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2019ماعةياهنيفتأدبيتلا19-ديفوكةيحصلاةمزلأاتلعج:ثحبلافادهأ
.نلآاىتحةلاعفلولحداجيلإةعرسبنوقباستيملاعلاءاحنأعيمجنمنيثحابلا
يلآجهنىلإةجاحكانهنوكتنأمتحملانمناكوةلصلاتاذثاحبلأاترثك
-ديفوكىلعبلغتلل،صنلانعبيقنتلاديدحتلابو،ةديفمتامولعمىلعروثعلل

نعبيقنتلاقرطلواحتامنيب.جلاعلاحشرمفاشتكابقلعتياميفاميسلا،19
نمةيويحتاطابتراجارختسابلاغلايفةحشرملاةيودلأاىلعروثعللصنلا
وهثحبلانمضرغلا.عيمجتلابولسأمدختسياهنمادجليلقلانألاإ،"ديمباب"
ةعجارمللاخنم19-ديفوكنمةياقوللةيودلأاديدحتيفانجهنةيلاعفتابثإ
.ةيريرسلابراجتلاتانايبوةيودلأاءاسرإتاباسحوةلتكلاليلحتوثاحبلأا

ذيفنتمت،لاوأ.ةيسيئرلحارمعبرأيفثحبلااذهءارجإمت:ثحبلاةقيرط
ليثمتىلعلوصحلل"تريبوياب"كارشإللاخنمصنلانعبيقنتلاةلحرم
طباورءاشنإيهةيلاتلاةلحرملاتناك.صوصنلانمةلمجلايفةملكلكلهجتم
كلذدعب.راقعلاوضرملانيبتلاسارملانماهيلعلوصحلامتيضارملألةيئاود
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مادختساللاخنمضارملأاهباشتللاخنمدعاوقلاعيمجتلاةلحرمتعمج،
حشرمجارختساةلحرمةجلاعممتت،اريخأ.اهلتازيمك"فإيديآ-فإيت"
امك."ءاودلاكنب"و"ميكباب"تانايبدعاوقنمةدافتسلااللاخنمءاودلا
"سكإرآياويب"جمانربيف"انيفكودوتوأ"ةيودلأاءاسرإةمزحانمدختسا
.جئاتنلانمققحتلل

جئاتنللةيوئملاةبسنلانأهؤارجإمتيذلانراقملاليلحتلارهظأ:جئاتنلا
عيمجيفعيمجتلانودنيدعتلاىلعتقوفتةيدوقنعلاعمنيدعتلايفةمدختسملا
داوم/ةيودأةثلاثلضفأنأانحرتقا،كلذىلإةفاضلإاب.ةيبيرجتلاتائيبلا
نمةياقولايفةلاعفنوكتدقريقاقعلابماحتللااليلحتللاخنمةيتابنةيئايميك
.19-ديفوك

عيمجتلاةقيرطمادختسابصنلانيدعتلةحرتقملاةقيرطلادعت:تاجاتنتسلاا
للاخنم19-ديفوكلةحشرملاةيودلأانمةياقولافاشتكايفةياغللةدعاو
.ةيويحلاةيبطلاتايبدلأا

ليلحت؛2-فوك-سراس؛19-ديفوك؛انوروكسوريف:ةيحاتفملاتاملكلا
ةيتابنلاةيئايميكلاداوملا؛ءاودلاءاسرإ؛صوصنلا

Abstract

Objective: The coronavirus disease 2019 (COVID-19)

health crisis that began at the end of 2019made researchers

around the world quickly race to find effective solutions.

Related literature exploded and it was inevitable that an

automated approach was needed to find useful informa-

tion, namely text mining, to overcome COVID-19,
y. This is an open access article under the CC BY-NC-ND license
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especially in terms of drug candidate discovery. While text

mining methods for finding drug candidates mostly try to

extract bioentity associations from PubMed, very few of

themmine with a clustering approach. The purpose of this

study was to demonstrate the effectiveness of our

approach to identify drugs for the prevention of COVID-

19 through literature review, cluster analysis, drug docking

calculations, and clinical trial data.

Methods: This research was conducted in four main

stages. First, the text mining stage was carried out by

involving Bidirectional Encoder Representations from

Transformers for Biomedical to obtain vector represen-

tation of each word in the sentence from texts. The next

stage generated the disease-drug associations, which were

obtained from the correlation between disease and drug.

Next, the clustering stage grouped the rules through the

similarity of diseases by utilizing Term Frequency-Inverse

Document Frequency as its feature. Finally, the drug

candidate extraction stage was processed through

leveraging PubChem and DrugBank databases. We

further used the drug docking package AUTODOCK

VINA in PyRx software to verify the results.

Results: Comparative analyses showed that the percent-

age of findings using mining with clustering outperformed

mining without clustering in all experimental settings. In

addition, we suggest that the top three drugs/phyto-

chemicals by drug docking analysis may be effective in

preventing COVID-19.

Conclusions: The proposed method for text mining uti-

lizing the clustering method is quite promising in the

discovery of drug candidates for the prevention of

COVID-19 through the biomedical literature.

Keywords: Coronavirus; COVID-19; Drug docking; Phyto-

chemicals; SARS-CoV-2; Text mining

� 2022 The Authors.

Production and hosting by Elsevier Ltd on behalf of Taibah

University. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
Introduction

Ever since the coronavirus disease 2019 (COVID-19)
pandemic caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) virus struck in late 2019, re-

searchers worldwide have studied the disease and raced to-
wards finding a cure and developing effective treatments.
This has caused an explosion of biomedical literature
regarding the disease, its virus, and potential drug candi-

dates. Several traditional literature review surveys have been
proposed on the COVID-19 pandemic 191e4 focusing on
several key issues including symptoms, the coincidence of

COVID-19 and other diseases, and various treatments.
However, these studies have limitations, particularly in that
the literature reviews are often topic-specific, limited to a few
diseases or chemicals, as well as time-consuming and labor-
intensive. Therefore, an automated approach is needed to

find useful information to overcome COVID-19, especially in
terms of drug candidate discovery.

