
© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2024;15(4):1446-1463 | https://dx.doi.org/10.21037/jgo-24-541

Original Article

Developing a prognostic signature: identifying differentially 
expressed genes in cardia and non-cardia gastric cancer for 
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Background: Gastric cancer (GC) can be anatomically categorized into two subtypes; that is, cardia 
gastric cancer (CGC) and non-cardia gastric cancer (NCGC), which have distinct molecular mechanisms 
and prognoses. At present, the majority of pharmacological interventions for GC adhere to non-specific 
treatment regimens. The stratification of GC based on molecular disparities between CGC and NCGC 
has important clinical guidance value and could help in the development of precision therapies tailored to 
individual patient needs. Nevertheless, research in this specialized field remains notably limited. This study 
aims to investigate the molecular differences between CGC and NCGC and to leverage these differences to 
develop a prognostic risk scoring model (PRSM).
Methods: We used patient data from The Cancer Genome Atlas (TCGA) and performed a differentially 
expressed gene (DEG) analysis between CGC and NCGC. A PRSM was developed from the prognosis-
associated DEGs identified through Cox regression analyses and was well validated using Gene Expression 
Omnibus (GEO) data. 
Results: A total of 339 DEGs were identified between CGC and NCGC, and four prognosis-associated 
genes were used to construct the PRSM. Using the risk coefficients and expression levels of signature genes, 
a median risk score (RS) was calculated to classify patients into high- and low-risk groups. The high-risk 
group had a significantly worse prognosis than the low-risk group. An in-depth analysis revealed that TP53 
mutations were more prevalent in the high-risk group, and MUC16 mutations were more prevalent in the 
low-risk group. A gene set enrichment analysis (GSEA) and the CIBERSORT algorithm were used to assess 
the differences in the significantly enriched pathways and immune microenvironment in the high- and low-
risk groups, respectively. The inhibitory concentration (IC50) values of the chemotherapy drugs for GC also 
varied between the two groups. 
Conclusions: This study elucidated the unique molecular characteristics of GC subtypes based on the 
anatomical site and provided a preliminary contribution for the development of precision medicine for GC.

Keywords: Gastric cancer (GC); cardia gastric cancer (CGC); non-cardia gastric cancer (NCGC); prognostic risk 
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1463

https://crossmark.crossref.org/dialog/?doi=10.21037/jgo-24-541


Journal of Gastrointestinal Oncology, Vol 15, No 4 August 2024 1447

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2024;15(4):1446-1463 | https://dx.doi.org/10.21037/jgo-24-541

Introduction 

Gastric cancer (GC) is a significant global health issue due 
to its high prevalence and mortality rate, and accounts 
for over 750,000 cancer-related deaths annually (1). 
Anatomically, GC can be categorized into the following 
two sub-types: cardia gastric cancer (CGC) and non-cardia 
gastric cancer (NCGC). The two subtypes display distinct 
disparities in terms of their geographical distribution 
and risk factors. CGC is more common in economically 
developed regions and is primarily associated with 
factors, such as obesity, gastroesophageal reflux, and the 
consumption of hot foods (2). Conversely, NCGC is more 
prevalent in developing countries and is often associated 
with high-salt diets and Helicobacter pylori infection (3). 
Notably, the survival outcomes and cancer-specific mortality 
rates of CGC samples are significantly worse than those of 
NCGC samples (4,5).

Investigations into gene expression profiles have revealed 
distinct variations in gene expression patterns between 

CGC and NCGC, primarily encompassing cell cycle 
regulation, cell proliferation, and cell death (6,7). Genome-
wide association studies have also discovered different 
susceptibility sites for single-nucleotide polymorphisms 
in CGC and NCGC. For example, the rs4072037 variant 
of the MUC1 gene is associated with CGC, while the 
rs2294693 variant of the UNC5CL gene and the rs2294008 
variant of the PSCA gene are predominantly linked to 
NCGC (8). These findings suggest distinct pathogeneses 
and genetic backgrounds of CGC and NCGC. Therefore, 
when establishing the suitable treatment approach, 
meticulous assessment grounded in the molecular distinctions 
of the anatomical site of GC is imperative.

In this study, we conducted an analysis of genes that 
exhibited differential expression in The Cancer Genome 
Atlas (TCGA) database with a specific focus on CGC and 
NCGC. We developed a prognostic risk scoring model 
(PRSM) using these differentially expressed genes (DEGs) 
and validated it in the Gene Expression Omnibus (GEO) 
database. Patients were categorized into either the high- or 
low-risk group based on their risk score (RS). Ultimately, 
the key prognostic DEGs were identified. Our findings 
provide a molecular basis for identifying sensitivities and 
have significant clinical value in guiding personalized 
treatment for GC. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
jgo.amegroups.com/article/view/10.21037/jgo-24-541/rc).

