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Analog Approach to Constraint 
Satisfaction Enabled by Spin Orbit 
Torque Magnetic Tunnel Junctions
Parami Wijesinghe, Chamika Liyanagedera & Kaushik Roy

Boolean satisfiability (k-SAT) is an NP-complete (k ≥ 3) problem that constitute one of the hardest 
classes of constraint satisfaction problems. In this work, we provide a proof of concept hardware 
based analog k-SAT solver, that is built using Magnetic Tunnel Junctions (MTJs). The inherent physics 
of MTJs, enhanced by device level modifications, is harnessed here to emulate the intricate dynamics 
of an analog satisfiability (SAT) solver. In the presence of thermal noise, the MTJ based system can 
successfully solve Boolean satisfiability problems. Most importantly, our results exhibit that, the 
proposed MTJ based hardware SAT solver is capable of finding a solution to a significant fraction (at 
least 85%) of hard 3-SAT problems, within a time that has a polynomial relationship with the number of 
variables(<50).

The Boolean satisfiability problem investigates whether there exists an assignment for the input variables that 
satisfies a given Boolean formula. k-SAT is widely used in many practical applications including automated plan-
ning1, test pattern generation2, hardware model checking3, software program testing4 and timing analysis5. k-SAT 
problems are NP-complete (k ≥ 3)6,7. i.e., there are no known algorithms that can guarantee a solution for a SAT 
problem in polynomial time, making it extremely difficult to solve most satisfiability problems with reasonable 
computational resources. Numerous research efforts have been directed towards realizing improved SAT solv-
ers8–13, since a polynomial time solution to k-SAT implies efficient solutions to a large number of hard optimi-
zation problems. The standard conjunctive normal form (CNF) of any Boolean k-SAT problem with N variables 
can be written as

∪ ∪ ∩ ∪ ∪ ∩ ∪ ∪= ... x x x x x x x x x( ) ( ) ( ) (1)1 2 3 2 1 5 4 5 3

where xi∈{0, 1} is a variable and each clause is the disjunction (OR, ∪) of k (k = 3 in this case) such variables or 
their negation (xi). The propositional formula   is a conjunction (AND, ∩) of M number of such clauses. The 
hardness of a SAT problem can be measured as the ratio between the number of clauses and the variables, known 
as the constraint density αc (Supplementary section S1).

Analog computational approaches have recently demonstrated promising results in a diverse array of appli-
cations14 including aforementioned constraint satisfaction8,9,15. A recent analog formulation of a k-SAT solver 
has demonstrated its potential on locating a solution for the Boolean satisfiability problem in polynomial 
continuous-time8. However, implementing this set of analog formulae using a digital computer will diminish 
the polynomial time benefits, due to varying computational complexities between different time steps. Also, a 
hardware implementation of this analog k-SAT solver8 is not ideal16, due to the exponential energy fluctuations 
in the system. Consequently, a Cellular Neural Network (CNN) based analog SAT solver with bounded variables 
was proposed9, and it is more appealing for hardware implementations. Although this bounded system does not 
have polynomial time complexity, noise effects in the analog hardware can potentially reduce the long transient 
times9 in the system, as we demonstrate in this work. The dynamics of this analog SAT solver, which is also the 
framework of our work, can be defined by the following set of equations9.
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Here the variable si represents the state of the ith (i = 1, 2, ..., N) Boolean variable (xi) and am represents the 
“satisfiedness” of the mth (m = 1, 2, ..., M) clause of the Boolean function. C is the problem specific ‘interconnec-
tion matrix’ of size M × N (Supplementary section S1). The functions f() and g() are the thresholding functions 
applied on variables si and am, respectively, as follows
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This system is explained in detail in the Supplementary section S1. It is mathematically shown9 that these set 
of equations satisfy three theorems that demonstrate the properties of the model. The same theorems are used in 
Supplementary section S4, to show that our hardware SAT solver demonstrates the same properties. Following 
are the three theorems.

•	 Theorem 1: Variables s and a remain bounded.
•	 Theorem 2: Every k-SAT solution has a corresponding stable fixed point.
•	 Theorem 3: A stable fixed point always corresponds to a solution.

