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Abstract
3D volume imaging using iDISCO+ was applied to observe the spatial and temporal pro-

gression of tau pathology in deep structures of the brain of a mouse model that recapitulates

the earliest stages of Alzheimer’s disease (AD). Tau pathology was compared at four time-

points, up to 34 months as it spread through the hippocampal formation and out into the

neocortex along an anatomically connected route. Tau pathology was associated with sig-

nificant gliosis. No evidence for uptake and accumulation of tau by glia was observed. Neu-

ronal cells did appear to have internalized tau, including in extrahippocampal areas as a

small proportion of cells that had accumulated human tau protein did not express detectible

levels of human tau mRNA. At the oldest timepoint, mature tau pathology in the entorhinal

cortex (EC) was associated with significant cell loss. As in human AD, mature tau pathology

in the EC and the presence of tau pathology in the neocortex correlated with cognitive

impairment. 3D volume imaging is an ideal technique to easily monitor the spread of pathol-

ogy over time in models of disease progression.

Introduction
A combination of brain clearing and immunolabeling has recently been used to visualize amy-
loid and tau lesions in 3D in blocks of postmortem tissue from late stage human AD brain [1–
3]. Additionally, amyloid deposits have been observed in intact mouse brain. However, the 3D
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visualization of tau pathology and the rigorous examination of how pathology distribution
changes as the disease progresses has not been reported. Extracellular amyloid-β (Aβ) plaques
and intraneuronal neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau are
the two major pathological hallmarks of AD [4]. The accumulation of abnormal (argyrophilic)
tau starts in the transentorhinal cortex in the earliest stages of AD and spreads through the lim-
bic and association cortices via the trisynaptic circuit in a precise and defined manner [4–6].
To create a mouse model that recapitulates the temporal and spatial spread of pathological tau
along anatomically connected networks, we [7, 8] and others [9] have generated a transgenic
mouse model (line EC-Tau) that differentially expresses an aggregating form of human tau at
high levels in the hippocampal formation.

Traditional immunohistochemistry routinely provides a 2D picture of pathology with a lim-
ited depth of field, while 3D volume imaging of transparent brain enables the visualization of
deep structures of the brain, which is very useful for studying changes in synaptic architecture
and neuronal circuitry in the whole brain during disease progression [3]. Several tissue-clearing
protocols have recently been published [10–18], which greatly accelerate the 3D visualization
of the deep structures of large tissues or organs. iDISCO+, an improved version of iDISCO, is a
simple and rapid method to immunolabel large tissue samples such as a whole mouse brain for
volume imaging [18, 19]. In this study, we used the iDISCO+ method to investigate the tempo-
ral and spatial distribution of tau pathology in EC-Tau mice.

Previous studies characterizing the pathology, degeneration or cognitive behavior of the
EC-Tau line have been limited to mice at less than 24 months of age. Mice at this age are at a
relatively early stage of disease (Braak stage I-II), with the pathology restricted to the hippo-
campal formation, little extrahippocampal pathology and no neocortical pathology. Significant
neuronal loss has been shown in the EC-II and parasubiculum in mice at 24 months of age [8],
but cognitive function has only been tested in the EC-Tau line in mice up to 16 months of age
[9, 20]. At this age they were reported to be cognitively normal. In this study, we not only show
in 3D the areas that tau propagates to outside of the hippocampus, but also we identify areas
with overt pathology such as the amygdala that had not been previously identified. Addition-
ally, we show the intimate association with gliosis, pathology and neuronal loss, and impor-
tantly, we show the first evidence of memory deficit in this line.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was
approved by the Committee on the Ethics of Animal Care and Use of the Columbia University
(Protocol# AC-AAAN9950).

Animals
The neuropsin-tTA “activator” line was crossed with the tetracycline-inducible TauP301L
“responder” line (line rTg4510) to generate a tau transgenic mouse line with restricted expres-
sion of human full-length tauP301L (the EC-Tau line) [7, 21]. F1 offspring were used as experi-
mental animals. All animals are maintained in the animal facility at the Columbia University
Medical Center on a 12 h light/dark cycle with free access to food and water.

3D Visualization of Tau Pathology Associated with Neuronal Loss and Memory Deficit in Aged Tau Mice

PLOS ONE | DOI:10.1371/journal.pone.0159463 July 28, 2016 2 / 20

Aging AG050425 (to KED and SAH) [https://
projectreporter.nih.gov/project_info_details.cfm?aid=
9118863&icde=30215735]. The funders had no role
in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

https://projectreporter.nih.gov/project_info_details.cfm?aid=9118863&icde=30215735
https://projectreporter.nih.gov/project_info_details.cfm?aid=9118863&icde=30215735
https://projectreporter.nih.gov/project_info_details.cfm?aid=9118863&icde=30215735