Methods

Data collection and preprocessing

We used two distinct data sets obtained from separate 
sequencing platforms, including a total of 443 GC samples 
from TCGA (http://portal.gdc.cancer.gov) and 433 GC 
samples from the GEO (GSE84437) (http://www.ncbi.nlm.
nih.gov/geo/). To facilitate subsequent analysis, we first 
excluded 36 adjacent normal samples and 50 cases lacking 
complete survival information and RNA sequencing data from 
TCGA. Consequently, the final number of cases included 
in the analysis was 357. TCGA samples were then classified 
according to the anatomical site and the 10th edition of the 
International Classification of Diseases using the clinical 
data. The classification details are shown in Table 1. Next, we 
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transformed the probe matrix of the GSE84437 data set into 
a gene matrix and performed batch correction. The clinical 
information for GSE84437 was shown in Table S1. TCGA 
data were employed as the training set, while the GEO data 
served as the verification group. The study was conducted in 
accordance the Helsinki Declaration (as revised in 2013).

Clinical analysis of CGC and NCGC

We conducted an analysis of the clinicopathologic features 
between CGC and NCGC using the “tableOne” package 
in R (9). The features examined included age, gender, race, 
a family history of cancer, histological type, residual tumor, 
and stage.

Differential gene analysis between CGC and NCGC

We employed the “limma” package to identify the differential 
expression of the messenger RNA with a threshold of a 
|log2 fold change| >1 and a false discovery rate <0.05 (10). 
This analysis allowed us to identify the DEGs between 
CGC and NCGC. The results were visualized using the 
“EnhancedVolcano” package and the “heatmap” package in R 
through the creation of volcano plots and heatmap diagrams, 
respectively (11,12).

Next, we used “clusterProfiler” package to perform the 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses based on the 
DEGs (13). The GO terms and KEGG pathways were 
plotted using the “enrichplot”, “ggplot2”, and “GOplot” 
packages in R (14-16). The GO and KEGG gene sets were 
obtained from the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb).

Construction of a risk model and validation model

A univariate Cox proportional hazard regression analysis 
(uniCOX) was employed to identify prognostic genes 
among the identified DEGs. The results are presented in a 
forest plot. We conducted a screening of the independent 
prognostic marker genes and developed RS models using 
a stepwise multivariate Cox analysis (multiCOX). The RS 
models were constructed using the following formula:

( ) ( )
1

n

i
Risk score RS Coefi Xi

=

= ×∑
	

[1]

where Coefi refers to the risk coefficient of the signature 
genes, and Xi refers to the expression levels of the genes 
identified. The values for Coefi were obtained from the 
multiCOX analysis. Using the median RS as the cut-off 
value, the samples were categorized into high- and low-
risk groups. Survival curves were generated by a Kaplan-
Meier (KM) analysis. Finally, we assessed the stability of 
the models in GES84437. The survival receiver operating 
characteristic (ROC) curve was used to assess the 
prognostic signature’s performance, and the area under the 
curve (AUC) was calculated using the “timeROC” package 
in R software (17).

Gene set enrichment analysis (GSEA) of the two groups

To elucidate the biological functions distinguishing the 
two groups, we performed a GSEA of the high- and 
low-risk groups. This analysis was conducted using the 
“clusterProfiler” package in R (13), and the results were 
visualized using the “enrichplot” package (15). The gene 
sets used for the enrichment analysis were sourced from 
Molecular Signatures Database (MSigDB) (http://software.
broadinstitute.org/gsea/msigdb/).

Single-gene mutation analysis of the two groups

Following the acquisition and processing of the GC 
mutation data from TCGA, we conducted a comparative 
analysis of the tumor mutational burden (TMB) between 
the high- and low-risk groups. Using the “maftools” 
package, we examined the prevalence of mutations and 
visualized the top 30 most frequently mutated genes in each 
group. These were represented as waterfall plots using the 
“oncoplot” function in R (18).

Table 1 Anatomical classification details of gastric cancer samples 
in TCGA

Diagnosis/anatomical site ICD code
Number of 
samples

Total

CGC 89

Gastroesophageal junction C16.0 41

Cardia C16.0 48

NCGC 268

Fundus/body C16.1/C16.2 130

Antrum C16.3 138

TCGA, The Cancer Genome Atlas; CGC, cardia gastric 
cancer; NCGC, non-cardia gastric cancer; ICD, International 
Classification of Diseases.

https://cdn.amegroups.cn/static/public/JGO-24-541-Supplementary.pdf
https://www.gsea-msigdb.org/gsea/msigdb
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http://software.broadinstitute.org/gsea/msigdb/
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Immune infiltration analysis of the different groups

We employed the CIBERSORT algorithm to calculate and 
compare the scores for 22 types of immune cells and immune-
related functions in the high- and low-risk groups (19). The 
“estimate” package in R was used to analyze differences in the 
immune microenvironment between the two groups (20). This 
analysis included the computation of the immune, stromal, 
and estimation of stromal and immune cells in malignant 
tumor tissues using expression data (ESTIMATE) scores, 
and tumor purity. Additionally, we compared the tumor 
immune dysfunction and exclusion (TIDE) scores between 
the high- and low-risk groups to predict the potential 
therapeutic benefits of immune checkpoint inhibitors (21).

