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Abstract: In many related works, nominal classification algorithms ignore the order between injury
severity levels and make sub-optimal predictions. Existing ordinal classification methods suffer rank
inconsistency and rank non-monotonicity. The aim of this paper is to propose an ordinal classification
approach to predict traffic crash injury severity and to test its performance over existing machine
learning classification methods. First, we compare the performance of the neural network, XGBoost,
and SVM classifiers in injury severity prediction. Second, we utilize a severity category-combination
method with oversampling to relieve the class-imbalance problem prevalent in crash data. Third, we
take advantage of probability calibration and the optimal probability threshold moving to improve
the prediction ability of ordinal classification. The proposed approach can satisfy the rank consistency
and rank monotonicity requirement and is proved to be superior to other ordinal classification
methods and nominal classification machine learning by statistical significance test. Important factors
relating to injury severity are selected based on their permutation feature importance scores. We find
that converting severity levels into three classes, minor injury, moderate injury, and serious injury,
can substantially improve the prediction precision.

Keywords: crash severity; ordinal classification; imbalance data; machine learning; sampling

1. Introduction

The prediction and cause analysis of traffic crashes has always been an important
topic for scholars in traffic safety. In the research of this subject, scholars often use statistical
methods or machine learning methods to conduct research.

A statistical model usually specifies the mathematical relationship between explana-
tory variables and crash severity. Based on strict assumptions of uncertainty distribution
and hypothesis tests, the statistical model can isolate the effects of explanatory variables
on crash severity [1,2]. For example, Cerwick et al. [3] used the mixed logit model and
the latent class multinomial logit model to predict crash severity. A large number of crash
specific, temporal, roadway, vehicle, driver characteristics, and environmental factors were
found significant. Haghighi et al. [4] used standard ordered logit (SOL) and Multilevel
ordered logit (MOL) to analyze the effect of roadway geometric features on crash sever-
ity. However, statistical models are usually weaker in making predictions than machine
learning methods. Iranitalab and Khattak [5] compared the performance of a statistical
model, Multinomial Logit (MNL), with three machine learning methods including Nearest
Neighbor Classification (NNC), Support Vector Machines (SVM), and Random Forests (RF)
in predicting traffic crash severity, and found MNL has the worst prediction accuracy.

Machine learning models are designed to make the most accurate predictions possible.
Chang et al. [6] used the Classification And Regression Tree (CART) to predict crash
severity, where prediction accuracy is 90.8% for learning data and 91.7% for testing data.
Abdel-Aty et al. [7] used a single-layer hidden layer Multi-layer Perceptron (MLP) to
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predict traffic crash severity with an average prediction accuracy of 73.5%. Delen et al. [8]
used an artificial neural network (ANN) to predict the severity of a crash and improved the
prediction accuracy. Alkheder et al. [9] used ANN, combined with k-means for clustering,
to predict traffic crashes and then compared with probit algorithm to prove that ANN is
better than probit in predicting the severity of crashes. Among many methods of crash
severity prediction research, neural network methods have better performance and are
more popular.

Most existing machine learning methods applied in crash severity prediction treat
crash severity levels as nominal data without order information. This unrealistic simpli-
fication casts a shadow on machine learning methods’ prediction ability. In general, the
severity of traffic crashes is classified as fatal injury or killed, incapacitating injury, non-
incapacitating, possible injury, property damage, or no injury. Moreover, the severity of
the injury is ordered and increases from no injury to possible injury, to non-incapacitating,
to incapacitating injury, and to fatal injury or killed. Between closely related adjacent
categories (such as no injury and possible injury), there may be shared unobserved effects
or correlations between their data [10]. To the authors’ knowledge, in the field of crash
severity study, less attention has been paid to ordinal classification machine learning,
and information on natural ordering in injury severity is missed in conventional machine
learning, including SVM, decision tree, and MLP. Some statistical models, such as ordered
logit and ordered probit [4,11,12], can handle the ordinal severity labels. However, dis-
crete choice models rely on statistical assumptions and pre-defined relationships between
severity labels and input variables, which makes them good choices for factor analysis but
restricts their prediction accuracy [13].

Gutierrez et al. [14] summarized ordinal classification machine learning algorithms
developed to classify categorical variables that show a natural order between the labels.
They confirmed that there is no clear winner that performs the best in all possible datasets
and problem requirements. The main three categories of ordinal classification machine
learning are:

(1) Cost-sensitive classification: apply cost-sensitive loss function in the evaluation of
the learned system with different costs for different types of misclassification errors.
For example, Riccardi et al. [15] proposed cost-sensitive AdaBoost for ordinal regres-
sion. The problem of cost-sensitive classification is how to determine the cost matrix
without priori knowledge of the ordinal classification.