We present a hardware platform built on nano-scale spintronic devices, which can successfully emulate the 
behaviour of the aforementioned SAT solver. As a matter of fact, recent studies have demonstrated efficient hard-
ware models that utilize the underlying device physics of nano-electronic structures to perform computationally 
intensive calculations17–21. In this work, each of the above differential equations is modeled by a single MTJ with 
an underlying heavy metal (Ta, Pt, etc.) layer. Our numerical results demonstrate that, the MTJ based SAT solver 
exhibits a polynomial dependency, between the number of variables and the real time for convergence, even for 
SAT problems that are known to be hardest to solve (note that this is not a mathematical proof that shows a guar-
anteed polynomial time complexity). We conjecture that, this is due to the non-deterministic nature of our system 
caused by the random thermal noise, and also due to the added complexities associated with MTJs.

Using the behaviour of Magnetic Tunnel Junctions for a SAT solver.  The proposed hardware based 
SAT-solver is a collection of heavy metal-MTJ (HM-MTJ) structures, interfaced through simple CMOS periph-
eral circuitry as described in the next section. The device-circuit structure we propose is generic and can be 
adapted to solve a given k-SAT problem. The HM-MTJ structure is composed of two ferromagnetic layers called 
the Pinned Layer (PL) and the Free Layer (FL), separated by a thin tunneling oxide (MgO) layer and an HM 
under-layer (Fig. 1(c)). The PL magnetization direction ( p̂) is fixed and acts as a reference. In contrast, the mag-
netization direction m̂ of the FL can be switched by passing a current through the HM under-layer, using the Spin 
Orbit Torque (SOT) phenomenon. Such a technique has emerged as an energy-efficient mechanism for magnet-
ization reversal22–24. Furthermore, the three terminal structure of this MTJ with a heavy metal under layer is 
beneficial in this work due to the possibility of simultaneous read and write to an MTJ25. This is impossible to 
achieve in a two terminal MTJ structure that requires the write current to flow through the tunnel junction.

The resistance measured across the MTJ varies with the magnetization of the FL, and shows two stable states; 
high resistive (RAP) anti-parallel (AP) state, and low resistive (RP) parallel (P) state. Equations 6 and 7 depict how 
the resistance across the MTJ (RMTJ) varies with the direction of the FL magnetization, where θfp is the angle 
between the directions of FL and PL magnetizations26. The magnetization reversal dynamics of an MTJ with 
an applied current is explained in the Supplementary section S2 using the Landau-Lifshitz-Gilbert-Slonczewski 
(LLGS) equations27. The speed of this magnetization reversal can be controlled by the magnitude of the current 
passing through the HM layer. However, due to the effect of random thermal noise on nano-scale magnets, the 
MTJ switching speed follows a Gaussian distribution.
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The resistance across an MTJ, RMTJ, can be easily converted into a voltage by using a simple resistor divider 
circuit. In the proposed hardware implementation of the SAT solver, each si and am variable from equations 2 and 
3 are represented using a single HM-MTJ structure. The state of these variables at a particular time instant are 
given by the resistance across the corresponding MTJ device. The couplings between the s and a variables (terms 

c g a t( ( ))m mi m∑  and 	− ∑ c f s t( ( ))mi ii  in equations 2 and 3) are mapped as currents through the HM layer using the 
interface circuitry explained in the next section.

In addition to the mathematical explanation that can be found in Supplementary section S4, we now intui-
tively explain how our MTJ based SAT solver mimics the system elaborated in equations (2–3). One main feature 
of this system is that, the current values of the variables depend on their previous states as well as some inputs. 
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Similarly, the FL magnetization of an MTJ depends on its previous magnetization as well as the driving current. 
Another feature of the system in (2-3) is that, when the feedback from am towards the dynamics of si (i.e., 
∑ c g a t( ( ))m mi m 0 ) is zero after a particular time t0, si will move towards +A if si(t0) > 0, and −A if si(t0) < 0, pro-
vided A > 1. Similarly, in an MTJ, an instantaneous removal of a current through the HM layer, will lead the free 
layer magnetization to settle down either to the parallel state or to the anti-parallel state. The state to which the 
magnet settles down is highly dependent upon the resistance it had at the time of removal of the current, in the 
absence of thermal noise. When the angle between the PL and FL magnetization directions θ > π

fp 2
 ( )fp 2

θ < π , and 
if the drive current is zero, then the final FL magnetization will settle down to the anti-parallel (parallel) state. 
However, it should be noted that this phenomenon occurs under certain conditions. In this work, we optimized 
the FL thickness according to the following equation to exhibit the above behaviour.