Drug sensitivity analysis

To evaluate the clinical applicability of our risk model in 
GC treatment, we used the Genomics of Drug Sensitivity in 
Cancer (https://www.cancerrxgene.org/) data set as a training 
set. The inhibitory concentration (IC50) value, which represents 
the concentration of a drug necessary for 50% inhibition  
in vitro, was calculated for each sample using ridge regression. 
This was accomplished by employing the “calcPhenotype” 
function from the R package “oncoPredict” (22). Following 
this, we predicted the drug sensitivity of the GC patients in 
the high- and low-risk groups.

Statistical analysis

All the statistical analyses were conducted using R software 
version 4.2.2. The count data are presented as the number 
and rate (%), and comparisons between groups were 
performed using the χ2 test. Univariate and multivariate Cox 
regression analyses were employed to examine independent 
prognostic factors incorporating clinical data. The KM 
method and log-rank tests were used to assess the survival 
rates of the patients in the high- and low-risk groups. 
Statistical significance was defined as a P value <0.05 for all 
the analyses.

Results

Differences in the clinical characteristics between CGC  
and NCGC

The CGC and NCGC data from TCGA database and 
the results of the χ2 test for the clinical characteristics are 
presented in Table 2. These characteristics include age, 

Table 2 Clinicopathologic features of gastric cancer in TCGA data 

set: comparison between CGC and NCGC patients

Clinicopathologic features CGC NCGC P value

Age (years) 0.34

≤65 42 (47.2) 114 (42.5)

>65 45 (50.6) 152 (56.7)

N/A 2 (2.2) 2 (0.8)

Gender 0.15

Male 63 (70.8) 165 (61.6)

Female 26 (29.2) 103 (38.4)

Race 0.002

Asian 7 (7.9) 67 (25.0)

Black or African American 1 (1.1) 10 (3.7)

White 66 (74.2) 159 (59.3)

N/A 15 (16.9) 32 (12.0)

Family history of cancer 0.13

No 60 (67.4) 205 (76.5)

Yes 3 (3.4) 12 (4.5)

N/A 26 (29.2) 51 (19.0)

Histological type 0.04

Adenocarcinoma 44 (49.4) 83 (30.9)

Diffuse type 9 (10.1) 51 (19.0)

Intestinal type 16 (18.0) 50 (18.7)

Mucinous type 3 (3.4) 16 (6.0)

Papillary type 1 (1.1) 4 (1.5)

Signet ring type 4 (4.5) 7 (2.6)

Tubular type 12 (13.5) 57 (21.3)

Grade 0.01

1 2 (2.2) 7 (2.6)

2 44 (49.4) 86 (32.1)

3 43 (48.3) 166 (61.9)

N/A 0 (0) 9 (3.4)

Residual tumor 0.32

R0 72 (80.9) 219 (81.7)

R1 6 (6.7) 8 (3.0)

R2 2 (2.2) 13 (4.9)

N/A 9 (10.1) 28 (10.4)

Table 2 (continued)

https://www.cancerrxgene.org/
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Table 2 (continued)

Clinicopathologic features CGC NCGC P value

T stage 0.001

1 7 (7.9) 11 (4.1)

2 26 (29.2) 46 (17.2)

3 45 (50.6) 118 (44.0)

4 10 (11.2) 87 (32.5)

N/A 1 (1.1) 6 (2.2)

N stage 0.87

0 27 (30.3) 78 (29.1)

1 17 (19.1) 53 (19.8)

2 20 (22.5) 55 (20.5)

3 23 (25.8) 69 (25.7)

N/A 2 (2.2) 13 (4.9)

Metastasis 0.36

0 82 (92.1) 247 (92.2)

1 7 (7.9) 16 (6.0)

N/A 0 (0.0) 5 (1.9)

TNM stage 0.16

I 17 (19.1) 32 (11.9)

II 29 (32.6) 74 (27.6)

III 34 (38.2) 132 (49.3)

IV 7 (7.9) 16 (6.0)

N/A 2 (2.2) 14 (5.2)

Data are presented as n (%). TCGA, The Cancer Genome Atlas; 
CGC, cardia gastric cancer; NCGC, non-cardia gastric cancer; 
N/A, not available; T, tumor; N, nodes; M, metastasis.

gender, race, a family history of cancer, histological type, 
grade, residual tumor, and tumor stage (T), node stage (N), 
and metastasis (M), and TNM stage.

