels from outer mitochondrial membranes are activated. The nonlinear

polarization capacitance-voltage characteristic for microstructure can be approximated as a

polynomial power in Vi, for example C ¼ 2aV0:73
i [36] or as shown in Fig 2 can be linearized:

CðViÞ ¼ 2aVi ð7Þ

where α> 0 is the ‘soakage’ parameter (mV−1) determined from the electrical charge stored in

the capacitance of the microstructure. The parameter represents the capacity to hold more

charge or electrical energy than a linear capacitor.

The nonlinear capacitor represented by a voltage-dependent longitudinal capacitance

Ci(Vi) = CiC(Vi) is defined as charge transfer
dq
dVi

and C(Vi) is the linearized polarization capaci-

tance-voltage characteristic (dimensionless) generated by the voltage-dependent charge trans-

fer in the microstructure. Upon integration of
dq
dVi

yields the charge-voltage relationship

(electrical charge per unit length of cable C/cm):

Q ¼ CðViÞViCi ð8Þ

where Q(x, t) = 2q(x, t) is the total surface charge in the microstructure per unit length of cable

(C/cm). When α = 0 implies there is no charge stored due to the absence of microstructure.

Since the current density is J ¼ sE þ ε0

@E
@t
þ
@P
@t

and under a quasi-electrostatic electric

field E ¼ �
@Vi

@x
it can be shown that

pr2
@J
@x
¼
� 1

ri

@
2Vi

@x2
�

ci
2

@
3Vi

@t@x2
�
@qðx; tÞ
@t

; ð9Þ

where Vi is the intracellular potential, ci is the axial capacitance across unit length ci =

2ε0πr2(Fcm), and ri is the intracellular resistance per unit length ri ¼ 1

pr2s
ðO=cmÞ. Substituting

Eq (9) into Eq (6) and noting that
@

2Eðx; tÞ
@t@x

¼ �
@

3Vi

@t@x2
such that Eq (6) can be written in the

form

ci
@

3Vi

@t@x2
þ 2

@qðx; tÞ
@t

þ
1

ri

@
2Vi

@x2
¼ 2prImðx; tÞ ð10Þ

At the center of an infinitely long cable, the total longitudinal current must be equal to
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longitudinal current flowing in both directions, i.e.
@Qðx; tÞ
@t

¼ 2
@qðx; tÞ
@t

and Eq (10) when

multiplied by rm becomes

rm
ri

@
2Vi

@x2
þ rmci

@
3Vi

@t@x2
þ rm

@Qðx; tÞ
@t

¼ 2prImðx; tÞrm ð11Þ

If the conductivity of the extracellular medium is high leaving the extracellular medium isopo-

tential (i.e., Ve = 0) then effect of the external potential on the mitochondrial membrane poten-

tial (i.e., Vm = Vi − Ve) is negligible. Hence letting V = Vm − Er be the depolarization (mV) and

Er be the resting mitochondrial membrane potential (mV), together with mitochondrial mem-

brane as shown in Fig 3:

im ¼ 2prImðx; tÞ ¼
V
rm
þ cm

@V
@t
þ gaðVÞðV � VrevÞ; ð12Þ

where Vrev = Va − Er is the reversal potential (mV). Va is the equilibrium potential (mV). im is

the total membrane current per unit length (A/cm), Im is the total membrane current density

(A/cm2), ga(V) is the mitochondrial membrane conductance (S/cm), cm is the membrane

capacitance per unit length of cable (F/cm), and rm is the membrane resistance across a unit

length of passive membrane cable (Ocm). Note that Er = −139mV [35], ga(V) = 2πrGa(V)

where Ga(V) is the mitochondrial membrane conductance per unit area (S/cm2), Rm = 2πrrm
is the membrane resistivity or resistance across a unit area of passive membrane (Ocm2),

Cm ¼
cm
2pr is the membrane capacitance per unit area of membrane (F/cm2), Ci ¼

ci
pr2 is the intra-

cellular capacitance per unit length of cable (F/cm), and Ri = 0.5σ is the intracellular resistivity

(O cm). The intracellular resistance per unit length ri(O/cm) differs from the intracellular resis-

tivity Ri = 0.5σ(O cm) or volume resistivity of the intracellular medium also referred to as spe-

cific resistance, which is 1

s
where σ is the electrical conductivity (S/cm).