Whole mount imaging using immunolabeling-enabled 3D imaging of
solvent-cleared organs (iDISCO+)
Mice were anesthetized with ketamine (Henry Schein Animal Health, Dublin, OH, USA) and
xylazine (Akorn, Decatur, IL, USA) and transcardially perfused with phosphate-buffered saline
(PBS) (Fisher Scientific, Fair Lawn, New Jersey, USA) and then 4% paraformaldehyde (PFA)
(Electron Microscopy Sciences, Hatfield, PA, USA). Mouse brains were harvested and fixed in
4% PFA in PBS at 4°C overnight. Mouse brain hemispheres were dehydrated, bleached, rehy-
drated and blocked as described in the iDISCO+ method [18, 19] (http://idisco.info/idisco-
protocol/). Mouse brain hemispheres (EC-Tau: 8 mo, 1 male; 14 mo, 2 males; 24 mo, 2 females;
34 mo, 1 male; Neuropsin-tTA: 33 mo, 1 female; Tg4510: 16 mo, 1 male) were immunolabeled
with Alexa Fluor 647-labeled CP27 antibody against human tau for 4.5 days at 37°C, then they
were cleared with dibenzyl ether as previously described [18, 19]. The transparent mouse brain
hemispheres were imaged using light sheet microscopy (Ultramicroscope II, LaVision Biotec)
equipped with a sCMOS camera (Andor Neo) and a 23/0.5 objective lens equipped with a 6
mm working distance dipping cap. Z-stack images taken from light sheet microscopy were sub-
jected to 3D rendering via Imaris 8.0 software (Bitplane). 3D animations were used to generate
the movie using iMovie for Mac.

2D Immunohistochemistry
Mouse brains were harvested and drop-fixed in 4% PFA at 4°C overnight, followed by incuba-
tion in 30% sucrose (Sigma-Aldrich, Saint Louis, MO, USA). OCT-embedded brains were sec-
tioned (35 μm) throughout on a horizontal plane with a cryostat (Leica CM3050S, Leica
Biosystems, Buffalo Grove, IL, USA), and collected in individual wells. Every sixth free-floating
sections (n = 12 per EC-Tau mouse, 2 EC-Tau mice at each age, 1 male and 1 female) starting
from Bregma -2.04 mm to Bregma -4.88 mm (Paxinos G, mouse brain atlas, 2001) were
selected and stained with mouse anti-tau MC1 antibody (1:1000), which specifically detects an
abnormal conformational epitope of human tau that is associated with neurofibrillary tangle
(NFT) formation [22]. Similarly, every 9th free-floating sections (n = 10 per mouse, 4 male and
1 female nontransgenic controls, 5 male EC-Tau mice at ~34 months of age) were selected and
stained with mouse anti-NeuN antibody (EMDMillipore, Billerica, MA, USA; 1:1000), which
is a neuronal marker. In addition, representative free-floating sections (n = 3 per mouse) from
the control and EC-Tau mice at different ages (n = 4 mice per group at each age, 2 males and 2
females) were stained with mouse MC1 (1:1000), rabbit anti-IBA-1 (a microglial marker)
(Wako, Richmond, VA, USA; 1:500), rabbit anti-CD68 (an activated microglial marker)
(Abcam, Cambridge, MA, USA; 1:500), and rabbit anti-GFAP (an astrocyte marker) (Sigma-
Aldrich; 1:8000), respectively. Immunolabeling was performed as previously described [7]. To
demonstrate the distribution of MC1-positive human tau protein, images of 12 intact sections
from each mouse were captured under 4x objective and stitched together using Photoshop CS5
(Adobe Systems, San Jose, CA, USA). The missing places in each stitched image were filled out
manually.

Fluorescent in situ hybridization (FISH) and coimmunofluorescence
(Immuno-FISH)
Mice at 30 months of age (EC-Tau: 1 male and 1 female; nontransgenic control: 1 female;
Tg4510 without tTA: 1 male) were anesthetized with ketamine and xylazine and transcardially
perfused with nuclease-free PBS. Mouse brains were harvested and drop-fixed in 4% PFA in
nuclease-free PBS at 4°C overnight, followed by incubation in 30% sucrose in nuclease-free
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PBS for cryoprotection. The brains were embedded in OCT compound and sectioned horizon-
tally (10 μm thick) with a cryostat. Frozen sections were mounted on pre-cleaned Superfrost-
Plus microscope slides (Fisher Scientific) and stored at -80°C.

Riboprobe templates corresponding to the 3’ untranslated region of humanMAPT
(NM_016835; nucleotides 2773–3602) were generated by RT-PCR from human brain tissue.
XbaI and XhoI sites were added (with three extra nucleotides to improve endonuclease effi-
ciency) to the 5’ ends of the primers (5’-ACGTCTAGA CAGTGATGGGAGTAAGAG-3’ and
5’-AGACTCGAGCTGGTTAGCCCTAAAGTC-3’). The amplified sequence was subcloned
into Bluescript vector (pBluescript SK-; Stratagene, La Jolla, CA, USA), and the PCR product
was purified and used for digoxigenin (DIG)-labeled cRNA probe generation [8]. DIG-labeled
cRNA probes were used for FISH as previously described [23]. FISH with mouse anti-human
Tau13 (BioLegend, San Diego, CA, USA; 1:1000) co-immunofluorescence was performed on
10-μm-thick, PFA-fixed frozen sections as previously described [8, 24]. The DIG probe was
detected using sheep anti-DIG-POD Fab fragments (Roche, Indianapolis, IN, USA), followed
by amplification using Alexa Fluor488 tyramide (Life Technologies, Grand Island, NY, USA).
The Tau13 antibody was detected using preadsorbed biotin-labeled goat anti-mouse IgG1
(Abcam), followed by incubation with Alexa Fluor 647 streptavidin (Life Technologies). The
sections were incubated with 0.3% Sudan black (Sigma-Aldrich) in 70% ethanol for 6 min to
quench autofluorescence of lipofuscin and rinsed quickly in 70% ethanol. Following three
washes with 0.02% Tween-20 (Sigma-Aldrich) in PBS [25], the sections were mounted with
SlowFade gold anti-fade reagent (Molecular Probes, Eugene, OR, USA). Immuno-FISH images
were taken using confocal laser scanning microscopy via Z-stack (LSM700, Zeiss, Thornwood,
NY, USA).