One literature database known as PubMed, developed by

the National Center for Biotechnology Information (NCBI)
at the National Library of Medicine (NLM), one of the in-
stitutes of the National Institutes of Health (NIH), has

published about 100,000 articles discussing COVID-19, and
as of April 2021, with a growth rate of dozens of new articles
every day. This huge amount of text data once again shows
that there is a need to explore a collection of studies with

automated text mining approaches to find potential drug
candidates for the COVID-19 pandemic.

Several text mining studies have utilized computational

methods to find drug candidates. Kuusisto et al. proposed a
word embedding approach built on biomedical literature
published through early 2019.5 To obtain a list of drugs, the

study downloaded the United States Food and Drug
Administration- (FDA) approved drug databases,
extracted drug names, and processed them for use in word
embedding. Muramatsu and Tanokura applied the

relationships between pairs of terms in PubMed abstracts
and used the co-occurrences.6 They measured the distance
between two Kyoto Encyclopedia of Genes and Genomes

(KEGG) codes determined by the number of articles
(PubMed ID) where terms from the KEGG pair appeared
together.

Specifically, drug discovery is carried out by evaluating
the disease-drug associations. Chen et al. applied a combi-
nation of Natural Language Processing (NLP) and statistical

techniques for the automated acquisition of disease-drug
associations in Medline articles.7 Disease and drug entities
were identified using the NLP systems in addition to
Medical Subject Heading annotations for the Medline

articles. Co-occurrence statistics were then applied to
compute and evaluate the strength of association between
each disease and relevant drugs. However, drug checking by

involving compound entities and integrating with chemical
database repositories was not carried out. This study used
PubChem to validate the findings of drug candidates to

ensure that these compounds have a standard representation
of compounds.

In another body of research with a different approach,

Khan et al. extracted disease-drug interactions from the
CORD-19 literature and classified them into positive or
negative labels.8 The positive label means the drug is
potentially effective against COVID-19, and the negative la-

belmeans the opposite. In a similarway,Wang et al. developed
a computational drug repositioning approach to discover po-
tential drug-disease associations. They applied an ensemble

strategy to predict the association of drug-disease pairs based
on improved drug-disease association information and the
constructed similarity network.9 Instead of classifying and

predicting the disease-drug associations, we grouped similar
disease terms into clusters, and then using a frequency analysis
approach, we registered candidate drugs to search for their
presence in the COVID-19 DrugBank database.

This research provides a novel data-driven framework to
analyze COVID-19-related papers to find COVID-19 drug
candidates. The aims of this study were to (i) show that the

clustering method has a positive impact on the discovery of

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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COVID-19 drug candidates; and (ii) use drug docking cal-
culations and clinical trial data to demonstrate the effec-

tiveness of our approach.

Materials and Methods

Dataset

This study used three open datasets that are available and
can be accessed online. First, PubMed was used as a data

source to obtain articles. PubMed (https://pubmed.ncbi.nlm.
nih.gov) is a database designed to provide access to citations
(with abstracts) from valuable sources of information for

scientific research in biomedical literature. PubMed com-
prises 32 million citations developed by the NCBI at the
National Library of Medicine, one of the institutes of the
NIH. PubMed was chosen because of the rapid growth of

biomedical literaturedabout two articles are added every
minute on average. PubMed has been used by several studies
related to text mining such as a text mining tool that enables

users to perform classification of scientific literature by text
mining-based classification of PubMed article abstracts,10

predict geneedisease associations from the texts of docu-

ments in the PubMed database,11 text mining tools for
extracting information from PubMed abstracts of scientific
papers in the food microbiology domain,12 and text mining
framework for interactive analysis and visualization of

similarities among biomedical entities.13

The second dataset, PubChem (https://pubchem.ncbi.
nlm.nih.gov), was used as a source to validate drug com-

pounds obtained from the drug candidates extraction stage.
PubChem is a popular public repository for chemical sub-
stance information resources and their biological activities

that serves the scientific community as well as the general
public by the NIH. Many studies have used PubChem,
including those that are used to train machine learning/deep

learning algorithms, which are used to predict the drug tar-
gets,14 in order to uncover and summarize important
relationships among chemicals, genes, proteins, and
diseases by analyzing co-occurrences of terms in biomed-

ical literature abstracts,15 and to generate a comprehensive
blood exposome database of endogenous and exogenous
chemicals associated with the mammalian circulatory

system through text mining and database fusion.16

The third dataset is DrugBank (https://go.drugbank.com/
covid-19), which is used as a source of validation as to

whether the drug candidate is suitable to treat COVID-19.
The DrugBank database has been used to explore drug as-
sociations in building a text mining tool for knowledge dis-
covery,17 drug name recognition that deals with different

types of drugedrug interactions texts and language
styles,18 and to construct a protein vector to assess the
effectiveness of similarity-based drugedrug interaction

prediction.19

Method

We extracted scientific articles from PubMed using Bidi-
rectional Encoder Representations from Transformers for
Biomedical (BioBERT) TextMining, established disease-drug

associations, grouped similar disease-drug associations using
agglomerative hierarchical clustering, checked the availability
of drug candidates on PubChem through compound valida-

tion, and found a list of drug candidates on the DrugBank
COVID-19. The process flow of the proposed method is
shown in Figure 1. The method is divided into four main

stages: the text mining stage, generating rule stage,
clustering stage, and extracting potential drug stage. The
text mining stage involved BioBERT as the text mining tool

and PubMed as the data source. The generating rules stage
proposed ideas by building rules obtained from the
correspondence between the disease and drug found in the
abstract of the articles. The clustering stage grouped rules

that have similarities to text disease by using Term
Frequency-Inverse Document Frequency (TF-IDF) as the
feature. We proposed agglomerative hierarchical clustering

(AHC) with the output in the form of a list of rules as cluster
members. This list of rules is used as input for the last stage,
namely the extracting potential drug stage. This extraction

stage utilized PubChem as a validation source for drug com-
pounds and is continued by utilizing DrugBank as a valida-
tion source that the drug compounds have the potential to
treat COVID-19. Two evaluations were then applied to

determine the potential COVID-19 drug candidates, which
are percentage of drugs found in DrugBank.