Electrical conductivity neglects ionic concentration gradients in the electrolyte solution and

the nature of different ionic species and therefore represents ionic homogeneity within the

microstructure. However, in our model in addition to bound charge on charged proteins there

are inactive membranes encasing the branchlet corresponding to mitochondrial membranes,

which also contribute to the displacement current, depending on the equilibrium potential

(when the nonohmic conductance is non-zero). The model membrane reverts to a passive

neuronal plasma membrane when the mitochondrial conductance is zero. This implies that

the mitochondrial membrane channel activity is simultaneous with the opening of plasma

membrane channels. This ignores the dependence of the mitochondrial channel on second

messengers during synaptic transmission [38].

The total ionic membrane current per unit length is assumed to be a quadratic nonlinearity

as depicted in Fig 4 and represented mathematically by g�a aV � 3

2
bV2

� �
. It is based on ions

crossing the membrane in combination with charged carrier molecule while the influence of

ion concentration gradients are ignored (cf. [39]). The equilibrium potential Va ¼
2a
3b ðmVÞ and

the negative slope conductance is gaðVÞ ¼ � 3

2
g�abV where the constants are: g�a the maximum

conductance of the membrane (S/cm), ‘a’ (dimensionless) and ‘b’ (mV−1).

Let τm = cmrm (passive membrane time-constant in msec), l ¼
ffiffiffiffi
rm
ri

q
(electrotonic space-

constant in cm), Δ = cirm, from Eq (8): Q(x, t) = C(V)VCi is the total surface charge per unit

length of cable (C/cm) and from Eq (7): C(V) = 2αV is a polarization capacitance-voltage char-

acteristic (dimensionless), substituting Eq (12) into Eq (11) yields the so-called nonlinear cable

Solitonic conduction in a neuronal branchlet
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equation:

V þ rmgaðVÞðV � VaÞ þ tm
@V
@t
¼ l

2@
2V
@x2
þ D

@
3V

@t@x2
þ

D

pr2

@fCðVÞVg
@t

ð13Þ

Recasting in terms of dimensionless time T ¼ t
tm

and space X ¼ x
l
, and noting the Maxwell

time-constant τρ = ciri the dimensionless form of the nonlinear cable equation is:

V þ rmgaðVÞðV � VaÞ þ
@V
@T
¼
@

2V
@X2

þ g
@

3V
@T@X2

þ k
@fCðVÞVg

@T
; ð14Þ

where g ¼
tr

tm
� 1 and k ¼ g l2

pr2 are both positive constants (dimensionless). The depolariza-

tion nondimensionalized via the scaling U ! ακV such that Eq (14) can be written in the

Fig 3. Equivalent circuit of a cable. A cable of small cross-section and infinitely long length that supports electrotonic signals propagating

as solitons. The voltage-dependent capacitance originates from a macroscopic phenomenological description of the quasi-electrostatic

interactions in the microstructure. It is assumed the cable to be a homogeneous conductor with radial currents ignored and the mitochondrial

membrane potential is Vm = Vi − Ve only when Ga 6¼ 0; otherwise it represents a passive membrane potential of the neuron without

mitochondrial membrane. The length increment (Δx) is shown where arrow indicates the convention that positive charge is in the direction of

increasing x, which is the physical distance along the cable. Below is an equivalent series-parallel RC circuit representing a patch of

membrane containing both voltage-dependent conductance Ga (mitochondrial membrane) and voltage-independent conductanceGm ¼
1

Rm

in series with the intracellular medium represented by a voltage-dependent longitudinal (axial) capacitance Ci(V) = CiC(Vi) of the cable

(F/cm) in parallel with the intracellular resistivity (Ri) of the cable (Ω cm).

https://doi.org/10.1371/journal.pone.0183677.g003
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form depicting the electrical conduction of electrotonic potentials that propagate as solitary

waves under quasi-electrostatic conditions driven by mitochondrial membrane current within

polarized microstructure:

ð1þ ZÞU þ
@U
@T
�
@

2U
@X2

¼ g
@

3U
@T@X2

þ 2
@U2

@T
þ dU2; ð15Þ

where Z ¼ armg�a and d ¼ 3g�ab
rm
2ak

are both positive constants (dimensionless). The nonlinear

cable equation modified for the inclusion of microstructure is formally a semilinear pseudo-

parabolic equation of non-evolutionary type. If η = 0 and δ = 0 then Eq (15) reduces to a non-

linear cable equation without mitochondrial membrane.