Immunofluorescence
Free-floating brain sections were prepared in the same way as for immunohistochemistry. Sec-
tions were blocked in PBST containing 5% normal goat serum for 30 min at room temperature,
and incubated with both mouse anti-tau CP27 (a human specific tau antibody) (1:1000) and
rabbit anti-MAP2 (a specific neuronal marker) (Abcam; 1:1000), rabbit anti-IBA-1 (1:500) or
rabbit anti-GFAP (1:5000) antibodies in PBST containing 5% normal goat serum at 4°C over-
night. For IBA-1 labeling, 10 μg/ml rat anti-mouse FcR block (BD Biosciences) was added at
the block stage. After three washes with PBST, sections were incubated with Alexa Fluor 488
goat anti-mouse and Alexa Fluor 594 goat anti-rabbit IgG (Life Technologies; 1:500) for 1 h at
room temperature on a rotator. Following three washes with PBS, autofluorescence in sections
were quenched with 0.3% Sudan black in 70% ethanol (Decon Laboratories, King of Prussia,
PA, USA) for 6 min at room temperature. The sections were rinsed with 70% ethanol and
washed three times with 0.02% Tween-20 in PBS [25]. The nuclei were stained with 5 μg/ml
Hoechst33342 (Sigma-Aldrich) in PBST for 10 min at room temperature. Following three
washes with PBS, sections were mounted on slides using SlowFade gold anti-fade reagent and
imaged using confocal laser scanning microscopy via Z-stack.

Neuronal counts
A semiquantitative count of NeuN+ neurons in the EC-II, EC-III/IV, pre-/para-subiculum
(PPS), subiculum (Sub), CA1, and dentate gyrus (DG) was performed in the above selected sec-
tions from 5 nontransgenic controls and 5 EC-Tau mice. For each mouse, a total of 10 NeuN
stained horizontal sections starting from Bregma -2.04 mm, spaced at 300 μm, were included
for automated cell counting (http://imagej.net/Particle_Analysis) using the ImageJ software
(version 1.48, US National Institutes of Health, Bethesda, Maryland, USA).
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Novel object recognition (NOR) test
The NOR task was performed by an experimenter blind to the treatments of the animals as pre-
viously described [26]. The day prior to training, mice (n = 5 male and 3 femalenontransgenic
controls, and 6 male and 2 female EC-Tau mice at 30+ months of age) were habituated to exper-
imental apparatus consisting of a white rectangular open field (60 cm x 50 cm x 26 cm) for 5
min in the absence of any objects. On the second day, mice were placed in the experimental
apparatus in the presence of two identical rectangle objects and allowed to explore them for 10
min. After a retention interval of 24 h, mice were placed again in the apparatus, where one of
the rectangle objects was replaced by a novel circle object. In both training and test tasks, objects
and the apparatus were rinsed with ethanol between trials and before the first trial. Exploration
of the objects was defined as the mice facing and sniffing the objects within 2-cm distance and/
or touching them. All training and testing sessions were recorded using automated, ANY-maze
video tracking software. The ability of the mouse to recognize the novel object was determined
by dividing the mean time exploring the novel object by the mean of the total time exploring the
novel and familiar objects during the test session. This value was multiplied by 100 to obtain a
percentage preference for the novel object (Tnovel/[Tnovel + Tfamiliar] × 100).

Statistical analysis
Prism 4 software (GraphPad, San Diego, CA, USA) was used to analyze the data. All the data
are expressed as mean ± the standard error of the mean (SEM). Student’s t-test was used to
analyze the neuronal counting. The non-parametric Mann-Whitney U test was used to com-
pare the data of gliosis and novel object recognition test. A value of p< 0.05 was considered
statistically significant.