Text mining stage

The initial stage of our proposed method is the determi-
nation of search keywords related to COVID-19. The text

mining technique used in this study starts from two sets of
keywords: keywords for human diseases caused by viruses
(SARS, coronavirus, human immunodeficiency virus [HIV],
Middle East respiratory syndrome, and Ebola) along with

Chinese medicinal herb compound names. Chinese herbal
medicine has achieved significant clinical efficacy in the
interventional treatment of human diseases. Yang et al.

analyzed the etiology of COVID-19 and the efficacy of
clinical Chinese medicine active ingredients.20 During the
course of COVID-19 treatment, traditional Chinese medi-

cine has antiviral antivirus, anti-inflammatory, and immu-
noregulation effects on treating COVID-1921; hence, this
motivated us to establish search keywords using Chinese

herbal medicine.
The next step was to search for articles on the PubMed

website based on those keywords, and the result was a list of
PubMed article IDs, which was then used as input to obtain

information on disease and potential drugs using BioBERT
text mining.22 BioBERT has proven to be a successful tool
for biomedical linkage extraction. It has been used to

optimize biomedical relationship extraction in identifying
functional links between proteins,23 and to obtain vector
representation of each word in the sentence in extracting

drugedrug interactions from the texts.24 The output of this
stage is a list of articles along with seven categories of
information including gene/protein, disease, drug/
chemicals, species, mutations, microRNAs and pathways.

Generating rules stage

The search for drug candidates is based on the idea of

building association rules. Rules are built on the basis of the

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://go.drugbank.com/covid-19
https://go.drugbank.com/covid-19
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correspondence relationship between “disease” and “drug.”
Before the rule is built, articles that do not contain disease or

drugs will be removed from the input list from the generating
rules process. Through correspondence between them, a pair
of disease and drug candidates will be obtained. If there is a

rule X/Y, it means that if there is a disease X, then the drug
candidate is Y. In an article, it is possible that there is more
than one disease or one drug. We then combined the entire

list of diseases and drugs in the article, so that a unique rule
will be formed in an article. This process will be carried out
on all articles obtained in the previous stage.

We believe that a rule does not only occur in an article.

Therefore, we adopted the term ‘support’ in the association
rule mining concept to indicate the frequency of these rules.
One rule in an article represents one support. If there is the

same rule in another article, then that rule gets one additional
support. In other words, if a rule is found in five articles, it
means that the support for that rule is five. We call this

approach “frequency analysis.” Frequency analysis plays an
important role in text mining. We utilized frequency analysis
to understand the significance of the rule. This analysis
showed how many articles contained the disease and its drug

treatment.
The last step of this stage is filtering. Filtering needs to be

done because not all the rules that are built are related to

COVID-19 even though the articles searched use the
COVID-19 keyword. BioBERT is a text mining tool for
disease and drug identification in general, not specifically for

COVID-19 disease and drug detection. Therefore, in the final
step we applied filtering criteria to the rules with the same
keywords as in the article search.

Clustering stage

The output of the rules-generating process is a list of rules

that specify the disease-drug association. We found some
disease words that have similar meanings but are written in
different ways. For instance, in writing “sars cov-2,” we
found that in some articles it was written as “sars- cov-2,”

“sars-cov-2,” “sars-cov- 2,” “sars-cov 2,” and “sars-cov-2-.”
To deal with this condition, we proposed implementing text
clustering to group similar texts, which means similar dis-

eases. This approach was carried out with the argument that
if these similar terms occur in many articles with different
rules, then the rule with the similar text will have low sup-

port. Rules with low support will be considered rules with
low interest. On the other hand, it is different when we collect
similar rules into one and add up the support; then the
support for that rule will be higher and have the potential to

become an interesting rule. This interesting rule will poten-
tially become a candidate for the discovery of a COVID-19
drug. For instance, the rules with the drug candidate of

azithromycin are follows:

� sars-cov-2 / azithromycin: supported by 6 articles
� sars-cov-2- / azithromycin: supported by 1 article
� sars-cov / azithromycin: supported by 1 article
� sars-cov-2 infection -> azithromycin: supported by 2

articles
� sars-cov-2 virus -> azithromycin: supported by 1 article
Following those rules of grouping, they would be sup-
ported by 11 articles, instead of only 1, 2, or 6 articles

respectively. We adopted AHC to group the rules, which
generally follow the five main steps listed below:

1. Calculating the distance matrix for the initial clusters us-
ing cosine similarity.

2. Searching for the minimum distance in the matrix.

3. Combining the two clusters with the minimum distance.
4. The distance matrix can be updated by calculating the

distances between the new cluster with the other

clusters.
5. Repeating the previous three steps if more than one cluster

remains.
Extracting potential drugs stage

The disease-drug relationship that was selected in the
previous stage was calculated for its frequency, and the
ones with higher frequency were selected. We introduced

the term ‘minimum support’ as a parameter that indicates
the minimum number of frequencies of the rules that will
be selected and are considered as interesting rules. The

higher the minimum support value, the less the number of
rules that will be obtained. This will make the rules
interesting because of many articles related to it. However,
the few rules obtained resulted in fewer drug candidates

identified.
After obtaining the rules that meet the minimum support

criteria, we checked the availability of drug candidates on

PubChem. The results of this examination are properties of
drug candidate compounds, in which we used the Simplified
Molecular Input Line Entry System (SMILES), which was

proposed in25 and is widely used as a standard representation
of compounds for chemical information processing.

Extracting the COVID-19 keywords from articles

certainly does not guarantee that the drug is a candidate
drugs for COVID-19. Therefore, validation of compounds to
the COVID-19 dataset was carried out. Then the list of
SMILES found on PubChem was searched on DrugBank

COVID-19. The results found in DrugBank were the final
findings as an outcome of the proposed method. We then
calculated the percentage of these findings as an evaluation

method for the success of our method.