t K
N N M

2
( ) (8)
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=
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where Ki is the energy density constant for interface perpendicular anisotropy and Nzz, Nyy are the demagneti-
zation factors along y and z directions. The derivation of this FL thickness is explained in detail in the supple-
mentary documentation (section S3). The new traversal of the magnetization of a device with a thickness of tss is 
illustrated in Fig. 2(a),(b). Figure 2(c),(d) depicts the magnetization traversal of an MTJ with a thickness larger 
than tss for reference. Note the smooth transition of the FL magnetization component along the easy axis (denoted 
as Mx) in Fig. 2(a) in contrast to the oscillatory transition of that in Fig. 2(c). In the light of this observation, we 
name tss as the seamless switching thickness of an MTJ.

Structure of the SAT solver.  In this section, we will elaborate how we mapped the system in (2-3) to an array of 
HM-MTJs with a CMOS control interface. Each s and a variable in (2-3) is represented by the resistance of an MTJ. The 
resistance of the MTJ can be read as a voltage difference, when a constant read current (IREAD) flows through the MTJ. 
Note that this read current must be sufficiently small (<1μA) to not to interfere with the proper operation of the system. 
The functions f() and g() can be generated efficiently using a differential amplifier shown in Fig. 3(a). Note that the 
amplifier is connected to the bottom of the magnet (not the heavy metal layer). This is to avoid the small variable voltage 
(ΔV) induced across the HM layer due to the varying current that flows through it. These amplifiers will increase the 
voltage differences incurred due to the changing resistance of the MTJs. The state AP results in a larger voltage differ-
ence between nodes A and B with respect to that resulting from P state. In our structure, the AP and the P states of an 
MTJ that represents an s variable, gets mapped in to +1 and −1 states in equation (2) respectively. In a k-SAT problem, 

Figure 1.  The Heavy Metal-Magnetic Tunnel Junction structure. (a) High resistive (RAP) anti-parallel state of 
an MTJ (b) Low resistive (RP) parallel state of an MTJ. The Tunnel Magneto-Resistance (TMR) is a measure of 
the normalized difference of these resistances. Typical values of the TMR ranges from 150%–600%41,42. (c) An 
HM-MTJ structure. The charge current through the HM layer underneath the MTJ, gets split into up and down 
spins, inducing a perpendicular spin current which can reverse the magnetization of the free layer through the 
Spin Orbit Torque phenomenon.
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Figure 2.  An MTJ changing its state from P to AP due to an applied current. (a) Time evolution of the 
components of unit magnetization vector in an MTJ with a FL thickness of tss (b) Unit magnetization traversal 
(in 3 dimensional space) of an MTJ with a FL thickness of tss (c) Time evolution of the components of unit 
magnetization vector in an MTJ with a FL thickness larger than tss (d) Unit magnetization traversal (in 3 
dimensional space) of an MTJ with a FL thickness larger than tss. Notice the lack of oscillations in Mx in (a), 
during the magnetization reversal of the FL, in contrast to (c).

Figure 3.  (a) The MTJ circuit for an s/a variable. The input current through the HM layer will change the state 
of the MTJ and this change will be measured by the amplifiers. The read current is assumed to be constant and 
its magnitude should be small so that it does not hinder the proper operation of the system. The MTJ resistance 
changes with the input current. The non-inverting output generates the ‘state’ (f(si)/g(am)) and the inverting 
output generates the ‘inverse-state’ ( f s g a( ) / ( )i m ) of an MTJ. (b) The reference circuit of the differential amplifier. 
VOUT is the non-inverting output and VOUT is the inverting output. (c) The outputs (f(si)/g(am)), varying with the 
MTJ resistance from RP to RAP.
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a variable can appear as xi, or its negation (xi) in the mth clause. This information is encoded in the elements of the con-
nection matrix cmi, as explained in Supplementary section S1. In order to account for different values of cmi at the circuit 
level, we generate the ‘state’ (f(si)/g(am)) and the ‘inverse-state’ ( f s g a( ) / ( )i m ) signals of an MTJ. These signals are pro-
duced at the amplification stage outputs, as shown in Fig. 3(b). A differential amplifier is employed to read the voltage 
difference across an MTJ. Additionally, a source degenerated common source amplifier is used as a second amplifica-
tion stage, to boost the voltage to the desired levels. A third amplifier is employed in the design to generate the afore-
mentioned inverse functions ( f () and g()). The complete schematic of the amplification stages used in this work is 
shown in Fig. 3(b). The same amplifier architecture with different control voltages was used for interfacing with MTJs 
representing both a and s variables. The outputs VOUT  (f(si) or g(am)) and VOUT f s( ( )i  or g a( ))m  are used to drive the 
MOSFETs controlling the current through the heavy metal layers (Fig. 4).