Results

Visualization of human tau distribution in EC-Tau mice in 3D
At 8 months of age, 3D imaging of cleared EC-Tau mouse brain hemispheres revealed that
most of the CP27 labeled human tau was in the form of nongranular axonal staining in the EC
(layer II and III), parasubiculum (PaS), and the middle molecular layer (MML) of the dentate
gyrus (DG). At this age, very few neurons showed somatodendritic granular human tau and
they were restricted to the MEC and PaS (Fig 1 and S1 Movie for 3D representation). By 14
months of age, more neurons in the MEC and PaS had accumulated somatodendritic tau, and
very few CP27 immunoreactive neurons were apparent in the granule cell layer (GCL) of the
DG, or the pyramidal layer of the CA1 (Fig 1 and S2 Movie). By 25 months of age, human tau
was mostly somatodendritic and it was observed in the EC, PaS, PrS, Sub, hippocampus (HP),
the GCL of DG, anterior cingulate cortex (ACC), perirhinal cortex (Prh), and piriform cortex
(Pir) (Fig 1 and S3 Movie). By 34 months of age, somatodendritic human tau was observed in
neurons in the neocortical regions and olfactory system including dysgranular insular cortex
(DI), agranular insular cortex (AI), piriform cortex (Pir), and anterior olfactory area (AO)
(Fig 1 and S4 Movie). There was no detectable CP27 tau staining in control mice (the
responder line Tg4510 without tTA) (S5 Movie) or the activator line Neuropsin-tTA without
Tg4510) (S6 Movie). Interestingly, very strong somatodendritic human tau immunoreactivity
was observed in the amygdala (AM), especially in the posteromedial cortical amygdaloid area
of 34-mo-old EC-Tau mice in the 3D images (Fig 1). Granular tau aggregation in the amygdala
was scarcely seen in the 3D images at 8 or 14 months of age, but some was observed by 25
months of age. The temporal and spatial distribution of tau pathology seems to follow the ana-
tomical connections between EC and other brain regions including hippocampus (red arrows),
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Fig 1. Visualization of tau pathology in EC-Taumice in 3D. Hemi brains from 8, 14, 25 and 34-mo-old
EC-Tau mice was stained with Alexa647-labeled CP27 antibody and cleared using iDISCO+method. The
transparent mouse brains were imaged using light sheet microscopy, and Z-stack images were subjected to
3D rendering process using Imaris. (a) Representative snapshots of 3D images of tau staining in EC-Tau
mice. Tau immunoreactivity is shown in white. The orientation of the hemi brain was labeled as A, anterior; P,
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parahippocampal areas (green arrows), neocortex (magenta arrows), olfactory system (yellow
arrows), and amygdala (blue arrows) (Fig 2).

Confirmation of human tau distribution in EC-Tau mice in 2D
To confirm the distribution of tau pathology revealed by 3D volume imaging we performed
immunohistochemistry on 8, 14, 24, and 34-month-old EC-Tau mice (12 sections at each age)
using the pathological human tau antibody MC1. Similar to 3D images with CP27 antibody, at
8 months of age, most MC1 immunoreactive (MC1+) tau was nongranular and restricted to
neurites (axons) in superficial layers II and III of the EC, PaS, and axon terminals in the MML
of DG, with very little tau staining in the somatodendritic compartments (Fig 3a and 3e) [7].
By 14 months of age, axonal MC1+ tau was reduced, but more tau was present in cell bodies in
the EC-II and PaS. A few MC1+ cell bodies were observed in the GCL of the DG and the pyra-
midal layer of CA1 (Fig 3b and 3e) indicating that human tau had started to spread from the
EC to the DG and CA1 via the performant path [7]. By 24 months of age, axonal MC1+ tau was
dramatically reduced, and much more human tau protein had accumulated in cell bodies in
the EC and hippocampal formation (DG, CA1, CA2/3, Sub and PrS) as well as in a few neurons
in the perirhinal cortex (Prh) (Fig 3c and 3e). By 34 months of age, axonal MC1+ tau was
almost undetectable and the protein had accumulated in cell bodies throughout the hippocam-
pal formation and the parahippocampal regions including the Prh (red rectangles in Fig 3d and
3e) as well as other brain areas such as AO (S1 Fig) and AM (blue oval in Fig 3d and 3e). To
confirm that tau pathology was present in the amygdala, MC1 and CP27 antibodies were used
to label sections by traditional 2D immunohistochemistry. The results showed that the density

posterior; L, lateral; M, medial; D, dorsal; V, ventral. (b) Different brain regions with tau pathology are
indicated by superimposed artificial colors. The regions with no or sparse tau immunoreactivity are not
colored. HP, hippocampus; DG, dentate gyrus; PaS, parasubiculum; PrS, presubiculum; MEC, medial
entorhinal cortex; LEC, lateral entorhinal cortex; Prh, perirhinal cortex; DI, dysgranular insular cortex; AI,
agranular insular cortex; Pir, piriform cortex; AO, anterior olfactory area; and AM, amygdala. Scale bar = 1
mm. Movies are provided in supplemental material. (c) Representative horizontal views of tau
immunoreactivity in the MEC, DG and AM. I-IV, MEC layers; OML, outer molecular layer; MML, middle
molecular layer; GCL, granule cell layer; and hilus of the DG; PMCo, posteromedial cortical amygdaloid area
of AM. Scale bar = 150 μm.

doi:10.1371/journal.pone.0159463.g001

Fig 2. Schematic representation of the anatomical connections between entorhinal cortex and other brain regions
in the mouse brain. The connections between EC and hippocampal regions (DG, CA1, CA2/3) are indicated by red arrows;
EC and parahippocampal regions (Sub, subiculum; PaS; PrS) by green arrows; EC and neocortical regions (Prh, DI, AI) by
magenta arrows; EC and olfactory system (Pir and AO) by yellow arrows; AM and other brain regions by blue arrows. The
temporal and spatial distribution of tau pathology found in EC-Tau mice seems to follow the anatomical connections above.