Evaluation metrics

We used three types of evaluations: measuring (i) the
quality of the dendrogram in the hierarchical clustering
method, (ii) the quality of the cluster, and (iii) the percentage

of drug findings. The measurement of dendrogram quality
aimed to obtain the best performance setting of the linkage
method in hierarchical clustering, and the Cophenetic cor-
relation coefficient26 was used. The second evaluation metric

was a measure of cluster quality. This measurement was
intended to obtain the best cutoff value in the dendrogram,
which has an impact on the large number of clusters

formed. We used the Davis-Bouldin index27 to measure the
quality of the cluster.
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We used the ratio of the number of COVID-19 drug
candidates found on DrugBank compared to the number of

drug candidates found on PubChem as an indicator. Suppose
that the number of drug candidates found in DrugBank and
PubChem are X and Y, respectively, then the percentage of

COVID-19 drug findings (PF) is defined by

PF ¼ X

Y
� 100% (1)

Drug docking calculation with structures of SARS-CoV-2
proteins

To evaluate the drug candidates, a total of four structures
of SARS-CoV-2 spike proteins were adopted for the docking

calculation. The protein data bank (PDB) code of the
receptor-binding domain (RBD) is 6VW1, (2.68 Å resolu-
tion, structure of SARS-CoV-2 chimeric receptor-binding

domain complexed with its receptor human angiotensin-
converting enzyme 2 [ACE2]).28 Since the crystal structure
was retrieved during the bond to its protein target (ACE2),
it is suitable for docking analysis. Another protein we

chose is the post-fusion core of 2019-nCoV S2
subunit (6LXT, 2.90 Å resolution). The crystal structure was
made during inhibition with a fusion inhibitor, so it will be in

the structure when binding to a certain target. The S2 subunit
of 6LXT is able to facilitate the virus to penetrate the host
cell membrane.29 In addition, two SARS-CoV-2 spike ecto-

domain structures were also adopted in this docking analysis,
including the open state (6VYB, 3.20 Å resolution) and
closed state (6VXX, 2.80 Å resolution).30 The docking

procedure was based on a previous published study.31 The
water molecule and ligand molecule of the retrieved co-
crystalized structure were removed using the PyMOL
version 2.0.4 program to prepare for the docking analysis.

The chemical structures of the drug candidates were
downloaded from the PubChem (SMILES, as saved in Sur-
face Data File format). Each drug candidate was optimized

in molecular geometry, torsional barriers, and
intermolecular-interaction geometry using the MMFF94
partial forcefield in CHARMM. The structures of viral

proteins were treated using the same forcefield during the
docking calculation. BIOVIA Discovery Studio 2021 was
used to apply the forcefield. We performed the drug docking

calculation by using the AUTODOCK VINA package32 in
the PyRx software (https://pyrx.sourceforge.io/home) with
the “maximize” setting in the grid selection. The best
docking conformation for each drug candidate was

determined based on the lowest binding energy. The
binding energy for each drug candidate was adopted as the
indicator to evaluate the binding affinity between the

SARS-CoV-2 protein and drug candidate. Lower binding
energy means the higher binding affinity between the SARS-
CoV-2 protein and drug candidate, and vice versa. Post-

docking analysis was determined and visualized using BIO-
VIA Discovery Studio 2021.
Experimental settings

We used the NLTK, Sklearn, SciPy, and PubChempy li-

brary with the Jupyter Notebook to implement our method.
The code is written in Python 3.8.5. In our method, we used
AHC, which has parameters that must be defined. We tested
these parameters to obtain parameters that are able to pro-

vide optimal clustering results. For instance, we tested Single,
Complete, Average, Weighted, Median, and Ward Linkages
as the linkage measurement methods. A cophenetic coeffi-

cient was performed to compare the dendrogram generated
from the linkage methods. Then, for the cutoff parameter, we
use a ranged from 2.5 to 3.5 at a step of 0.1. Distances be-

tween data objects are given by the Euclidean distance.
We focused on rules with fairly high support, which

means that many articles discussed the relationship between

the disease and the COVID-19 drug candidates. The question
is then whether the rules in the cluster with the highest sup-
port are sufficient to represent drug candidate discovery? Or
do they still need rules in other clusters with lower support?

We defined the question as the first research question (RQ1).
Regardless of what the answer is in RQ1, the result of the

rules obtained will then be selected based on the specified

minimum number of supports. Minimum support that is too
low will result in many rules, but if minimum support is too
high, it will result in just a few rules. The few rules will result

in fewer drug candidates to be searched for. We suggested
recommending more drug candidates. Since this is highly
uncertain and the determination of the minimum support
will have an impact on the discovery of drug candidates, we

determined the parameter of minimum support values in the
range from 3 to 12. A summary of the experimental settings is
shown in Table 1. After the optimal parameters are obtained,

referring to our argument by proposing the clustering
approach in mining drug candidates for COVID-19, we
tested our proposed method and asked the next research

question, as to whether the findings of drug candidates with
clustering are better than those without clustering (RQ2).

Results

Text mining and generating rules results

Based on the search results on the PubMed website with

the specified keyword list, we obtained 26,327 articles. Arti-
cles were obtained from 1959 to January 2022. Using Bio-
BERT, we obtained a list of diseases and drugs based on

article IDs. Of the 26,327 articles obtained, 15,010 articles
contained information on disease and drugs. The 15,010
articles were then used as the basis for generating rules and
obtained 293,315 rules. Many established rules are not spe-

cifically related to COVID-19 such as: lung disease/ amino
acid, diabetes / aldosterone, influenza / losartan, and
cardiac complications/ catecholamines. We filtered it using

the same keywords as in the first step of the PubMed search
and found 4325 rules. Next, we listed diseases in the rules for
clustering.

https://pyrx.sourceforge.io/home


Table 1: Experimental settings.

Method Parameter Experiments Value

AHC linkage Single, Complete, Average,

Weighted, Median and Ward

cutoff 2.5 to 3.5

distance Euclidean

Frequent Items minsupp 3 to 12

Figure 1: Process flow of the proposed method. Solid arrows: show process flow. Double solid arrows: indicate flow ineout system with

open online dataset. Dash arrows: show system ineout flow with storage files.