Significant differences were observed in race, histological 
type, grade, and T stage between the two groups. 
Consistent with previous related studies (23,24). CGC was 
found to be more prevalent among individuals of the white 
race, while NCGC was more common among those of the 
Asian race.

Interestingly, NCGC exhibited a notably high prevalence of 
T3 and T4 stages, and a significant portion of the pathological 
types consisted of diffuse and tubular adenocarcinoma, 
exhibiting poor differentiation (Grade 3: 61.9%). Conversely, 

CGC primarily exhibited T2 and T3 stages, with moderate 
and low differentiation (Grade 2: 49.4%, Grade 3: 48.3%).

DEG analysis between CGC and NCGC

A total of 339 DEGs were identified, of which 270 were 
up-regulated in CGC and 69 were up-regulated in NCGC 
(for further details, see Table S2). The distribution of these 
DEGs was visualized in the volcano plot and heatmap 
depicted in Figure 1.

To further understand the biological function of 
these DEGs, GO terms and KEGG pathway analyses 
were conducted (Figure 2). The GO analysis primarily 
highlighted terms related to keratin function, such as 
“epidermis development”, “skin development”, “keratinocyte 
differentiation”, and “epidermal cell differentiation”. The 
most significant pathways identified in the KEGG analysis 
were the “Staphylococcus aureus infection pathway” and the 
“estrogen signaling pathway”.

Construction of the prognostic risk model based on the 
DEGs

To identify the genes related to prognosis, we screened 17 
genes from the DEGs using the uniCOX. Subsequently, 
we employed a stepwise multiCOX to eliminate redundant 
factors, resulting in the final selection of the following four 
genes: KRT17, PPP1R1C, SLC5A5, and SYT6. The results 
are illustrated in the forest plots depicted in Figure 3A,3B.

We constructed a prognostic RS model based on the 
expression values of these four genes and their corresponding 
Coefi as detailed in Table S3. Using the Cox regression model, 
we calculated RS for each patient as follows: RS = (0.106 × 
expression of KRT17) + (0.536 × expression of PPP1R1C) 
+ (0.290 × expression of SLC5A5) + (1.215 × expression of 
SYT6). The GC samples from TCGA were then divided into 
high- and low-risk groups based on the median RS (Table S4).

Validation of the prognostic risk model

To validate the predictive power of the prognostic risk 
model in TCGA data set, we plotted the survival curves 
for the high- and low-risk samples (Figure 3C). The results 
demonstrated that the survival rate of the high-risk group 
was significantly lower than that of the low-risk group. 
Further, we performed a ROC curve analysis based on the 
AUCs. The AUC values for the model’s ROC curves were 
0.71, 0.77, and 0.68, which were associated with the 1-, 3-, 

https://cdn.amegroups.cn/static/public/JGO-24-541-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-24-541-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JGO-24-541-Supplementary.pdf
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Figure 1 Volcano plot and heatmap of the DEGs between CGC and NCGC. (A) In the volcano plot, the blue points indicate the up-
regulated genes in the CGC samples, and the red points indicate the up-regulated genes in the NCGC samples. (B) In the heatmap, 
each row represents a gene, and each column represents a sample. The depth of color indicates the strength of gene expression, with red 
indicating the up-regulation of gene expression. FDR, false discovery rate; CGC, cardia gastric cancer; NCGC, non-cardia gastric cancer; 
NS, not significant; DEGs, differentially expressed genes.

and 5-year survival rate forecasts, respectively. Notably, the 
prediction for the 3-year survival rate exhibited the highest 
accuracy (Figure 3D). The results suggested that the model 
could be effectively used to predict survival.

We conducted further validation of the prognostic model 
by utilizing the GES84437 dataset (Table S5). The findings 
also indicated that the survival outcomes for samples from 
the high-risk group were notably inferior to those from the 
low-risk group (Figure 3E). The AUC values of the model’s 
ROC curves were 0.60, 0.61, and 0.58, which correspond 
to the predictions of survival rates at 1, 3, and 5 years, 
respectively (Figure 3F). Similarly, the prediction accuracy 
of the 3-year survival rate was relatively high.

Single-gene mutation landscape in the two groups

In both the high- and low-risk groups, the following 
mutations were the most prominent: the missense mutation, 
in-frame deletion, frameshift mutation, and nonsense 
mutation, all of which showed a consistent trend across all 
the GC samples from TCGA data set. Among these, the 
missense mutation was the most common.

The 30 most frequently mutated genes in each sample 
and the mutation frequency of different groups were 

visualized in a waterfall plot (Figure 4A-4C). The mutation 
frequency of the low-risk group was similar to that of the 
high-risk group.