doi:10.1371/journal.pone.0159463.g002
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Fig 3. The spatial and temporal distribution of human tau in EC-Taumice in 2D. Every sixth free-floating mouse brain section
(35 μm) (sections 1, 6, 11, . . ., 56 per mouse, 2 mice at each age) starting from Bregma -2.04 mm to Bregma -4.88 mm was selected
from 8-, 14-, 24- and 34-mo-old EC-Tau mice (a-d), stained with human specific pathological tau antibody (MC1) and developed using
DAB as chromagen as described in the Materials and Methods. Tau immunoreactivity was indicated as brown staining. Images taken
from each section were stitched together using Photoshop CS and presented as shown in the figure for comparison. The perirhinal
cortex (Prh, highlighted in the red rectangles) and amygdala (AM, highlighted in the blue oval) of EC-tau mice had abundant MC1+ tau
staining at 34-months of age, but not at younger ages. Scale bar = 1 mm. (e) Representative high magnification images of MC1 tau
staining in MEC, Prh and AM. MEC, medial entorhinal cortex; Prh, perirhinal cortex; AM, amygdala. Scale bar = 50 μm.

doi:10.1371/journal.pone.0159463.g003
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and intensity of MC1 and CP27 somatodendritic staining in this region had increased dramati-
cally in mice aged 24 and 34 months compared to younger EC-Tau mice at 8 to 14 months of
age (Fig 4). MC1 or CP27 labeled tau was negligible in age and gender-matched nontransgenic
control mice (data not shown). A qualitative assessment of the density and cellular distribution
of human tau in the EC-tau line at different time points, and in different brain regions is
shown in Table 1.

Fig 4. Tau pathology is observed in the amygdala in old EC-Taumice.Mouse brain sections (n = 2 sections per animal, 3 animals per age) covering
the amygdala area were stained with MC1 and CP27 anti-human tau antibodies as described in Materials and Methods to confirm the presence of human
tau in this region. Scale bar = 100 μm.

doi:10.1371/journal.pone.0159463.g004

Table 1. Summary of the temporal and spatial distribution of tau pathology in EC-Taumice.

Regions 8 mo 14 mo 24 mo 34 mo

EC axon +++ ++ + -

PaS axon +++ ++ + -

EC soma -/+ + ++ +++

PaS soma -/+ + ++ +++

DG soma - + ++ +++

CA soma - + ++ +++

Sub soma - + ++ +++

PrS soma - + ++ +++

Prh soma - - + ++

DI soma - - -/+ ++

AI soma - - -/+ ++

Pir soma - - + ++

AO soma - - -/+ ++

AM soma -/+ -/+ + +++

Note: EC = entorhinal cortex; PaS = parasubiculum; DG = dentate gyrus; CA = hippocampus;

Sub = subiculum; PrS = presubiculum; Prh = perirhinal cortex; DI = dysgranular insular cortex; AI = agranular

insular cortex; Pir = piriform cortex; AO = anterior olfactory area; AM = amygdala. -, none; -/+, very few; +,

low, ++, medium; +++, high.

doi:10.1371/journal.pone.0159463.t001
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To investigate whether tau protein accumulation in neurons of the hippocampal formation
and other brain regions was due to human tau expression, we employed immuno-FISH to label
human tau protein (immunoreactive with anti-human tau antibody Tau13) and human tau
mRNA in the same neurons. The results confirmed previous reports that the great majority of
human tau immunoreactive cells in the GCL of the EC-Tau mouse were human tau mRNA
negative [8], and demonstrated that at least some of human tau positive neurons throughout
the EC, HP, Prh, and AM (Fig 5), as well as DI, AI, Pir, and AO (S2 Fig) were human tau
mRNA negative supporting the idea that pathological tau can spread non cell-autonomously
between brain regions.

Progressive gliosis in old EC-Tau mice
The activation status of microglia was assessed using antibodies against microglial/macrophage
ionized calcium binding adaptor molecule 1 (IBA-1) or CD68; astrocyte activation status was

Fig 5. Non cell-autonomousmechanismsmay contribute to tau pathology progression outside of the hippocampal formation.
Frozen mouse brain sections (10 μm) were subjected to Immuno-FISH as described in the Materials andMethods. Human tau mRNAwas
labeled with a specific RNA probe (green), and human tau protein was visualized using Tau13 antibody (magenta). The nuclei were
counterstained with Hoechst 33342. Z-stack images were taken using an LSM700 confocal microscope. Some cells were identified (white
circles or ovals) in most brain regions along the entorhinal cortex-hippocampus circuit, parahippocampal regions and the cortex that were
human tau protein positive but human tau mRNA negative. MEC, medial entorhinal cortex; LEC, lateral entorhinal cortex; DG, dentate gyrus;
CA, Cornu ammonis; PaS, parasubiculum; PrS, presubiculum; Sub, subiculum; Prh, perirhinal cortex; AM, amygdala. Scale bar = 40 μm.