Table 3: The Davis-Bouldin score of the different cutoff

settings.
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The best performance setting of AHC

The results of the cophenetic correlation coefficient of the
linkage methods are given in Table 2. The average linkage
method yields the highest coefficient and outperforms other

methods with a score of 0.7650. Next, we used average
linkage to determine the best cutoff parameter. Based on
the Davis-Bouldin score, it was found that the cutoff with

a value of 2.6 yielded the smallest score of 1.0247. This meant
Table 2: The cophenetic correlation coefficient results of the

linkage methods.

Method Cophenetic Correlation Coefficient

Single linkage 0.6513

Complete linkage 0.7415

Average linkage 0.7650

Weighted linkage 0.7638

Median linkage 0.6554

Ward linkage 0.7005
that the cutoff parameter 2.6 was able to produce the best
cluster formation. Details of the scores for each cutoff are
listed in Table 3. With the selected cutoff value, we obtained

29 clusters. Further, the cluster analysis process is carried out
using the best clustering method settings.

Clustering analysis

The purpose of this cluster analysis was to answer RQ1.
To answer this question, experiments were carried out on the
first three highest clusters with sorted support values. Priorly,

we introduce the following terms:

� Top-1 Cluster: Cluster with the first highest support.
� Top-2 Cluster: Cluster with the second highest support.
Cutoff Davis-Bouldin Score Number of Clusters

2.5 1.0285 30

2.6 1.0247 29

2.7 1.1144 22

2.8 1.1596 19

2.9 1.2666 15

3.0 1.2774 14

3.1 1.1679 11

3.2 1.2205 9

3.3 1.1790 7

3.4 1.2615 6

3.5 1.2615 6



Table 4: The first three highest clusters and combined clusters

among them.

Cluster Name Disease Member List

Top-1 Cluster sars cov-2, sars coronavirus (sars-cov)

infection, sars-cov- 2, sars-cov-2 virus, sars-

cov infection, sars-cov), sars- cov-2

infection, sars-cov-2, sars, sars-cov-2-, cov-2

infection, sars-cov, sars-cov 2, coronavirus

sars-cov-2, sars- cov-2, sars-cov-2

coronavirus infection, sars-cov-2 virus

infection, sars cov, sars-cov-2 infection

Top-2 Cluster covid-19-related inflammation, covid-19,

covid-19 epidemics, covid-19/, pandemic

covid-19, coronavirus pneumonia covid-19,

covid-19-associated fever, covid-19

infections, covid-19 pneumonia, covid-19

virus infection, covid-19-related deaths,

covid-19 or, covid-19 diseases, covid-19

pulmonary infections, covid-19 global crisis,

covid-19 complications, covid-19

pandemics, covid-19 pandemic, covid-19-

related cytokine storm, covid-19-associated

thrombosis, covid-19 symptoms, covid-19

fatality, covid-19 virus, covid, covid-19

infection

Top-3 Cluster viremic hiv-1 infection, hiv/sars pseudovirus

infection, hiv-1-infected, hiv-1 associated,

hiv-1 clade c, hiv-hepatitis c virus, hiv-

lipodystrophy, hiv-ltb, hiv-related fatigue,

hiv-1 clade c infection, hiv co-infection, hiv

illness, hiv-hcv coinfected, hiv lipoatrophy,

hiv-1-positive, hiv-1 infected, hcv-hiv, hiv-

1c, hiv/hcv co-infection, hiv-1 iiib, hiv

coinfection, hiv-negative, hiv-tb, vif-

deficient hiv-1, hiv/aids, advanced hiv

infection, hiv-associated nephropathy, hcv/

hiv-1 co-, hcv/hiv-1 co-infected, hiv-tb

coinfection, hiv-positive, hiv-tb iris,

eumenorrheic hiv-positive, hiv infection,

hiv-1 infection, hiv/hcv coinfected, hiv-

infection, hiv-associated neurocognitive

disorder, chronic hiv infection, hiv-1

seropositive, hcv-hiv coinfection, hiv-1c

infection, hiv/hcv, hiv-infected, hiv-related

illness

Figure 2: The percentage of COVID-19 drug candidate
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� Top-3 Cluster: Cluster with the third highest support.
� Top-12 Cluster: Combined Top-1 and Top-2 Clusters
� Top-123 Cluster: Combined Top-1, Top-2 and Top-3

Clusters

The cluster names along with a list of disease as the cluster

members are listed in Table 4.
As can be seen in Figure 2, the Top-1 cluster dominated

the percentage of COVID-19 drug findings for the deter-

mined minimum support. In 8 of 10 minimum support set-
tings, the Top-1 clusters outperformed or were at least equal
to the Top-12 clusters. Additionally, in 9 of 10 minimum

support settings, the Top-1 clusters outperformed the Top-
123 clusters. It was shown that by using the rules in the
Top-1 cluster, drug candidates can be found with a higher
percentage of findings.

These results indicated that with the Top-1 cluster, drug
candidates can be found with a high percentage of findings.
In addition, it is computationally beneficial because only

using the rules on the Top-1 cluster will save processing time
in finding the drug candidates. Table 5 shows that the Top-1
cluster utilized the smallest mining time. The time is calcu-

lated from a series of processes in the proposed method,
including when connected to the PubChem and DrugBank
databases.

From the first three highest support clusters, it was found
that the rules in the Top-123 cluster had the lowest perfor-
mance of findings, while Top-1 and Top-12 are quite similar
(see Figure 2). From Table 4, the diseases in the rules of Top-

3 cluster are diseases that are dominated by the word “hiv.”
While in the Top-1 and Top-2, they are diseases with the
predominance of the words “sars,” “cov,” “coronavirus,”

“covid,” and “infection.” In this case, we found that those
disease keywords have a big influence on drug candidate
discovery. The dominance of words can be seen in Figure 3,

which shows the wordcloud of each cluster.

Comparison with and without clustering

Text mining with clustering is what we proposed, while
text mining without clustering is a comparison that is tested
by passing the clustering stage. Thus, the process without
clustering meant that from the generating rules stage, it went
findings of the top three highest support clusters.