The overall TMB of the GC samples was not high, with 
the median cut-off being 1.94/MB (Figure 4D). A further 
comparison of the TMB differences between the groups 
showed that the TMB was higher in the low-risk group than 
the high-risk group (Figure 4E). The top five mutated genes 
in the high-risk group were TTN, TP53, LRP1B, PCLO, and 
ARID1A, while those in the low-risk group they were TTN, 
TP53, MUC16, ARID1A, and DNAH5. Notably, the TP53 
mutations were more pronounced in the high-risk group, 
while the MUC16 mutations were significantly higher in the 
low-risk group. This indicated that the mutation frequency of 
the top 30 mutated genes was not entirely identical between 
the two groups. However, the correlation between TMB and 
RS in this study is statistically insignificant (Figure 4F).

GSEA of the two groups

Using the hallmark gene sets from the GSEA, we identified 
12 pathways that were differentially involved in the 
biological functions between the high- and low-risk groups 
(Figure 5). Among these, pathways such as “coagulation”, 

https://cdn.amegroups.cn/static/public/JGO-24-541-Supplementary.pdf
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Figure 2 Functional enrichment analysis of the DEGs. (A,B) GO terms of the DEGs functional enrichment analysis (A: Bar chat; B: Bubble 
chart). (C) The proportion of each enriched GO term. (D,E) KEGG pathways of the DEGs functional enrichment analysis (D: Bar chat; 
E: Bubble chart). (F) The proportion of each enriched KEGG pathway. BP, biological process; CC, cellular component; MF, molecular 
function; FC, fold change; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 3 Construction and validation of a PRSM. (A) Forest plot showing the 17 prognosis-related genes that were selected from the DEGs 
between CGC and NCGC based on the uniCOX. (B) Forest plot showing the four genes (KRT17, PPP1R1C, SLC5A5, and SYT6) that were 
identified to construct the PRSM based on the multiCOX. (C) Internal validation of the PRSM in TCGA data. (D) Survival-dependent 
ROC curve validation of the model’s ability to predict patient prognosis in TCGA data. (E) External validation of the PRSM in the GEO 
data. (F) Survival-dependent ROC curve validation of the model’s ability to predict patient prognosis in the GEO data. CI, confidence 
interval; AUC, area under the curve; PRSM, prognostic risk scoring model; DEGs, differentially expressed genes; CGC, cardia gastric 
cancer; NCGC, non-cardia gastric cancer; uniCOX, univariate Cox proportional hazard regression analysis; multiCOX, multivariate Cox 
analysis; TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic; GEO, Gene Expression Omnibus.
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Figure 4 Single-gene mutation landscape of GC in the high- and low-risk groups. (A) Waterfall plot of single-gene mutation landscape in 
TCGA GC samples. (B) Waterfall plot of the single-gene mutation landscape in the high-risk group. (C) Waterfall plot of the single-gene 
mutation landscape in the low-risk group. Each row represents a gene, and each column represents a sample. Different colors represent 
different types of mutations. (D) The TMB in TCGA samples. (E) Differences in the TMB between the high- and low-risk groups. (F) The 
correlation between the TMB and RS. MB, million bases; GC, gastric cancer; TCGA, The Cancer Genome Atlas; TMB, tumor mutational 
burden; RS, risk score.