doi:10.1371/journal.pone.0159463.g005
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assessed using an antibody against glial fibrillary acidic protein (GFAP) (Fig 6a). Immunohis-
tochemistry showed dramatic changes in microglial morphology from quiescent ramified
microglia to activated amoeboid microglia in EC-Tau mice starting at 14 months of age. The
distribution of IBA-1+ and CD68+ microglia was co-incident with the staining pattern of MC1,
i.e. it was more prominent in the MEC-II/III (red ovals in Fig 6a). Reactive astrocytes with
extended processes and increased synthesis of GFAP protein were also found in the MEC-II/III
in EC-Tau mice by 14 months of age (red ovals in Fig 6a). Further, the quantitation of the num-
ber of glial markers in the MEC showed that IBA+ cells were significantly increased in 24 and
34-mo EC-Tau mice (P< 0.05), while both CD68+ cells and GFAP+ cells were significantly
increased in 14, 24 and 34-mo EC-Tau mice compared to age-matched controls (P< 0.01)
(Figs 6b–6d). Interestingly, activated microglia and reactive astrocytes were found to be associ-
ated with tau pathology in the AM (S3 Fig). However, there was no obvious response of micro-
glia or astrocytes in other brain regions compared to age-matched nontransgenic controls
(data not shown).

To investigate whether activated microglia and reactive astrocytes accumulate human tau
protein, tissues were labeled with fluorescently tagged MC1 antibody, MAP2 antibody (to iden-
tify neurons), IBA-1 (to identify microglia), or GFAP (to identify astrocytes). We found that
human tau protein was colocalized with MAP2, but not with IBA-1 or GFAP in the MEC of
30-mo-old EC-Tau mice using the z-stack of laser scanning confocal microscopy (Fig 6e), sug-
gesting that human tau accumulates in neurons, rather than microglia or astrocytes.

Neuronal loss and recognition memory deficits in old EC-Tau mice
Previously we only detected significant neuronal loss in the EC-II and PaS in EC-Tau mice at
24, but not at 21 months of age [8]. In this study, we investigated whether neuronal loss wors-
ened with age. By 34 months of age, the number of NeuN+ neurons in EC-Tau mice was signif-
icantly reduced in the EC-II and PaS/PrS (PPS) compared to age- and gender-matched control
mice, and it was also significantly reduced in the EC-III/IV (Fig 7a) (P< 0.01), indicating pro-
gressive neuronal loss as pathology worsens and spreads through the brain.

NFT load and neuronal loss correlate well with cognitive decline in patients with AD [27–
30]. Negligible cognitive deficits were found in EC-Tau mice by 16 months of age in previous
reports [9, 20]. By 30 months of age, EC-Tau mice were found to spend much less time with
the novel object 24 h after the training, i.e. there are a significant difference in the percent of
exploration area in NOR in 30-month-old EC-Tau mice compared to age and gender-matched
nontransgenic controls (p< 0.05) (Fig 7b), suggesting that long-term object recognition mem-
ory was impaired in old EC-Tau mice.

Discussion
3D volume imaging is an ideal application to explore the spatial distribution of tau pathology
in the brain and how it changes with time. Using the iDISCO+ technique in a mouse model
with progressive tau pathology, we demonstrate that overt pathological changes generated in
the EC and PaS affected new regions of the hippocampal formation and AM by 24 months of
age, and the parahippocampal regions including the Prh and other associated neocortical
regions as well as the AM by 34 months of age. These data were confirmed using different anti-
tau antibodies, and traditional 2D immunolabeling. Using 3D volume imaging we found sev-
eral areas affected by tau pathology (DI, AI, Pir, AO and AM) in older EC-Tau mice that had
not been previously identified by 2D immunostaining. Tau pathology and atrophy has been
shown in the AM of human AD patients [6, 31, 32] and the Pir, AO and AM have been pro-
posed to play very important roles in olfaction, emotion and memory in humans. This
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Fig 6. Progressive gliosis is intimately associated with tau pathology in EC-Taumice. (a) Free-floating
sections were incubated with MC1, IBA-1, CD68 or GFAP antibodies. IBA-1+ and CD68+ microglia and
GFAP+ astrocytes were found to be recruited to the areas with robust MC1+ tau (brown staining inside red
ovals). The rightest column of panel a shows the representative high magnification images of MC1, IBA-1,
CD68 and GFAP staining in EC-Tau mouse at 34 months of age. MEC, medial entorhinal cortex. Scale
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pathology could explain the olfactory deficits and psychiatric symptoms seen in patients with
early AD [6, 31–34].

The tet-O rTg4510 responder line has been reported to be “leaky” in the absence of tTA [9,
35] and the neuropsin-tTA activator line has been shown to drive expression of responder
transgenes outside of the hippocampal formation [36, 37]. Although our unactivated tet-O
rTg4510 mice had negligible somatodendritic tau pathology detected by IHC, even at the oldest
timepoint, some cells did express low levels of human tau as determined by FISH. However, in
30-mo-old EC-Tau mice, we observed cells that were human tau protein+/mRNA- in the Prh,
associated neocortical regions (DI, AI, Pir and AO), and in the AM suggesting that some cell to
cell spread of tau pathology had occurred in this region. The widespread distribution and abun-
dance of tau pathology in the oldest mice suggests that tau pathology was ramped up as it
moved beyond the hippocampal formation, most likely by the templating of pathological tau to
human (or mouse) tau expressed at low levels in extrahippocampal neurons. Given that tau
expression in humans is widespread, pathology originating in the transentorhinal cortex would
be expected to spread through the AD brain in a similar way.