The right-hand side of Eq (15) depicts the intracellular capacitive effects consisting of two

terms: (i) the linear dissipative (third-order term) due to charge-equalization, contributes to

the longitudinal spread of charge, and (ii) nonlinear terms: one due to charge ‘soakage’ and the

other due to the presence of a mitochondrial membrane (absent when ga(V) = 0). The third-

order term counters the steepness of the voltage gradient due to the nonlinear terms. Given

that γ is small; the longitudinal polarization current will be conducted with a steep voltage gra-

dient giving grounds for the existence of solitary waves, although, its presence prevents a sharp

change in the voltage, so quasi-electrostatic conditions prevail.

Fig 4. Nonohmicity of charge transfer across the mitochondrial membrane. A theoretically derived charged-carrier model which gives

inwardly-rectifying I-V curve of the mitochondrial membrane current per unit length (A/cm) with the convention that the total ionic membrane

current is positive in the outward direction since in this model there is no interstitial space (cf. [27]). The maximum peak occurs at a
4
g�aVa,

when V ¼
a

3b
. Note that the equilibrium potential Va ¼

2

3

a
b is not constant.

https://doi.org/10.1371/journal.pone.0183677.g004
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Methods

Nonlinear cable equations may admit solitary wave solutions and if they do they are either

severely restricted or approximated [40]. Solitary wave solutions assume a constant conduction

velocity that relies on a Galilean transformation of the independent variable which reduces Eq

(15) to an ordinary differential equation: z = (X − Xp − vT) where Xp is the initial location of

the electrotonic signal positioned along the cable and v is its velocity (dimensionless). The elec-

trotonic signal is moving towards z ! 1. The electrotonic signal moving in the other direc-

tion z ! −1 we would use z = (X − Xp + vT). For convenience, we use the ansatz U�(X, T) =

O(z) where U� is the free-space version of U on an infinite interval (−1,1), with the follow-

ing identities:

@U�

@T
¼ � v

dO

dz
;

@
2U�

@X2
¼

d2O

dz
2
;
@

3U�

@T@X2
¼ � v

d3O

dz
3
; and

@U�2

@T
¼ � v

dO
2

dz
¼ � 2vO

dO

dz

� �

ð16Þ

Substitution of Eq (16) into Eq (15) yields

vg
d3O

dz
3
�

d2O

dz
2
þ vð4O � 1Þ

dO

dz

� �

þ ð1þ ZÞO � dO
2
¼ 0 ð17Þ

with the boundary conditions for electrotonic signals O(±1) = 0.

We obtain solitary wave solutions in free-space using the tanh-function expansion method

by introducing a new independent variable [41]:

y ¼ tanhðzÞ ð18Þ

with

dO

dz
¼ ð1 � y2Þ

df
dy

� �

; ð19Þ

d2O

dz
2
¼ � 2yð1 � y2Þ

df
dy
þ ð1 � y2Þ

2d2f
dy2

� �

; ð20Þ

d3O

dz
3
¼ 2ð1 � y2Þð3y2 � 1Þ

df
dy
� 6yð1 � y2Þ

2d2f
dy2
þ ð1 � y2Þ

3d3f
dy3

� �

; ð21Þ

where, O(z)! f(y) and f(±1)! 0. Substituting the above new variables into Eq (17) results in

the following expression:

ð1þ ZÞf � vð1 � y2Þ
df
dy
¼ � 2yð1 � y2Þ

df
dy
þ ð1 � y2Þ

2 d2f
dy2

� �

� gv½2ð1 � y2Þð3y2 � 1Þ
df
dy

� 6yð1 � y2Þ
2 d2f
dy2
þ ð1 � y2Þ

3 d3f
dy3
� � 4vð1 � y2Þf

df
dy
þ df 2

ð22Þ

The tanh-function expansion method admits the use of a finite expansion of the form

f ðyÞ ¼
Pn¼N

n¼0
anyn where n is a positive integer that will be determined by equating the powers

of y in the resultant equation upon its substitution into Eq (22). To determine the parameter n,

we balance the highest-order linear terms with the highest-order of nonlinear terms which

gives n = 2. Therefore the solution takes the form:

f ðyÞ ¼ a0 þ a0ða1 � 1Þy � a1a0y2 ð23Þ
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As y ! −1 then from Eq (23) and the boundary condition f(−1)! 0 yields a1 = 1 and the

solution takes the form:

f ðyÞ ¼ a0ð1 � y2Þ ð24Þ

As y ! 1 then upon substituting Eq (24) into Eq (22) and the boundary condition f(1)! 0

yields the dimensionless velocity of the electrotonic signal:

v ¼
1

2

3 � Z

ð1 � 4gÞ
ð25Þ

where η< 3 for positive velocity. Now substitution of y = tanh(z) into Eq (24) yields the travel-

ing wave solution for an electrotonic signal of unitary width and moving at velocity v:

U�ðX;Xp;TÞ ¼ a0sech2ðX � Xp � vTÞ ð26Þ

where a0 > 0 is the dimensionless amplitude determined in S1 Appendix to be a0 � 6 1þ4gv
dþ8v

when substituted into Eq (26) together with Eq (25) yields:

U�ðX;Xp;TÞ � 6
1þ 2gð1 � ZÞ

d � 4dg � 4Zþ 12

� �

sech2
ðX � Xp � uTÞ ð27Þ

The solitary wave solution governed by Eq (27) is known as a quasi-soliton reflecting on the

electrotonic signal propagating at a constant velocity v> 0 The solitary-wave solution is only

an approximate solution of Eq (15) shown in S2 Appendix to be stable based on local stability

analysis.

Results

The results presented in Fig 5 illustrate the electrotonic signals (or spatiotemporal evolution of

depolarization) U�(X, Xp; T) in non-dimensional terms along an infinite cable (in free-space)

with passive membrane (Fig 5a) or mitochondrial membrane (Fig 5b, 5c and 5d). The electro-

tonic signals are insensitive to the initial location of its position along the cable Xp as the

hyperbolic secant function reaches a maximum value of unity at X = Xp. The amplitude of the

quasi-soliton is approximately 40% smaller than that for the passive membrane, when the

mitochondrial membrane equilibrium potential Va = 0.2mV (cf. Fig 5a and 5b). In this case,

the inclusion of the nonohmic conductance simply acts like another ‘leaky’ channel and results

in significantly greater current flow through the membrane. However, when the mitochondrial

membrane equilibrium potential increases, the peak amplitude of the wave approaches that of

the passive neuronal membrane case (cf Fig 5a and 5c). While for Va = 0.3625mV we see that

the amplitude of the quasi-soliton becomes greater than the passive membrane case (cf. Fig 5a

and 5d). This indicates that the role of the voltage-dependent channels in the mitochondrial

membrane is to amplify the quasi-soliton generated by the microstructure. For values of Va

outside the criterion for stability governed by Eq (5) in S2 Appendix are not included.

As shown in Fig 5 (right-hand-side), the velocity of the quasi-soliton is inversely propor-

tional to the slope of this graph. As can be seen the co-ordinate for the first point is fixed at