Table 5: Processing time of the first highest clusters and combined clusters with the second and the third ones.

Cluster Run1 Run2 Run3 Run4 Run5 Mean StdDev

Top-1 105,80 103,30 104,70 105,70 103,90 104,68 1,10

Top-12 126,60 123,00 123,40 126,00 128,30 125,46 2,23

Top-123 153,40 153,60 152,60 151,90 150,60 152,42 1,22

Figure 3: The wordcloud of the first three highest support clusters.

Table 6: The comparison result of text mining with and without the clustering stage.

Min Supp Without Clustering With Clustering

#Rules #PubChem #DrugBank PF (%) #Rules #PubChem # DrugBank PF (%)

3 190 179 50 27.93 69 68 24 35.29

4 131 122 37 30.33 45 43 14 32.56

5 93 83 31 37.35 34 32 11 34.38

6 68 60 23 38.33 29 29 10 34.48

7 55 49 18 36.73 26 26 9 34.62

8 51 46 18 39.13 21 21 9 42.86

9 51 46 18 39.13 14 12 7 58.33

10 46 42 17 40.48 11 9 6 66.67

11 42 40 16 40.00 9 7 4 57.14

12 39 37 13 35.14 9 7 4 57.14

Mean 36.46 45.35

Table 7: Binding energies of 23 medicinal compounds of findings to the four protein structures of SARS-CoV-2.

SMILES Generic name Binding energy (kcal/mol)

6VW1 6LXT 6VXX 6VYB Mean

CCC1C(C(C(N(CC(CC(C(C(C(C(C(¼O)O1)C)

OC2CC(C(C(O2)C)O)(C)OC)C)OC3C(C(CC(O3)

C)N(C)C)O)(C)O)C)C)C)O)(C)O

azithromycin �8.0 �7.4 �7.9 �7.6 �7.73

COC1¼C(C2¼C[Nþ]3¼C(C¼C2C¼C1)

C4¼CC5¼C(C¼C4CC3)OCO5)OC

berberine �7.5 �7.9 �7.8 �8.5 �7.93

CN(C)C(¼O)COC(¼O)CC1¼CC¼C(C¼C1)OC(¼O)

C2¼CC¼C(C¼C2)N¼C(N)N

camostat �8.2 �7.7 �8.6 �7.1 �7.90

CC(CS)C(¼O)N1CCCC1C(¼O)O captopril �5.1 �4.6 �5.3 �5.5 �5.13

chloroquine �6.3 �6.0 �6.3 �6.5 �6.28
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Table 7 (continued )

SMILES Generic name Binding energy (kcal/mol)

6VW1 6LXT 6VXX 6VYB Mean

CCN(CC)CCCC(C)

NC1¼C2C¼CC(¼CC2¼NC¼C1)Cl

COC1¼C(C¼CC(¼C1)C¼CC(¼O)CC(¼O)

C¼CC2¼CC(¼C(C¼C2)O)OC)O

curcumin �7.0 �7.2 �6.9 �7.0 �7.03

CC1CC2C3CCC4[CC([O)C

[CC4(C3(C(CC2(C1(C([O)CO)O)C)O)F)C

dexamethasone L9.2 L8.3 L9.0 L9.5 L9.00

C1¼C(N¼C(C(¼O)N1)C(¼O)N)F favipiravir �5.2 �5.9 �5.8 �6.1 �5.75

CC(C)CC(C(¼O)NC(CC1CCNC1¼O)C(O)

S(¼O)(¼O)O)NC(¼O)OCC2¼CC¼CC¼C2

gc376 �7.5 �7.2 �8.2 �7.8 �7.68

CC1C(C(C(C(O1)OCC2C(C(C(C(O2)OC3

[CC([C4C([O)CC(OC4[C3)C5[CC([C(C

[C5)OC)O)O)O)O)O)O)O)O

hesperidin L9.4 L9.6 L9.5 L10.2 L9.68

CCN(CCCC(C)NC1¼C2C¼CC(¼CC2¼NC¼C1)Cl)

CCO

hydroxychloroquine; hcq �6.4 �6.2 �6.3 �6.4 �6.33

CC(C)CC1¼CC¼C(C¼C1)C(C)C(¼O)O ibuprofen �6.6 �6.1 �6.7 �6.4 �6.45

CC1¼C(C(¼CC¼C1)C)OCC(¼O)

NC(CC2¼CC¼CC¼C2)C(CC(CC3¼CC¼CC¼C3)

NC(¼O)C(C(C)C)N4CCCNC4¼O)O

lopinavir �9.0 �7.8 �9.1 �7.7 �8.40

CCCCC1¼NC(¼C(N1CC2¼CC¼C(C¼C2)

C3¼CC¼CC¼C3C4¼NNN¼N4)CO)Cl

losartan �7.6 �7.5 �7.8 �8.0 �7.73

CC(¼O)NCCC1¼CNC2¼C1C¼C(C¼C2)OC melatonin �6.6 �6.2 �6.3 �6.4 �6.38

C1¼CC(¼CC¼C1C(¼O)OC2¼CC3¼C(C¼C2)

C¼C(C¼C3)C(¼N)N)N¼C(N)N

nafamostat �8.6 �8.0 �9.4 �8.7 �8.68

C1CCN(CC1)C(¼O)C¼CC¼CC2¼CC3¼C(C¼C2)

OCO3

piperine �7.6 �7.1 �8.0 �7.9 �7.65

C1¼CC(¼C(C¼C1C2¼C(C(¼O)

C3¼C(C¼C(C¼C3O2)O)O)O)O)O

quercetin �8.1 �7.7 �8.6 �8.4 �8.20

CC1CCC2CC(C([CC[CC[CC(CC(C([O)

C(C(C([CC(C([O)CC(OC([O)

C3CCCCN3C([O)C([O)C1(O2)O)C(C)

CC4CCC(C(C4)OC)O)C)C)O)OC)C)C)C)OC

rapamycin (sirolimus) L9.4 L10.0 L9.7 L9.1 L9.55

CCC(CC)COC(¼O)C(C)

NP(¼O)(OCC1C(C(C(O1)(C#N)