Between 8–14 months of age, we found that activated microglia and reactive astrocytes
were enriched in regions of the EC that had developed overt tau pathology. This is consistent
with previous findings that glial activation and neuroinflammation were correlated with tau
pathology in tau transgenic rodent models and in AD patients [38–40]. A link between tau
pathology and the activation of microglia and astrocytes has been reported in mice overex-
pressing human mutant tau P301S [41, 42], tau R406W [43], tau P301L [8, 44] and disease-
modified, truncated tau protein [45, 46]. Although tau inclusions have been found in micro-
glia, astrocytes and oligodendrocytes in vitro and/or in vivo [8, 40, 47–52], we did not find any
MC1+ tau inclusions in microglia in the EC-tau line at any age tested. This inconsistency
between our data and data from other groups might be due to different detecting methods
used by us and others. For example, we blocked all sections with rat anti-mouse FcR block to
prevent nonspecific binding of Fc antibody fragments to Fc receptors that are expressed on
the surfaces of microglial cells. Other groups did not indicate the use of FcR block in their
papers. Also, we used the laser scanning confocal microscope to very carefully look at the colo-
calization of tau with glial markers in individual slices from z-stack images, whereas other
groups did not, or presented the images as a maximum projection of all the slices from the z-
stack images. In addition, we used 0.3% Sudan black to quench autofluorescence in the brain
sections which can easily lead to misinterpretation of fluorescent images, whereas other
groups did not indicate the use of quenching methods. We did observe a few astrocytes that
appeared to contain human MC1+ tau, similar to what has been reported previously for this
line [8]. In general, almost all of the tau inclusions were found in neurons. We conclude that
the uptake of pathological tau protein by microglia and/or astrocytes is unlikely to be the
major mechanism underlying glia-induced neuroinflammation and the spread of pathological
tau in the brain, at least in the EC-tau mouse model. Interestingly, we found that microglia
and astrocytes already showed signs of activation by 14 months of age in the EC-tau line,

bar = 100 μm. (b-d) The quantitation of the number of IBA+ cells (b), CD68+ cells (c), and GFAP+ cells (d) in
the MEC of EC-Tau mice (n = 4 animals) and age-matched controls (n = 4 animals). All the data are
expressed as mean ± SEM. *P < 0.05, **P < 0.01 vs. control (non-parametric Mann-Whitney U test). (e) The
colocalization of pathological tau (MC1+, green) with neurons (MAP2+, red), microglia (IBA-1+, red) and
astrocytes (GFAP+, red) was analyzed in 30-mo-old EC-Tau mice using immunofluorescence. The nuclei
were counterstained with Hoechst 33342. High magnification Z-stack images showed that the MC1+ tau in
the MEC was found to be colocalized with MAP2+ neurons (arrows), but not with IBA-1+ microglia or GFAP+

astrocytes. Scale bar = 40 μm.

doi:10.1371/journal.pone.0159463.g006
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Fig 7. Neuronal loss and recognition memory deficits are observed in old EC-Taumice. (a) Neuronal
loss in old EC-Tau mice. Neurons were stained with NeuN by immunohistochemistry and the number of
neurons in different areas of the brain was estimated by a semiquantitative analysis as described in the
materials and methods. Significant neuronal loss was detected at 34 months of age in EC-II, EC-III/IV and
PPS (n = 5 animals) compared to age matched controls (n = 5 animals). PPS, parasubiculum/presubiculum;
Sub, subiculum; CA1, Cornu ammonis 1; DG, dentate gyrus. *p < 0.05, **p < 0.01 vs. control (Student’s t-
test). (b) EC-Tau mice (n = 8 at 30 mo) and littermate controls (n = 8 at 30 mo) were tested in novel object
recognition (NOR) as described in the materials and methods. **p < 0.01 vs. control (non-parametric Mann-
WhitneyU test).

doi:10.1371/journal.pone.0159463.g007
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which precedes the time point when tau pathology has matured into thioflavin S positive tan-
gles, and neuronal loss is apparent (data not shown). This is consistent with previously pub-
lished data that showed that prominent microglial activation appears prior to tangle
formation [42]. Microglial activation has recently been suggested to drive tau pathology and
contribute to the spread of pathological human wild-type tau in the brain [53] suggesting that
neuroinflammation is intimately linked with early cellular events resulting from, or predispos-
ing to tau pathology.

In human AD, NFTs are associated with neuronal loss and cognitive dysfunction [4, 54].
We have previously observed significant neuronal loss at 24 months of age in the EC-II and
PaS of EC-Tau mice compared to control mice [8]. In this study, the number of neurons in
EC-II and PaS was further reduced in 34-month-old EC-Tau mice, compared to control mice.
Additional, significant neuronal loss was also detected in the EC-III/IV and PrS in 34-month-
old EC-Tau mice, indicating that neurons may die first at the brain areas with predominant
expression of human tau transgene (i.e. EC-II and PaS), followed by the neighboring regions of
EC-III/IV and PrS following the spread of pathological tau protein. We did not detect signifi-
cant neuronal loss in hippocampal or cortical regions even at 34 months which might reflect
the paucity of overtly fibillar (thioflavin S positive) tau accumulated in hippocampal neurons.
Despite the lack of overt cell loss, synapse loss and altered neuronal activity has been reported
in the hippocampus even at considerably earlier ages [8, 9, 20].