Figure 3 (c) elaborates how the above mentioned ‘states’ and ‘inverse states’ vary with the resistance of an 
MTJ. Each differential amplifier output will vary between a predefined high voltage (VsH, VaH), and a low voltage 
(VsL,VaL). Therefore, the state −1 and +1 of variable s will be mapped to VsL and VsH at the non-inverting (VsH and 
VsL at the inverting) output. For the variable a, the non-inverting (inverting) output will be VaL (VaH) when the 
resistance of the MTJ is less than (Rap + Rp)/2 and VaH (VaL) when the resistance is Rap.

The term c g a t( ( ))m mi m∑  in equation 2, and the term c f s t k( ( )) 1i mi i−∑ + −  in equation 3 (the coupling 
between variable si and am) are mapped as currents through the HM layers of MTJs, that represent s variables and a 
variables, respectively. At a particular time instant when the mth clause is not satisfied, if the connection parameter 
cmi is positive, the current should drive the MTJ that represents variable si towards the AP state. Similarly, when cmi is 
negative, the current should drive that MTJ towards the P state, and when cmi is zero, the current through the HM 
should be zero. Figure 4(a,b) graphically explains how this is realized at the circuit level. Figure 4(c,d) shows the 
circuit realization of the feedback from the si variable acting on the am variable, depending upon the connection 
parameter cmi. When cmi is positive (negative), −cmi f(si(t)) should drive the MTJ that represents am towards the P 
(AP) state (for a case where si is in AP state). The two transistor structures (heavy metal current controllers) in 
Fig. 4(c,d) should provide an output voltage of Vo, when the input = = +f s t f s t V V( ( )) ( ( )) ( )/2i i DD SS . This is to 
make sure that there is no current through the HM layer when si(t) = 0. For the Fig. 4, we assume that a charge cur-
rent from left to right through an HM layer, drives the MTJ on top, towards the AP state. Figure 4(e,f) illustrates the 
final structure of the SAT solver with all the control logic. The connections in the ‘network’ depends on the SAT 
problem to be solved. Therefore, the connecting switches must be initialized depending upon the problem. Note that 
when the number of clauses of a problem increases, the connections become more complex.

Figure 4.  The input connection diagram of the SAT solver. The input connection to an si node from am, if (a) cmi 
is negative (b) cmi is positive. The input connection to an am node from si, if (c) cmi is positive (d) cmi is negative. 
Here the charge current from left to right through the HM layer drives the MTJ towards the AP state. The 
value of V0 is smaller than VDD but larger than VSS. The sizing of the transistors must be done appropriately. (e) 
Outputs of three a nodes connected to an si node. The connection parameters (c1i, c2i and c3i) between si and a1, 
a2 and a3 are −1, −1 and 1, respectively. (f) Outputs of three s nodes connected to an am node. The connection 
parameters (cm1, cm2 and cm3) between am and s1, s2 and s3 are −1, 1 and −1, respectively.
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Results
In order to observe the functionality of our SAT solver, we conducted circuit level simulations. Figure 5 illustrates 
the currents through the heavy metal layers of the two MTJs representing s variable and a variable, that corre-
spond to a 10-variable hard SAT instance. The results were obtained from HSPICE simulations using IBM 45 nm 
technology node. The resultant evolution of the free layer magnetization along the x̂ direction (Mx) is shown on 
the right (Fig. 5(c) and (d)). Note that a positive current drives the MTJ towards AP (+1) state and a negative 
current drives the MTJ towards P (−1) state in the figure.