C2¼CC¼C3N2N¼CN¼C3N)O)O)

OC4¼CC¼CC¼C4

remdesivir �8.3 �7.4 �7.3 �8.0 �7.75

C1¼CC(¼CC¼C1C¼CC2¼CC(¼CC(¼C2)O)O)O resveratrol �7.1 �6.9 �8.0 �7.3 �7.33

C1¼NC(¼NN1C2C(C(C(O2)CO)O)O)C(¼O)N ribavirin �6.1 �6.0 �6.7 �6.4 �6.30

CC(C)C1¼NC(¼CS1)CN(C)C(¼O)NC(C(C)C)

C(¼O)NC(CC2¼CC¼CC¼C2)

CC(C(CC3¼CC¼CC¼C3)NC(¼O)

OCC4¼CN¼CS4)O

ritonavir �8.1 �6.9 �8.5 �8.6 �8.03
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Figure 4: Two-dimensional and three-dimensional molecular interactions of hesperidin against SARS-CoV-2 protein structures. (A)

RBDeACE2 complex (PDB ID: 6VW1). (B) Fusion core of S2 domain (6LXT). (C) Closed state of spike ectodomain (PDB ID: 6VXX).

(D) Open state of spike ectodomain (PDB ID: 6VYB).
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Table 8: The results of the number of trials, number of trials has results and phases for the 23 predicted drugs.

Generic name Number

of trials

Number of trials

(have results)

Phases

hesperidin 1 1 Phase 2

rapamycin (sirolimus)a 5 (4) 0 (0)

dexamethasone 42 2 Phase 3; not available

nafamostat 7 0

lopinavir 28 0

quercetin 6 0

ritonavir 46 0

berberine 1 0

camostat 18 4 Phase 2; Phase 2; Phase 2; Phase 2

remdesivir 61 9 Phase 3; Phase 3; Phase 3; Phase 3; Phase

1|Phase 2; Phase 3; Phase 3; Phase 3;

Phase 3

azithromycin 50 6 Phase 2; Phase 3; Phase 3; Phase 2; Phase

2; Phase 2

losartan 10 3 Phase 2; Phase 2; Phase 4

gc376 0 0

piperine 0 0

resveratrol 3 0

curcumin 3 0

ibuprofen 2 0

melatonin 8 0

Hydroxychloroquine (hcq)a 188 (7) 188 (7) Phase 2; Phase 2; Phase 2; Phase 2; Phase

3; Phase 2; Phase 2; Phase 2; Phase 1|

Phase 2; Phase 2; Phase 2|Phase 3; Phase

3; Phase 2; Phase 2|Phase 3; Phase 3;

Phase 2; Phase 3; Phase 2; Phase 3; Phase

3 (Phase 2; Phase 3; Phase 2; Phase 2;

Phase 2; Phase 3; Phase 2)

ribavirin 7 1 Phase 2

chloroquine 19 0

favipiravir 43 3 Phase 3; Phase 2; Phase 2

captopril 2 0

a Denotes synonyms names.
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directly to the extracting drugs stage of our proposed

method. This comparison is intended to determine the effect
of clustering on the proposed mining process to find drug
candidates as well as to answer RQ2. The results of their
comparison can be found in Table 6. It suggested that the

number of rules generated by mining with clustering
obtains a better percentage of findings on average for all
minimum support settings. In 7 of 10 minimum support

settings (PF with underlining text in Table 6), the mining
with clustering outperformed the mining without
clustering; hence, the method is quite promising in

identifying drug candidates through the search of
biomedical literature.

Discussion

Natural compound utilization is not a new idea in the
struggle to combat COVID-19. There are at least two pub-

lished reports documenting a total of 38 ongoing clinical
trials of herbal medicines for the treatment of COVID-
19.20,33 This study aimed to obtain a list of COVID-19 drug
candidates through the disease-drug associations extraction

approach from the search of related literature. This study
applied the AHC method to obtain a collection of drug

candidates that meet a certain number of disease-drug as-
sociations frequencies. We applied the minimum support
values to test the effect of the frequency of associations on
the percentage of drug candidates recorded in PubChem and

DrugBank.
It was found that the higher the minimum support, the

less the number of rules obtained, and this has an impact on

the number of findings (see Table 6). While the minimum
support was equal to 3, 68 compounds were found in
PubChem and 24 of them were found to be related to

COVID-19 according to the COVID-19 DrugBank. While
the minimum support was equal to 12, only 7 and 4 com-
pounds were found in PubChem and DrugBank, respec-

tively. From Figure 2, it can be seen that when the minimum
support was increased, the percentage of findings tended to
increase; however, the number of drug compounds found
have decreased. Although minimum support equal to 12

obtained higher percentage than minimum support equal
to 3, the number of drug candidates found was fewer.
Therefore, for identifying the more of the COVID-19 drug

candidates, we suggested that the determination of this
minimum support was equal to 3 and identified 24 drug
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candidates. The 24 drug candidates involved 23 unique
SMILES formulas as a standard representation of chemical

structures.
To demonstrate the feasibility and validity of our pro-

posed approach, there were 23 drug candidates in which we

estimated the binding energy by using the drug docking
calculation. The binding energy was used as the evaluation
indicator to judge the binding affinity of drug candidates

against SARS-CoV-2 protein targets. This validation
method was similar to that of previously published studies of
virtual screening of COVID-19 drugs. A prior study con-
ducted a simulated molecular docking experiments with

several natural compounds from propolis extract, and then
observed the higher binding affinity of methyl-
ophiopogonone A, 30-methoxydaidzin, and genistin to two

protein structures of SARS-CoV-2 including main protease
protein and spike protein subunit 2.31 Another study
speculated that a natural compound, 4-gingerol, has good

binding affinity against SARS-CoV-2 main protease by
performing a molecular docking experiment.34 In our study,
the AutoDock Vina runs resulted in the average values of
binding energy from �5.13 to �9.68 kcal/mol to the four