Memory dysfunction, especially disruptions of the episodic memory system are among the
earliest signs and symptoms of AD, and the most disturbing for patients with AD [54–56].
Episodic memory consists of spatial memory and nonspatial recognition memory. Spatial
memory mainly relies on the dominant role of the hippocampus, while recognition memory is
mainly contributed by regions such as the MEC, LEC and Prh [57–61]. Using the NOR test,
we observed that compared to control mice, the EC-Tau mice explored the novel object for
less time 24 h after the training, suggesting that long-term object recognition memory was
impaired in old EC-Tau mice. The impairment in object recognition memory is consistent
with the abundant tau pathology seen in the LEC and Prh, and the significant neuronal loss in
the EC of the oldest EC-Tau mice. Previous studies on tau mouse models with widespread
expression of human mutant or wild-type tau in the brain have shown significant cognitive
deficits [35, 42, 62–65], however, EC-Tau mice at ages up to 16 months were not cognitively
impaired relative to their littermate controls [9, 20]. The authors point out that it is possible
that the levels of functionally relevant abnormal tau assemblies were simply not high enough
in EC-Tau mice to cause significant behavioral impairments [9]. Extensive aggregation of tau
in EC, hippocampus, and especially extrahippocampal regions may be required to cause cog-
nitive decline [29].

Conclusions
Taken together, we have demonstrated the power of 3D volume imaging using iDISCO+ to
observe pathology in deep structures of the mouse brain which has greatly facilitated the track-
ing of pathology progression through the brain’s anatomical networks. Our findings demon-
strate the temporal and spatial relationship between areas as they become affected by
pathology, including, for the first time in this mouse model, the neocortical areas. As in human
AD, the first signs of cognitive impairment correlate with overt pathology and cell loss in the
EC, which in turn correlates with the first appearance of pathology in the neocortex. The EC
mouse line is thus a useful model to study the temporal relationship between pathology spread,
degeneration and cognition which can help define timepoints when therapeutic interventions
may be effective.
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Supporting Information
S1 Fig. Tau pathology in neocortical and olfactory areas of old EC-Tau mice. Free-floating
horizontal sections from 30-mo-old EC-Tau mice (n = 3 animals) and 32-mo-old Tg4510 con-
trol mice (n = 2 animals) were stained with MC1 antibody as described in Materials and Meth-
ods. 1, dysgranular insular cortex (DI); 2, agranular insular cortex (AI); 3, piriform cortex (Pir);
4, anterior olfactory area (AO); 5, granular cell layer of olfactory bulb. Scale bar = 500 μm.
(TIF)

S2 Fig. Tau pathology spreads to neocortex and olfactory regions in old EC-Tau mice. Fro-
zen sections (10 μm) were subjected to immuno-FISH as described in the Materials and Meth-
ods. Human tau protein positive (Tau13+) but human tau mRNA negative neurons were found
in neocortical regions in 30-mo-old EC-Tau mice, suggesting that tau pathology has the capac-
ity to spread non cell-autonomously in the neocortex. DI, dysgranular insular cortex; AI, agra-
nular insular cortex; Pir, piriform cortex; AO, anterior olfactory bulb. Scale bar = 40 μm.
(TIF)

S3 Fig. Gliosis was observed in the amygdala in old EC-Tau mice. Free-floating sections
were incubated with IBA-1, CD68 or GFAP antibody. IBA-1+ and CD68+ microglia and
GFAP+ astrocytes were found to be recruited to the amygdala in mice with overt tau pathology,
but not control mice. Scale bar = 100 μm.
(TIF)

S1 Movie. The movie of iDISCO+ immunolabeling of Alexa Fluor 647-CP27 in an 8-mo-
old EC-Tau mouse. The movies were generated from 3D rendering as described in Materials
and Methods. Different brain regions with tau pathology are indicated by superimposed artifi-
cial colors. The regions with no or very little tau immunoreactivity are not colored.
(MP4)

S2 Movie. The movie of iDISCO+ immunolabeling of Alexa Fluor 647-CP27 in a 14-mo-
old EC-Tau mouse. Different brain regions with tau pathology are indicated by superimposed
artificial colors. The regions with no or very little tau immunoreactivity are not colored.
(MP4)

S3 Movie. The movie of iDISCO+ immunolabeling of Alexa Fluor 647-CP27 in a 25-mo-
old EC-Tau mouse. Different brain regions with tau pathology are indicated by superimposed
artificial colors. The regions with no or very little tau immunoreactivity are not colored.
(MP4)

S4 Movie. The movie of iDISCO+ immunolabeling of Alexa Fluor 647-CP27 in a 34-mo-
old EC-Tau mouse. Different brain regions with tau pathology are indicated by superimposed
artificial colors. The regions with no or very little tau immunoreactivity are not colored.
(MP4)

S5 Movie. The movie of iDISCO+ immunolabeling of Alexa Fluor 647-CP27 in a 16-mo-
old uninduced Tau control mouse (Tg4510, no tTA). There was no positive tau immunore-
activity detected.
(MP4)

S6 Movie. The movie of iDISCO+ immunolabeling of Alexa Fluor 647-CP27 in a 33-mo-
old Neuropsin tTA (no 4510) control mouse. There was no positive tau immunoreactivity
detected.
(MP4)
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