(2) Ordinal binary decomposition: decompose the ordinal target variable into several
binary variables, which are then estimated by single or multiple models. Our new
ordinal classification method falls in this category. The problem of existing ordinal
binary decomposition methods is the violation of rank monotonicity or rank consis-
tency. Related methods and their drawbacks are introduced in the method section
later in more detail.

(3) Threshold model: extension of the regression model in which distances among the
ordered classes are not pre-defined but estimated by finding the optimal thresholds di-
viding classes [16]. Li and Lin [17] proposed a general reduction framework to transform
ordinal regression as a series of binary classification sub-problems and demonstrated
that many threshold models and ordinal binary decomposition methods are equivalent.

The number of crash cases in each category is often imbalanced. Usually, the sample
size of fatal cases is several times smaller than that of cases in other categories. With
imbalanced data, traditional classification algorithms incline to the category with a large
amount of data, while the category with a small amount of data is neglected [9]. Many
studies merged several minority categories of injury severity into one class and converted
multi-class classification problems into two-class (no injury vs. injury) classification prob-
lems [8]. Another option is to turn the multi-class classification problem into a three-class
(no injury, minor injury, and fatal injury) problem [3,6]. Some studies have tried to deal with
imbalanced data by under-sampling majority class examples [18] and by oversampling
minority class examples [19,20] and achieved good results.
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Although some scholars have tried to combine several injury severity levels into fewer
categories [8], there will still be a class-imbalance problem, and the predicted results will
still incline towards the category of large proportion. This paper focuses on different
combinations of severity categories that can relieve imbalance and keep the model’s ability
to predict crash injury severity. SMOTE-NC (Synthetic Minority Oversampling Technique
for Nominal and Continuous) is applied to oversample the minority class. We compare the
performance of three classifiers: MLP, XGBoost, and SVM. The best classifier is combined
with an ordinal binary decomposition method to handle ordinal crash severity labels.

The aim of this paper is to propose an ordinal machine learning classification approach
that overcomes the ordinal nature of crash severity data and class-imbalance problems.
The contributions of this presented approach include:

(1) To the authors’ knowledge, this is the first paper applying ordinal classification
machine learning to predict traffic crash injury severity using real-world crash data.

(2) We propose an ordinal classification machine learning method that satisfies rank
monotonicity and rank consistency and takes advantage of probability calibration
and the movement of optimal probability threshold to generate superior classification
results compared to existing ordinal classification algorithms.

(3) We test six severity category-combination strategies and find the best three-class
combination plan.

The rest of this paper is constructed as follows. The second section describes and
analyzes the characteristics of crash data. The third section presents the research methods
involved in this paper, including sampling, severity category-combination, machine learn-
ing, and ordinal classification. The fourth section shows the comparison and analysis of
the results. The conclusions of this paper are included in the fifth section.

2. Data Description

The data were collected from the Highway Safety Information System (HSIS) for
crashes that occurred in California in 2010. Variables in the crash dataset include those
related to intersections, road segments, and historical traffic crashes. Several variables were
dropped when the null value occurred too frequently in the dataset. The California traffic
crash data contains three data files, the crash file, vehicle file, and occupant file. The crash
file contains 52 variables such as time, location, crash severity, the total number of injuries,
weather, etc. The vehicle file contains 42 variables such as vehicle model, whether the
driver makes a phone call, whether the driver is drunk, etc. The occupant file contains ten
variables such as age, gender, the severity of injury, type of collision, etc. These three data
files were merged according to the crash number and the crash vehicle number. The data
contains 104 variables observed in one crash, including the injury severity of the person
involved. In this dataset, five crash injury severity levels are defined, namely non-injury
crash (denoted as NIC), complaint of pain (denoted as COP), other visible injury (denoted
as OVI), severe injury (denoted as SI), and killed (denoted as KSI). The severity level of
the crash-related personnel injury is shown in Figure 1. The frequencies of severity levels
in the data were 80,474 (57.20%), 41,642 (29.60%), 15,200 (10.80%), 2714 (1.93%), and 660
(0.47%), respectively.

We select 17 major influencing variables in this study: occupant type, seating position,
type of collision, primary collision factor, first associated factor, roadway class, ejected,
object struck, the total number of vehicles involved, alcohol involved, driver’s gender,
driver’s age, occupant’s age, vehicle year, motorcycle involved, driver’s safety equipment,
and occupant’s safety equipment. Primary collision factor is the one element that best
describes the cause of the collision or, if removed, would have prevented the collision from
occurring. First associated collision factor is the most important one of factors or violations
that contributed, but were not the main cause of the collision. There are 14 categorical
variables, except for driver’s age, occupant’s age, and vehicle model year. The Appendix A
provides the descriptive statistics of these variables. In total, there are 140,690 crash
records, out of which 139,555 remained after cleaning missing data. Samples with missing
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values were simply removed because the proportion of samples with missing values is
relatively small. Other errors were not found in the Highway Safety Information System
(HSIS) dataset.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 4 of 21 
 