As elaborated in the Supplementary section S1, the constraint density (αc) is an indicator of the hardness to 
solve a particular SAT instance. In order to observe the functionality of our solver for SAT instances with different 
hardness levels, we solved randomly generated 3-SAT problems with different constraint densities, and different 
number of variables. Figure 6 shows the magnetization dynamics of three MTJs that correspond to three variables 
in two 20 variable 3-SAT problems, each having a constraint density of 4.25 and 3.00, respectively. The colour of 
the trajectories in Fig. 6(c,d) indicates the normalized energy of the system at that particular point. This energy of 
the system can be defined by the following equations.

E a s a K( , )
(9)m

M

m m
1

2∑=
=

∏= −−

=
K c s2 (1 )
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i
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where M and N are the number of clauses and the number of variables in the k-SAT problem, respectively. The 
energy is a function of the number of clauses not satisfied at a particular instant. This can be used as a cost func-
tion to determine the “satisfiedness” of a particular problem at a given instant. Notice that the trajectories in  
Fig. 6(c),(d) pass through higher energy states as the system tries to converge to a solution. This shows that our 
system escapes local minimum points naturally, unlike other algorithms28 where simulated annealing is necessary 
to escape from such local minimum points.

Approximate polynomial time solution from the proposed SAT solver.  We also solved randomly 
generated satisfiable 3-SAT problems in the hard regime (αc = 4.25) for different number of variables (20, 30, 40, 
50). We have calculated the number of problems solvable within 10 μs for the purpose of illustration. However, 
since our system has no limit cycles owing to thermal noise (more details are available in the next section), we 
argue that our proposed method will probably reach a solution if sufficient time has been provided, given that 

Figure 5.  The varying current through the heavy metal layer of two MTJs that represent (a) s variable and (b) a 
variable of a 10-variable SAT instance (αc = 4.25). The currents were obtained via HSPICE following the circuits 
explained in Fig. 4, simulated in IBM 45 nm technology. The resultant time evolution of the free layer 
magnetization along the x̂ direction is shown on right for (c) s variable and (d) a variable.
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a solution exist. We monitored the fraction of problems not solved by the algorithm at time t and the result is 
depicted in Fig. 7. It is evident that the fraction of problems not solved p(t), has an exponential decay with time t. 
The relationship between p(t) and t can be approximated by

= λ γ− +p t re( ) (11)N t( )

where r and γ are constants. The decay rate λ obeys λ(N) = bN−β, with β ≈ 1.1. Therefore the continuous time t 
needed to solve a (1−p) fraction of problems can be written as

γ= + β−t p N r p b N( , ) ( ln( / )) (12)1

This implies that the time to solve a (1−p) fraction from a set of k-SAT problems is of polynomial complex-
ity (for the range of N we have considered). This polynomial relationship still holds when the fraction of problems 
left unsolved is a fixed number (irrespective of the number of variables)8. That is, the time taken to solve all possi-
ble k-SAT formulae for a given N and αc (Θ(k, N, αc)), except for a constant amount of problems c (p(t) = c/Θ(k, 
N, αc)), would follow a relationship as shown below when N→∞8 (if we assume that the relationship in equation 
(11) and (12) still holds as N→∞).

Figure 6.  The time evolution of three variables in a 20 variable 3-SAT problem with different constraint 
densities. (a) and (c) correspond to a SAT problem with a constraint density αc = 3 whereas (b) and (d) 
correspond to a SAT problem with a constraint density αc = 4.25. (c) and (d) show the trajectories of the same 3 
variables in (a) and (b) respectively, while converging to a solution inside a hypercube Q3. The colour presents 
the energy of the system at a given state. The starting point is a green circle and the end point (solution) is the 
vertex with a white circle.

Figure 7.  Computation time of the SAT solver (a) The fraction of problems p(t) not yet solved at real time t, for 
3-SAT problems with αc = 4.25, for N = 20, 30, 40 and 50. Averages were calculated with 103 instances for each 
N. (b) The decay rate λ for different number of variables. λ takes the form λ(N) = bN−β with β approximately 1.1 
(note the log scale).
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∼ β+t p N N ln N( , ) ( ) (13)1