A

B

D E F

C

TM
B

/M
B

Tu
m

or
 tm

ba
tio

n 
bu

rd
en

Tu
m

or
 tm

ba
tio

n 
bu

rd
en

120

100

80

60

40

20

0

80

60

40

20

0

60

30

0

Mutation burden

Altered in 53 (89.83%) of 59 samples Altered in 48 (90.57%) of 53 samples

Altered in 397 (92.11%) of 431 samples

Missense_Mutation

Missense_Mutation
Missense_Mutation

Frame_Shift_Ins

Frame_Shift_Ins
Frame_Shift_Ins

Risk Risk

Risk

17%
11%
15%
13%
13%
11%
26%
21%
21%
21%
17%
13%
23%
23%
17%
26%
21%
32%
38%
49%

Risk

12%KMT2D

KMT2D 16%
PIK3CA 16%

SACS 15%
DST 15%

PCDH15 15%
PLEC 14%
DMD 14%

LRRK2 14%
SYNE2 14%
UBR5 14%

DNAH7 13%

KMT2D
12%CSMD1

CSMD1 16%

CSMD1
8%FAT3

FAT3 16%

FAT3
17%SPTA1

SPTA1 17%

SPTA1

17%OBSCN

OBSCN 17%

OBSCN
12%RYR2

RYR2 17%

RYR2

12%HMCN1

HMCN1 18%

HMCN1
14%DNAH5

DNAH5 18%

DNAH5

14%ACVR2A

ACVR2A 18%

ACVR2A

14%SYNE1

SYNE1 24%

SYNE1

17%MUC16

MUC16 31%

MUC16
53%TP53

TP53 46%

TP53
49%

0

0

031

221

26
No. of samples

No. of samples

No. of samples

TTN

TTN 51%

TTN
0

0

0

3682

5850

1439

TM
B

TM
B

TM
B

24%LRP1B

LRP1B 27%

LRP1B

20%ZFHX4

ZFHX4 18%

ZFHX4

20%FLG

FLG 20%

FLG
19%FAT4

FAT4 21%

FAT4
19%CSMD3

CSMD3 24%

CSMD3

20%ARID1A

ARID1A 27%

ARID1A

22%PCLO

PCLO 19%

PCLO

Frame_Shift_Del

Frame_Shift_Del

Frame_Shift_Del

In_Frame_Del

In_Frame_Del
In_Frame_Del

High High

Nonsense_Mutation

Nonsense_Mutation
Nonsense_Mutation

In_Frame_Ins
Splice_Site Multi_Hit

Multi_Hit Multi_HitLow Low

Low-risk

Low-risk

High-risk
Risk score

R=−0.1, P=0.052

0.0 2.5 5.0 7.5 10.0

High-risk

0.04

Median: 1.94/MB



Journal of Gastrointestinal Oncology, Vol 15, No 4 August 2024 1455

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2024;15(4):1446-1463 | https://dx.doi.org/10.21037/jgo-24-541

Figure 5 GSEA results of the high- and low-risk groups based on the hallmark gene sets. NES, normalized enrichment score; GSEA, gene 
set enrichment analysis.
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“estrogen response early/late”, and “KRAS signaling DN” 
were enriched in the high-risk group, while “E2F targets”, 
“MYC targets”, and the “G2M checkpoint” were primarily 
enriched in the low-risk group.

In addition, we performed a GSEA based on the KEGG 
gene sets and identified 36 differentially enriched pathways 
between the two groups. Several of these pathways mirrored 
the results from the hallmark gene sets, such as the 
enrichment of the “complement and coagulation cascades” 
pathway in the high-risk group, and the enrichment of the 
“cell cycle” pathway in the low-risk group. Notably, the 
“ribosomes” pathway was the most enriched pathway in 
the low-risk group, suggesting a link between ribosome 
biosynthesis and the biological function of the low-risk 
group.

Further, pathways such as “tryptophan metabolism”, 
“glycerolipid metabolism”, “JAK-STAT signaling pathway”, 
and the “VEGF signaling pathway” were also significantly 
enriched in the low-risk group. Interestingly, apart from the 
aforementioned pathways, we identified several immune-
related pathways enriched in the low-risk group, including 
the “FcεRI signaling pathway”, the “intestinal immune 
network for IgA production”, and the “T cell receptor 
signaling pathway”.

Immune microenvironment landscape within different 
groups

We analyzed the immune cell infiltration and immune 

cell function of the high-risk and low-risk groups using 
the “CIBERSORT” and Gene Set Variation Analysis 
algorithms, respectively. The results indicated that the 
levels of infiltrating T cells (CD4 memory activated) and 
macrophages (M1) were higher in the low-risk group than 
the high-risk group (Figure 6A). Conversely, the levels of 
the activated dendritic cells and regulatory T cells were 
lower in the low-risk group than the high-risk group.

When comparing the immune cell functions between the 
two groups, the high-risk group exhibited a stronger type I 
interferon (IFN) response than the low-risk group, which is 
associated with a poor prognosis (Figure 6B,6C). There was 
no significant difference between the groups in terms of the 
ESTIMATE score; however, a higher number of patients 
in the low-risk group exhibited microsatellite instability  
(Figure 6D). Additionally, the high-risk group had a higher 
TIDE prediction score than the low-risk group, which is 
associated with immune escape (Figure 6E). Therefore, 
these results suggest that the high-risk group had a lower 
probability of benefiting from immune therapies than the 
low-risk group.