(X1, T1) = (0.5, 0). The co-ordinate for the last point is (X2, T2) = (0.6506, 0.1) for passive mem-

brane. Thus slope is¼
T2 � T1

X2 � X1
¼ 0:1� 0

0:6506� 0:5
¼ 0:664 and the dimensionless velocity is inversely

proportional to this slope 1/0.664� 1.506 in the passive case. The co-ordinate for the last

point is (X2, T2) = (0.6255, 0.1) for mitochondrial membrane with η = 0.5 and δ = 10. The co-

ordinate for the last point is (X2, T2) = (0.5251, 0.1) for mitochondrial membrane with η = 2.5

and δ = 10. The co-ordinate for last point is (X2, T2) = (0.505, 0.1) for mitochondrial
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Fig 5. The density plots of quasi-solitons in free-space. Electrotonic signals expressed by a

spatiotemporal evolution of free-space voltage (depolarization) U*(X, Xp; T) along an infinite cable of

dimensionless distance (X) and dimensionless time (T). Top-view of the density plot is shown on the right-

hand side. The results are presented for a spatially homogeneous medium where the quasi-solitons

propagate with a constant velocity and amplitude that is independent of their initial position Xp = 0.5.
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membrane with η = 2.9 and δ = 8. The slope is
T2 � T1

X2 � X1
¼ 0:1� 0

0:6255� 0:5
¼ 0:7968 and the dimensionless

velocity is inversely proportional to this slope 1/0.7968� 1.255 in the mitochondrial mem-

brane case with η = 0.5 and δ = 10. The slope is
T2 � T1

X2 � X1
¼ 0:1� 0

0:5251� 0:5
¼ 3:9841 and the dimension-

less velocity is inversely proportional to this slope 1/3.9841� 0.251 in the mitochondrial

membrane active case with η = 2.5 and δ = 10. The slope is
T2 � T1

X2 � X1
¼ 0:1� 0

0:505� 0:5
¼ 20 and the

dimensionless velocity is inversely proportional to this slope 1/20� 0.05 in the mitochondrial

membrane case with η = 2.9 and δ = 8.

If the interaction between two quasi-solitons is robust (i.e. preserves their shape and veloci-

ties during the interaction) then quasi-solitons reappear after collision. Amazingly, this is the

major property of solitons [42]. Quasi-solitons are dissipative, but only in the sense that in

the presence of friction, they gradually decelerate and become smaller and eventually decay as

T ! 1. In S3 Appendix it is evident for T ! 1 that the linearized quasi-soliton dissipates

as it propagates. The quasi-soliton is self-generating due to the reservior of electrical charge

stored in the capacitance and dissipates only in the absence of microstructure. The Boussinesq
paradigm which states that the balance between the steepening effect of the nonlinearity and

the flattening effect of the dispersion maintains the shape of the soliton [43]. This clearly does

not apply to Eq (15) where nonlinearity creates the localized bell-shaped quasi-solitons. Thus

in this paper, the term ‘soliton’ is used more generally to refer to a quasi-soliton that asymptot-

ically preserves its shape and velocity on collision with other quasi-solitons [44]. The quasi-

solitons are generated by nonlinearity of the charge ‘soakage’ term in Eq (15) and solitonic

interaction are the resultant effect of two oppositely directed quasi-solitons admitted from two

different Galilean transformations.

Considering the approximate solitonic interactions based on the summation of localized

traveling waves that can interact without changing their shapes, amplitudes and velocities

since linear superposition of quasi-solitons is assumed:

U�ðX;Xp1þXp2;TÞ ¼ 6
1þ 2gð1 � ZÞ

dð1 � 4gÞ þ 4ð3 � ZÞ
½sech2ðX � Xp1 � uTÞþ sech2ðX � Xp2þ uTÞ� ð28Þ

The collision between two quasi-solitons with identical velocities is illustrated in Fig 6. In

the case of passive neuronal plasma membrane, the results are similar so will not be repro-

duced. The elastic collision stems from the absence of a refractory period known to be the

cause of collapse between two colliding spikes. The dynamics of interactions (collisions) of the

quasi-solitons is elastic (i.e., absorbing one another followed by passing through one another

without any change in identity). After linear superposition at collision, the quasi-solitons

continue to propagate without dissipating, thus providing unequivocal support for quasi-

solitons to be solitons. Likewise, the simulation shows the existence of a point where there is

only a single peak, suggesting that the solitons absorb one another during collision.

Also the quasi-solitons U�(X, T) = O(z) are shown to satisfy the following conditions [41]:

O0(z) = O@(z) = O000(z) = 0 where prime denotes differentiation with respect to z, further rein-

forcing that quasi-solitons are solitons.