A previous proposal8 shows a similar relationship for the time required to solve k-SAT problems. However, 
the relationship is not valid in real time if a digital computer is to be used for the calculations. It is because, the 
complexity of the analog system varies over time, and when solving each step, it would take different real time 
values depending upon the complexity. Since our method is purely based on hardware, we argue that the above 
approximate polynomial time relationship is valid in real time for our proposed system. We conjecture that this 
behaviour is due to multiple reasons including the thermal noise associated with the MTJs. It has also been pre-
dicted9 that, the noise effects may avoid long transient oscillations. Our results too suggest that higher amounts of 
noise leads to faster convergence (explained in the next section). It must be noted that, this proposed MTJ based 
SAT solver does not behave identical to the cellular neural network based solver in equations (2–3). Our solver 
has some added complexities not present in the CNN based system (refer to the set of equations in Supplementary 
section S4). We conjecture that such complexities offered by the device physics, acts favorable to give faster solu-
tions to SAT problems as well. However, these benefits come at the cost of handling the circuit limitations (fan-out 
etc.) that can arise when solving problems with larger N.

Effect of thermal noise.  Thermal noise has significant impact on the switching dynamics of nano-magnets. 
Equation 14 explains the renowned Brown’s model29 that captures the behaviour of thermal noise which can be 
used as a random magnetic field in the LLGS equations.
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| |

H k T
M V

2
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Thermal
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ς→ is a vector with components that are zero mean, unity standard deviation, Gaussian random variables. V is the 
volume of the free layer, T is the temperature, and kB is the Boltzmann’s constant. The time discretization value dt 
must be included in the numerator when solving the equation numerically. The existence of thermal noise is 
mandatory for the proper operation of our SAT solver. This is due to the tilt of the FL magnetization with the easy 
axis, induced by thermal noise without which a magnet cannot be switched. Results indeed show that, under zero 
thermal noise, the magnetizations evolve to frozen non-solution states (Supplementary section S5). In the next 
two subsections, we will explain how the thermal noise assists in avoiding limit cycles and the impacts of larger 
thermal noise on the time to converge to a solution.

Not behaving as a chaotic dynamic system and absence of limit cycles.  We define the states of all the MTJs that 
represent variable s as HN = [−1, 1]N. The P state is mapped to −1 and the AP state is mapped to +1. The bound-
ary of HN is the N hypercube QN, with vertices VN = {−1, 1}N. The solution space to a particular problem can be a 
subset of these VN. Let us denote such a solution by = ...V V V{ , , }N

sol
N

i
N

j . Due to the effect of thermal noise, the 
solution to which the system will ultimately converge has minimal dependency with the initial states of the MTJs. 
For example, let us consider a SAT problem that has multiple solutions VN

sol and solving it in two trials with the 
same initial states of MTJs. The output solutions in the two trials may not be the same even though the starting 
conditions were identical. This implies that our system does not show any chaotic behaviour (it is not determin-
istic) in contrast to the system given by equations 2 and 3.

If the states of the MTJs that represent variable s continuously change in a periodic manner (it has entered a limit 
cycle), it is possible that the system never reaches a solution (even if there exists one). That is, si(t) = si(t + nT) for ∀n = 1, 
2, … and si(t) is not a solution of the system. This is known as the system getting trapped in a limit cycle8. It is shown that 
for the system explained in equations 2–3, this can occur for certain coupling parameter (A, B) choices9. However, due 
to the added stochasticity from the thermal noise, we argue that our MTJ based SAT solver does not get trapped in limit 
cycles. It is highly probable that our system reaches a solution if sufficient amount of time is provided.

Increasing temperature resulting in faster solution convergence.  Now let us consider how different amounts 
of thermal noise will affect the operation of our MTJ based SAT solver. Temperature can affect the amount of 
thermal noise applied on an MTJ device (equation 14). Sufficiently higher temperatures on MTJs with smaller 
switching energy barriers, can cause the state of an MTJ to oscillate over time, even without any input current 
or magnetic field25. We solved randomly generated 20 variable, 3-SAT problems at different temperatures and 
observed the percentage of problems that can be solved within 10 μs. As Fig. 8(a) illustrates, it is evident that in 
the range of 20°C−130°C, there is no significant degradation in the percentage of problems solved within 10 μs. 
However, according to Fig. 8(b), it appears that the average time to solve a k-SAT problem decreases by ∼100 ns 
with increasing temperature in the range 20°C–130°C.

Effects of process variations.  In our design, we selected a particular thickness (tss) for the free layers of 
the MTJs. In reality, it is impossible to achieve the exact thickness due to number of reasons including atomic 
limitations, process variations, fabrication limitations etc. How much precession is present along the easy axis is 
dependent upon how much the actual thickness has deviated from tss. In order to observe the effects of thickness 
variations on the operation of our proposed SAT solver, we consider two scenarios.