Sensitivity of different chemotherapy drugs  
in the two groups

Chemotherapy still remains the primary therapeutic 
strategy in the systemic management of advanced GC. 
To evaluate drug sensitivity, we conducted an analysis to 
determine the half-maximal IC50 values of commonly used 
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Figure 6 Immune microenvironment landscapes of different groups. (A) The levels of immune cell infiltration in the high- and low-risk 
groups. (B) The immune function scores of the high- and low-risk groups. (C) Discrepancies in the survival outcomes between the high- 
and low-risk groups in terms of IFN-1 response. (D) ESTIMATE score results of the high- and low-risk groups. (E) TIDE score results of 
the high- and low-risk groups. *, P<0.05; **, P<0.01; ns, not significant. NK, natural killer; aDCs, activated dendritic cells; APC, antigen-
presenting cells; CCR, chemokine receptor; DCs, dendritic cells; HLA, human leukocyte antigen; iDCs, immature dendritic cells; MHC, 
major histocompatibility complex; TIL, tumor-infiltrating lymphocytes; IFN-1, type I interferon; ESTIMATE, estimation of stromal and 
Immune cells in malignant tumours using expression data; TIDE, tumor immune dysfunction and exclusion.
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chemotherapy drugs for GC in both the high- and low-risk 
groups. The IC50 values for most chemotherapeutic agents, 
including cisplatin, oxaliplatin, docetaxel, and irinotecan, 
were observed to be significantly reduced in the low-risk 
cohort compared to the high-risk cohort. This implied a 
greater sensitivity to these specific drugs in the low-risk 
group. However, no significant difference was noted in the 
IC50 values of paclitaxel and 5-fluorouracil between the two 

groups (Figure 7). The high-risk group did not demonstrate 
a distinct advantage in the selection of chemotherapeutic 
agents, further emphasizing the more severe prognosis-
associated with this group.
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primary sites. Clinical statistics indicate that CGC patients 
who have undergone R0 resection have inferior disease-free 
survival and overall survival (OS) than NCGC patients (25).  
Data analyses from the Surveillance, Epidemiology, and 
End Results (SEER) database also corroborate the view 
that CGC patients have a poorer prognosis than NCGC 
patients; thus CGC can serve as an independent prognostic 
factor for GC (5,26). These findings suggest that CGC and 
NCGC may possess distinct biological characteristics that 
influence prognosis.

In recent years, numerous studies have begun to explore 
the differences in expression profiles between CGC and 
NCGC. Wang et al. were the first to report the global 
gene expression of CGC and NCGC through tumor-
normal paired patient testing (6). Further enriched 
functionality results revealed that CGC-unique DEGs 
and NCGC-unique DEGs were enriched in different 
biological processes, such as cell cycle, cell proliferation, 
and cell death (7). However, the previous two studies were 
primarily based on the differential analysis of tumor-normal 
paired tissues, which while advantageous in exploring 
the etiological molecular features and screening the early 
diagnosis markers of CGC and NCGC, do not adequately 
address the different treatment outcomes caused by the 
intrinsic molecular differences between them. In this 
study, we analyzed the GC data from TCGA and directly 
compared the expression profiles of CGC and NCGC, and 
thus identified the key genes that affect the prognosis of GC 
patients. Based on these findings, we developed a PRSM 
and classified GC into different subtypes for predicting 
therapeutic sensitivity.

Initially, we identified 339 DEGs between CGC and 
NCGC and conducted a functional analysis. The significantly 
enriched GO terms from the DEGs included epidermis 
development, intermediate filament organization, and 
intermediate filament cytoskeleton organization (27). Multiple 
genes from the keratin family were involved in these processes, 
such as KRT3, KRT5, and KRT17. Under physiological 
conditions, these genes play a crucial role in organizing the 
cytoskeleton and maintaining epithelial integrity. In epithelial 
malignant tumors, the abnormal expression of keratins plays 
a significant biological role in tumor metastasis, angiogenesis, 
immune evasion, and resistance to immune checkpoint 
blockades (ICBs) (28-30).

Additionally, the KEGG results showed that the 
DEGs were significantly enriched in the following two 
pathways: Staphylococcus aureus infection, and the estrogen 
signaling pathway. Recent studies have suggested that 

Staphylococcus aureus infection might promote tumor 
growth and metastasis by affecting the immune system 
(31,32). However, there have been no similar reports in 
GC. Estrogen and estrogen receptors participate in the 
regulation of the body’s metabolism, either in physiological 
or pathological states (33). The estrogen signaling pathway 
significantly enriched in the DEGs of gastric signet ring 
cell carcinoma can interact with the mitogen-activated 
protein kinase and promote tumor progression (34). 
Further, estrogen can polarize macrophages toward an 
immunosuppressive phenotype through estrogen receptors, 
leading to abnormal CD8 T cell function and affecting 
the response of melanoma cells to ICBs (35). Collectively, 
these findings suggest that differences in the expression 
profiles between CGC and NCGC are involved in tumor 
growth, metastasis, angiogenesis, and immune regulation. 
Subsequently, we used uniCOX and multiCOX to identify 
four key prognostic genes (i.e., KRT17, SLC5A5, PPP1R1C, 
and SYT6), among which the first three genes were up-
regulated in CGC, while SYT6 was up-regulated in NCGC.