Gonzalez-Perez and his colleagues performed an experimental study showing head-on col-

lision between two nerve pulses of less than 5mV undergoing an elastic interaction instead of

Electrotonic signals possess no energy loss due to charge ‘soakage’ discharging from the nonlinear capacitor

of the polarized microstructure. Parameters used were: (a) γ = 0.001, v = 1.506, η = 0 and δ = 0 (passive

neuronal plasma membrane), (b) γ = 0.001, v = 1.255, η = 0.5 and δ = 10 (mitochondrial membrane), (c)

γ = 0.001, v = 0.251, η = 2.5 and δ = 10 (mitochondrial membrane), and (d) γ = 0.001, v = 0.05, η = 2.9 and

δ = 8 (mitochondrial membrane).

https://doi.org/10.1371/journal.pone.0183677.g005
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annihilating upon contact (see [45]). Our model supports their experimental findings

without considering adiabatic phenomena associated with the nerve pulse, but through charge

reservoirs within the mitochondrial membrane held by a nonlinear capacitor of the cable

model.

Discussion

Intracellular capacitive effects entail self-excitability due to charge ‘soakage’ held by the endog-

enous membrane capacitor which results in electrotonic signals propagating as solitary waves

due to the energy stored in the microstructure [23]. Solitary waves are not solitons since they

do not preserve their shape and velocity after collision. Evidence of soliton-like behavior of sol-

itary waves is their elastic interaction after head-on collision between two oppositely directed

solitary waves.

The crucial test for solitary waves to be solitons is robustness to collision [42]. Electrical sol-

itons do not undergo nonlinear amplitude modulation during collision because linear super-

position is assumed and no phase shift occurs due to a dissipative medium [46]. Based on

linear superposition of the elastic interaction, solitary waves were not deformed after head-on

collision, preserving their shape and velocity, thus providing support for the solitary waves to

be solitons. This result precludes the integrability of the modified nonlinear cable equation,

where a phase shift is expected in integrable systems. For instance, Drazin and Johnson [47]

define a single soliton solution as a solitary wave (or quasi-soliton), but if more than one soli-

ton appears in the solution then it is called a ‘soliton’. This more stringent definition of a soli-

ton is also referred to as a ‘multi-soliton’ solution or ‘n-soliton’, which requires integrability of

the modified nonlinear cable equation. If the modified nonlinear cable equation is nonintegr-

able then it would imply the absence of n-soliton solutions, but still adhering to the definition

Fig 6. Solitonic interactions between two oppositely directed quasi-solitons. Elastic interaction after a head-on collision along an

infinite cable in dimensionless time and space. The electrotonic signals U*(X, Xp1
+ Xp2

;T) propagating due to the energy stored in

microstructure within neuronal branchlets are obtained from Eq (28) as a function of electrotonic distance (X) and dimensionless time (T). To

differentiate the amplitudes of the electrotonic signals, the signal moving to the right was normalized by U*(Xp1
, Xp1

+ Xp2
; 0) and the signal

moving to the left was half-normalized by 2U*(Xp2
, Xp1

+ Xp2
; 0). Both quasi-solitons propagate with a dimensionless conduction velocity of

v = 1.4558. The elastic interaction between quasi-solitons is taken as a linear superposition. Parameters used were: γ = 0.001, Xp1 = 4.4177,

Xp2 = 5.5823, η = 0.1, and δ = 3 (mitochondrial membrane).

https://doi.org/10.1371/journal.pone.0183677.g006
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of a soliton as a non-dispersing solitary wave, which maintains its shape and velocity after

head-on collision [42, 44].

There are mechanical models of soliton propagation in nerve, but none that specifically

address electrical solitons. Aizawa and colleagues [48] pointed in the direction that the nerve

impulse (i.e., spike or action potential) is a ‘nervous soliton’, but their results did not adhere to

the definition mandated of a soliton. The model presented herein constitutes a first attempt at

identifying solitons as electrotonic signals propagating in neuronal branchlets with micro-

structure containing mitochondria. The model differs from that of Poznanski and colleagues

[22] where solitonic conduction of electrotonic potentials was due to charged proteins without

mitochondrial membranes.