	 1.	 Global variation of thickness.
	 2.	 Local variation of thickness.
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In the first case, we perturb all the thicknesses of MTJs in our system by some constant percentage from tss. For 
a particular percentage global variation in thickness, we solved randomly generated 20 variable, SAT problems. 
Then the percentage of problems solvable within 10 μs, and the average time to solve a single problem was 
observed. Figure 9(a) illustrates that there is no significant change in the percentage of solvable problems when 
the global variations in thickness is changed from −5% to +10%. However, as Fig. 9(b) shows, the average con-
vergence time increases when the deviations in thickness increases. We also observed that the solver no longer 
works if the thickness is less than a particular value. This is the limit at which the perpendicular magnetic anisot-
ropy (PMA) becomes dominant and the FL magnetization stabilizes in ẑ axis instead of x̂ axis. We observed this 
when the actual thickness is ∼−10% deviated from the tss, for the choice of materials and dimensions used in this 
work. In the second case, we change thicknesses of all the MTJs according to a Gaussian distribution with a 3σ 
value (where σ is the standard deviation) of 10% from the tss. The solver gave an average convergence time of 
588.31ns and was able to solve 97% of randomly generated 20 variable, 3-SAT instances within 10 μs.

As described in the previous section, the temperature increments inversely affect the computation time of the 
MTJ based system. To see the effect of both thickness and temperature variations simultaneously, we conducted 
the above experiment at different temperatures. The results are summarized in Fig. 9(c) and it shows that the 
changes in computation time due to thickness deviation is more prominent than that due to temperature drift.

During the fabrication process, other non-idealities such as edge damages30,31 can be present in the MTJs. We 
introduced variations in interface anisotropy constant, width and length of the free layer of MTJs, to observe the 
effect of aforementioned non-idealities. The effects of anisotropy constant variations on computation time follow 
a similar trend as the ‘computation time vs thickness’ curve (Fig. 9). We further noticed that the computation time 
decreases when the free layer dimensions decrease. The percentage of problems solved remained almost at 100%. 
More detailed results are included in the Supplementary section S6.

Power consumption and computation time of the SAT solver.  In this section, we will present the 
power consumption and computation time of our proposed system, and compare with existing methodologies. In 
order to calculate the power consumption, we used SPICE simulations in IBM 45 nm technology. The measured 
average power consumption over solving 1,000, 20-variable (our software based LLGS solving framework could 
not handle bigger benchmarks such as ‘ais8’32) hard SAT problems (constraint density αc = 4.25) was 1.37 mW. 
The power requirements of each section of the solver are presented in Table 1. We observed that the peripheral 
circuits such as amplifiers and voltage controlled current drivers consume a significant portion of power. The 
power consumption of the total MTJ and heavy metal layer structures is approximately about 20% of the total 
power consumption of the system. Similarly, a recent work of a hardware realization16 of an analog approach8, also 
explains that their overall power consumption to be significant (numerical value not specified), due to the usage 
of op-amps. In another design15, the CNN based SAT solving algorithm9 used in our work was realized using 
op-amp based integrators. The power consumption was reported as 140 μW for a 4-variable, 4-clause problem. 
For comparison, we evaluated the average power consumption of our MTJ based solver for similar 4-variable 
4-clause SAT instances, and witnessed a power consumption of 84 μW, which is about 40% smaller than the 
aforementioned analog hardware design15.

Digital hardware for realizing typical SAT solving algorithms such as GRASP11, DPLL33 etc. can be found in 
literature34–36. A custom IC34 designed for such an algorithm reported a power consumption of 871 μW. This is 
about 37% lower than our design. However, these digital approaches are slower than analog solvers due to the 
step-by-step decision making and backtracking required for solving a problem. It is also noteworthy that our pro-
posal is an asynchronous method in contrast to the above synchronous methods. Therefore, the need for a clock 
signal and the power associated with it is not present in our design. Our system automatically goes to a minimum 
energy point (which is a solution) and stabilizes there as explained mathematically in Supplementary section S4.