SARS-CoV-2 protein structures viz. 6VW1, 6LXT, 6VXX,
and 6VYB (Table 7). According to the estimated binding
affinity, three drug candidates were further identified with

the lowest average values of binding energy, including
hesperidin (binding energy, �9.68 kcal/mol), rapamycin or
sirolimus (binding energy, �9.55 kcal/mol), and

dexamethasone (binding energy, �9.00 kcal/mol).
From the PubMed searching, a total of 26, 10, and 258

publications were retrieved based on the disease keywords in

the Top-1 cluster coupled with the drug/phytochemical name
of hesperidin, sirolimus, and dexamethasone, respectively.
Among these articles, there have been at least three articles
reported that hesperidin could be used to prevent SARS-

CoV-2 infection.35e37 Moreover, at least two articles
reported that hesperidin has the potential to inhibit the
SARS-CoV-2 virus entry by blocking the binding of the vi-

rus to the ACE2 receptor protein.38,39 One of the 26 articles
showed that hesperidin had better binding affinity than
nelfinavir, chloroquine, and hydroxychloroquine as spike

glycoprotein inhibitors.40 Another study by Utomo et al.
also conducted a docking analysis to elucidate the potential
of hesperidin in binding the SARS-CoV-2 protease, spike

protein, transmembrane serine protease 2, and PD-ACE2
with higher binding affinity compared to several existing
viral drugs such as lopinavir, nafamostat, and comastat.41

These results are consistent with our results of drug

docking in Table 7. A total of six, eight, six, and six
conventional hydrogen bonds found from four SARS-
CoV-2 protein structures, including the RBDeACE2 com-

plex, the fusion core of S2 domain, and the closed state and
open state of spike ectodomain (Figure 4). Hydrogen binding
can provide a stabilization effect and determine the key

interacted residues. Therefore, a high number of hydrogen
bonds that were formed may be associated with the highest
affinity between hesperidin and SARS-CoV-2 protein.

From these searched articles, there are a lack of articles to

report the mechanism of action against SARS-CoV2 protein
among the 10 articles about the COVID-19 treatment with
sirolimus. However, most of these articles point to sirolimus
as an immunosuppressive drug and thus could be as a po-

tential medicine for the treatment of immunocompromised
status in COVID-19 patients.42,43 Our docking results also
confirmed that sirolimus has the second highest affinity

against SARS-CoV-2 spike proteins.
Several publications reported the usage of dexamethasone

to combat COVID-19 with positive results, such as reducing

the death rate of patients with and without mechanical
ventilation,44 having inhibitory activities against COVID-19
proteases,45 regulating ACE2,46,47 and having modest effects
in moderate and severe COVID-19.48 However, some studies

found that the methylprednisolone49 and oral prednisone
have better effects than dexamethasone on recovery time,
intensive care needs, and the level of severity biomarkers.50

Another study did not suggest that dexamethasone be
routinely prescribed for COVID-19 patients after
discharge.51 It is also notable that corticosteroids like

dexamethasone should be carefully used because of the risk
that it carries.45 Nevertheless, our docking results were in
line with the effect of dexamethasone to COVID-19, and
also illustrated the detailed bonding of molecular interaction

in the Appendix (Figures A.1 and A.2). By reviewing these
articles and referring to the drug docking results, we also
demonstrated the validity of disease keywords in the Top-1

cluster and clarified the mechanism of action of the top
three drug candidates.

Furthermore, we utilized clinical trial data to validate our

predicted drugs. We used the listed clinical studies related to
COVID-19, ClinicalTrials.gov (https://clinicaltrials.gov/),
and obtained a total of 8108 entries (August 5, 2022 version).

Then we compared the 23 drugs with those entries, and the
results are listed in Table 8. A total of 21 drugs (91.3% of our
prediction), except gc376 and piperine, have clinical trials. In
Table 8, we present the number of trials, number of trials that

have results and phases as reported by ClinicalTrials.gov.
More detailed information is given in Supplementary file 1.

Also, since there may be concerns about the possibility of

risk of bias in our studies, we employed the following steps to
reduce the risk of bias and enhance the significance of our
findings.

[1] Clustering stage

We have TF-IDF as the features and the employed AHC

to group similar diseases and then identified the associations
between COVID-19 and drugs found in the abstract of the
articles.

[2] Evaluation metrics

We used the cophenetic correlation coefficient to deter-
mine the best performance of the AHC linkage methods.

Furthermore, we used the Davis-Bouldin score to select the
best performance of cluster formation. Both methods are
implemented to reduce bias in our study.

[3] Ranking of potential drugs

We performed binding energy calculations to rank the 23
potential drugs. The calculation considered four protein

http://ClinicalTrials.gov
https://clinicaltrials.gov/
http://ClinicalTrials.gov


Prevention of COVID-19 from the biomedical literature 799
domain structures of SARS-CoV-2 and used the average
binding energy value as the basis for ranking.

Limitations and future work

We only used PubMed as the source of scientific literature

data. There are other databases that contain scientific liter-
ature, such as Medline, TOXLINE, Embase, BIOSIS Cita-
tion Index (Web of Science), Biological Sciences (ProQuest),

and SciFinder-n. Moreover, we used AHC methods, as well
as the partitional clustering method is another approach that
can be used. We plan to include other biomedical literature
databases while evaluating various clustering methods for

optimal results. In addition, we will also develop a web-based
application that implements our proposed method as a
portal of information in the discovery of drug candidates for

COVID-19.

Conclusion

In this study, we applied a novel approach involving
BioBERT mining, the usage of agglomerative hierarchical
clustering, and utilizing the PubChem database and

DrugBank to identify potential COVID-19 drug candi-
dates through disease-drug association rules. The use of
the clustering method in mining has been shown to have a

positive impact on the discovery of COVID-19 drug can-
didates. Twenty-four out of sixty-eight drug compounds
are confirmed COVID-19 drug candidates according to

DrugBank. Finally, we found that hesperidin has the
lowest binding energy with the spike protein of the
COVID-19 disease. The results have also been confirmed

by at least three recent publications. We believe this
knowledge base will help the research community explore
the existing drugs and biomedical entities for coronavirus-
related diseases and find effective treatments for COVID-

19.
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