The source term containing charge ‘soakage’ in the cable equation resulted in solitary trav-

eling waves instead of traveling fonts as one would expect in solutions of a cable equation with-

out recovery processes. The inclusion of recovery processes, which is designed to model the

slower membrane response of potassium activation and sodium inactivation based on H-H

kinetics [49] entails the addition of a ‘recovery’ variable W in a subsidiary linear rate equation:

@W
@T
¼ U � W ð29Þ

Consequently a spike can be simulated with a refractory period allowing for subsequent spikes

to be transmitted, but will result in an inelastic head-on collision upon interaction. Huxley

[50] had observed the presence of an unstable subthreshold ‘spike’ midway between electro-

tonic decay and ignition of a spike. This is not the solitons observed in this paper since the sta-

bility or solitonic nature of such subthreshold ‘spikes’ was not evident.

Endogenous electric field is a term used to infer on the absence of any externally applied

electric fields. The endogenous electrical field effects are considered to be extracellular fields

induced ephaptically, which have been shown to affect spike timing of a neuron [51], but are

incapable of triggering or suppressing spike activity in response to synaptic activity [52]. In

hindsight, Zhang et al. [53] had concluded that induced extracellular spikes in the absence of

synapses and gap junctions observed experimentally must be attributed to the same effects of

extracellular fields that was confirmed by computer simulation [54] suggesting a nonsynaptic

propagation mechanism consistent with ephaptic field effects. Whether solitonic conduction

of electrotonic potentials driven by mitochondrial membrane current within polarized micro-

structure can induce extracellular spikes would need to be investigated through the inclusion

of extracellular potentials (cf. [55])

The implications of a model for understanding the intracellular capacitive effects of macro-

scopic polarization on membrane potential and on the excitability process in general needs to

be developed further. The present formalism can be further extended through inclusion of

inhomogeneous linear dissipative neural media of a more general form where the electric con-

ductivity and permittivity are no longer constants, but functions that depend on location and

time. In such a circumstance, there is a need to reconsider more realistic cases were inhomoge-

neities in the conductivity and permittivity is present. One such example is a more general

form where the electric conductivity and permittivity are no longer constants, but functions

that depend on location and time:

Dðx; tÞ ¼
Z

εðx; sÞEðx; t � sÞ dsþ Pðx; tÞ ð30Þ
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and

Jðx; tÞ ¼
Z

sðx; sÞEðx; t � sÞ dsþ
@D
@t

ð31Þ

where D is the electric flux density and J is the current density. Furthermore, for a nonlinear

dissipative neural media, it also requires the susceptibility (χ) to be a function of time and loca-

tion:

Pðx; tÞ ¼ ε0

Z

wðx; sÞEðx; t � sÞ ds ð32Þ

where P is the polarization field in the longitudinal direction (along the cable length). The con-

sequence of this re-evaluation renders the model to include dispersive capacitive effects (i.e.,

capacitance that is frequency-dependent) seen both theoretically [20] and experimentally [56].

Conclusion

In this paper, we provided a phenomenological description of the electrolytic microenviron-

ment that assumes electrodiffusion of ions to be reflected by electrically charged homogenous

core-conductor, where charge densities are continuous distributions reflecting displacement

current in an electrolytic cable with polarized microstructure.

The nonlinear cable equation with a source term representing charge ‘soakage’ in a linearly

dissipative medium was derived from Maxwell’s equations under quasi-electrostatic condi-

tions (slow moving electric field) and solved to describe traveling wave solutions as solitary

waves. The head-on collision between two oppositely traveling solitary waves produced an

elastic interaction confirming the existence of electrical solitons. The charge ‘soakage’ pro-

duced non-dispersing effects that sustained the amplitudes of the solitons from dissipating.

The results are consistent with solitonic conduction of electrotonic potentials based on spatial

and ionic homogeneity, negligible concentration gradients, and extracellular isopotentiality.

The effect of polarized microstructure in a cable model with mitochondrial membranes has

confirmed that electrotonic signals can be conducted as solitons. In principle, the confirmation

of electrotonic signals as electrical solitons complements the 65 year standing H-H model at

the subcellular scale.
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