In order to obtain the computation time of our system, we conducted system level simulations using ran-
dom 1,000, 20-variable hard SAT instances. The time taken to solve all 1,000 problems (100%) were evaluated 
and the average computation time per instance was 553 ns. This computation time was then compared with 
a state-of-the-art software SAT solver, Minisat37. The same 1,000 problems were solved using Minisat in a 3.6 
GHz processor and the average computation time was evaluated (1.44 ms). We observed an average speed-up 

Figure 8.  (a) The percentage of randomly generated 20 variable SAT problems (αc = 4.25) solved at different 
temperatures within 10 μs. (b) Average time to solve a 20 variable SAT problem at different temperatures.
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of 2.6×103 with respect to Minisat. Prior hardware SAT solver designs in literature have also presented their 
speed-up with respect to Minisat, and the values are summarized in Table 2 for comparison. Note that the Boolean 
Constraint Propagation (BCP) accelerator38 in Table 2 has reported the speed up with respect to a purely software 
based algorithm (modified zChaff10) which has the same performance for BCP when compared with Minisat. 
Furthermore, the analog CNN based system9 built using op-amp based integrators15 has an average computation 
time of 15 μs for 10 variable, 2-SAT problems. Our MTJ based proposal has an average run time (over 1,000 
instances) of 186 ns for 10 variable 3-sat (αc = 4.25) problems (showing that the MTJ based solver is ∼30× faster).

Conclusion
Boolean satisfiability is an NP-complete problem (k ≥ 3) that finds utility in vast array of applications1–5. Analog 
solutions to the satisfiability problem has recently appeared attractive8,9,15 due to the massive parallelism available 
when solving, in contrast to the stepwise search algorithms. In this work, we provide a proof of concept hardware 
based analog SAT-solver using Magnetic Tunnel Junctions driven by the Spin Orbit Torque Phenomenon. We 
have mathematically shown how the inherent device physics of MTJs closely mimics an existing analog approach9 
to solving the Boolean satisfiability problem. Device and circuit level simulations were conducted to solve hard 
satisfiability problems in order to observe the performance and functionality of our proposed system. According 
to the observations, we witnessed that the proposed SAT solver is capable of finding a solution to a significant 
fraction (>85%) of hard SAT problems in polynomial time. We conjecture that this is due to the inherent ther-
mal noise present in MTJs and the device complexities added on top of the existing analog approach9. The SAT 
solver automatically comes out of local minimum points and limit cycles due to thermal noise. Therefore, it is 
highly probable that the system reaches a solution if sufficient time is provided, given that the SAT problem has 
a solution. Further, the variation analysis illustrates that our proposed solver is robust to variations in the MTJ 
thickness in the range of −5% to 10%. Larger variations result in higher average convergence time. The proposed 
MTJ based SAT solver is 2.6 × 103 times faster than a state-of-the-art software solver, Minisat.

Figure 9.  (a) The percentage of randomly generated 20 variable SAT problems (αc = 4.25) solved at different 
percentage variations in thickness (from the seamless switching thickness, tss) of the free layer within 10 μs. 
(b) Average time to solve a 20 variable SAT problem at different percentage variations in thickness of the free 
layer. The variations are considered as global. i.e., all the devices in the SAT solver has the thickness with same 
deviation from tss (c) Same experiment in (b) performed for different temperatures. Temperature indicated in 
Kelvin.

Component Power consumption

Read circuitry 300 nW

Amplifiers 315 μW

Voltage controlled HM current drivers 827 μW

Driving current through HM 235 μW

Total 1377 μW

Table 1.  Power consumption of the MTJ based SAT solver.

Hardware solver
Speed-up with respect to 
software based solvers

Reconfigurable SAT solver35 90 (3.6 GHz processor)

BCP accelerator38 6.7 (3.6 GHz processor)

BCP accelerator36 4 (3.3 GHz processor)

MTJ based solver 2.6 × 103 (3.6 GHz processor)

Table 2.  Speed-up of hardware based SAT solvers with respect to purely software based solvers.
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Methods
The set of equations involved in modelling the HM-MTJ structures is provided in Supplementary sections S2, S3 
and S4. The tss of the MTJs was calculated by self consistently solving the equation (8) and the analytical equa-
tions for the demagnetization factors39. IBM 45 nm technology node was used to simulate the CMOS interface 
circuitry. The material parameters (selected according to the experimental papers24,40) and the device dimensions 
are summarized in supplementary Table S1.
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