KRT17, a type I keratin intermediate filament, is 
abnormally expressed in multiple types of tumors and has 
prognostic value (36,37). Our study found a correlation 
between the high expression of KRT17 and a poor prognosis 
in GC. PPP1R1C, also known as inhibitor-5 of protein 
phosphatase 1, primarily affects the cell cycle of tumor 
cells (38,39). SLC5A5 plays an important role in thyroid 
hormone synthesis and radioactive iodine therapy for 
thyroid tumors (40,41). In our study, the high expression of 
SLC5A5 indicated a poor prognosis in GC. SYT6, a member 
of the synaptotagmin family of membrane transport 
proteins, was found to have significantly lower expression in 
CGC than NCGC. Moreover, the high expression of SYT6 
in GC was associated with a shorter survival time.

Based on these four key genes, we developed a PRSM 
to differentiate the GC samples into high- and low-
risk groups. The model demonstrated good predictive 
performance with AUC values of 0.71, 0.77, and 0.68 at 1, 3, 
and 5 years, respectively. We further validated its prognostic 
value in the GEO database. These findings provide valuable 
insights for the development of personalized therapeutic 
strategies for GC.

According to the GSEA, the genes in the low-risk group 
were primarily enriched in pathways related to the cell 
cycle and cell proliferation, such as E2F targets, the G2M 
checkpoint, and MYC targets. Conversely, the genes in the 
high-risk group showed significant enrichment in pathways, 
such as early estrogen response, late estrogen response, and 
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coagulation. Keenan et al. reported that patients with high 
GSEA scores for an early and late estrogen response might 
exhibit lower expressions of antigen presentation genes, 
potentially impacting the effectiveness of immunotherapy (42). 
The activation of the coagulation system can also suppress 
the therapeutic efficacy of ICBs via platelets, leukocytes, 
and the complement system (43). These results suggest that 
the pathways enriched in the high-risk group were mainly 
associated with tumor immune suppression.

In the immune landscape analysis, the low-risk group 
was characterized by the infiltration of cells promoting anti-
tumor effects, such as activated CD4 memory T cells and 
M1 macrophages. Conversely, the primary infiltrating cells 
in the high-risk group were dendritic cells and regulatory T 
cells, which play roles in antigen presentation and immune 
suppression, respectively. Meanwhile, the TMB of the low-
risk group was higher than that of the high-risk group. 
Therefore, while there was no significant difference in the 
estimate scores between the two groups, the low-risk group 
appeared to have a better immune response than the high-
risk group, as reflected by the higher TIDE scores in the 
low-risk group.

To ensure the better use of the PRSM in clinical 
applications, we compared the molecular characteristics 
specific to the high- and low-risk groups, and conducted 
a drug sensitivity analysis. TP53 is a well-known tumor 
suppressor gene, and the wild-type P53 can inhibit tumor 
development through various pathways. Mutations in TP53 
and the resulting p53 inactivation can enable tumor cells to 
evade death, progress rapidly, and promote the suppression 
of the immune microenvironment, leading to a poor 
prognosis (44,45). Defects in the p53 signaling pathway are 
one of the predictive features for fluorouracil and oxaliplatin 
chemoresistance (45,46). In this study, the frequency of the 
TP53 mutations was significantly increased in the high-
risk group, consistent with their more aggressive biological 
behavior, poor immune environment, and prognosis.

Another gene with a higher mutation rate in the low-
risk group was MUC16, which encodes the carbohydrate 
antigen 125, a common clinical biomarker for ovarian 
cancer. Recent studies have found that mutations in MUC16 
not only decrease the Warburg effect, affecting metabolic 
reprogramming (47), but are also associated with a high 
TMB and improved OS in various solid tumors, including 
GC (48-50). This suggests that the MUC16 mutations served 
as a marker for favorable prognosis in the low-risk group.

The IC50 values for commonly administered chemotherapeutic 
agents in GC, including cisplatin, oxaliplatin, docetaxel, 

and irinotecan, were generally lower in the low-risk group 
than the high-risk group. This suggests a greater sensitivity 
to these drugs in the low-risk group. The sensitivity to 
other drugs, such as paclitaxel and fluorouracil, appeared 
to be similar between the two group. Generally, the high-
risk group did not demonstrate distinct advantages in the 
selection of chemotherapeutic and immunotherapeutic 
agents. Patients in this group may need more potent 
combined treatment strategies to enhance their therapeutic 
outcomes and survival.

It should be noted that the data used in this study 
primarily originated from public databases, and thus might 
be subject to the selection biases and limitations inherent 
to such sources. Future research should be conducted to 
validate these findings with broader clinical data sets and 
animal models, and to delve deeper into the molecular 
mechanisms underlying the differences between CGC 
and NCGC and their effects on treatment responses. This 
would better inform the development of personalized 
therapeutic strategies.

Conclusions

In conclusion, this study provided valuable insights into 
the molecular characteristics and immune landscape of 
high- and low-risk groups, which could potentially guide 
the development of more effective therapeutic strategies. 
However, further experimental research is needed to validate 
these findings and explore their clinical implications.
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