 

equipment, and occupant’s safety equipment. Primary collision factor is the one element 
that best describes the cause of the collision or, if removed, would have prevented the 
collision from occurring. First associated collision factor is the most important one of fac-
tors or violations that contributed, but were not the main cause of the collision. There are 
14 categorical variables, except for driver’s age, occupant’s age, and vehicle model year. 
The Appendix A provides the descriptive statistics of these variables. In total, there are 
140,690 crash records, out of which 139,555 remained after cleaning missing data. Samples 
with missing values were simply removed because the proportion of samples with miss-
ing values is relatively small. Other errors were not found in the Highway Safety Infor-
mation System (HSIS) dataset. 

 
Figure 1. The proportion of crash injury severity in data. NIC—non-injury crash; COP—complaint 
of pain; OVI—other visible injury; SI—severe injury; KSI—killed. 

3. Methodology 
We summarize the research framework as a flowchart in Figure 2.  
After data cleaning, we try six methods of category combination that merge crash 

injury severity levels into fewer categories. SMOTE-NC oversampling is applied to relieve 
the class-imbalance problem. We compare SVM, XGBoost, and MLP, and choose the best 
one as the classifier used in the ordinal classification method. The permutation feature 
importance is also analyzed with the chosen classifier.  

The proposed ordinal classification method contains five main steps. First, the label 
to predict (crash injury severity) is decomposed with one-vs-all binary decomposition. 
Second, a multiple-output classifier or multiple single-output classifiers (chosen from 
SVM, XGBoost, and MLP) are trained to predict crash injury severity. Third, the predicted 
probabilities are calibrated to remove the bias from the classifier and data sampling. 
Fourth, the cumulative probabilities are calculated based on calibrated probabilities, 
which satisfies both the rank monotonicity and rank consistency. Fifth, the threshold mov-
ing method can help to find the optimal threshold that converts probabilities into crash 
injury severity predictions. 

All classifiers trained in this paper are established using Python programming lan-
guage with supported libraries, including keras, tensorflow, xgboost, hyperopt, and 
scikit-learn. The computing platform is a desktop computer with an AMD Ryzen 1700X 
8-core processor and Windows 10 operating system. The proposed ordinal classification 

57.20%29.60%

10.80%

1.93% 0.47%

NIC COP OVI SI KSI

Figure 1. The proportion of crash injury severity in data. NIC—non-injury crash; COP—complaint
of pain; OVI—other visible injury; SI—severe injury; KSI—killed.

3. Methodology

We summarize the research framework as a flowchart in Figure 2.
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After data cleaning, we try six methods of category combination that merge crash
injury severity levels into fewer categories. SMOTE-NC oversampling is applied to relieve
the class-imbalance problem. We compare SVM, XGBoost, and MLP, and choose the best
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one as the classifier used in the ordinal classification method. The permutation feature
importance is also analyzed with the chosen classifier.

The proposed ordinal classification method contains five main steps. First, the label
to predict (crash injury severity) is decomposed with one-vs-all binary decomposition.
Second, a multiple-output classifier or multiple single-output classifiers (chosen from
SVM, XGBoost, and MLP) are trained to predict crash injury severity. Third, the pre-
dicted probabilities are calibrated to remove the bias from the classifier and data sampling.
Fourth, the cumulative probabilities are calculated based on calibrated probabilities, which
satisfies both the rank monotonicity and rank consistency. Fifth, the threshold moving
method can help to find the optimal threshold that converts probabilities into crash injury
severity predictions.

All classifiers trained in this paper are established using Python programming lan-
guage with supported libraries, including keras, tensorflow, xgboost, hyperopt, and scikit-
learn. The computing platform is a desktop computer with an AMD Ryzen 1700X 8-core
processor and Windows 10 operating system. The proposed ordinal classification method,
along with other methods, is evaluated through cross-validation. The performance of each
method is compared and tested by a statistical significance test. The computational cost of
the proposed method is discussed to show its computation efficiency.

3.1. Imbalanced Data Preprocessing

One of the critical characteristics of the crash dataset is that the number of crashes
leading to death and severe injury is always much less than those of trivial injury. The
problem of imbalanced data is prevalent in the field of traffic accident studies. For example,
in our data NIC accounts for 57.20% of all crashes. This imbalance of data means that a
dummy classifier that classifies all instances to NIC would still achieve an accuracy score of
57.20%. This issue would have a detrimental effect on the training process. Classifiers such
as artificial neural networks, support vector machines, and decision trees are designed for
balanced data with a roughly equal sample size of each class. In the case of imbalanced
data, classifiers tend to overly focus on the class with the largest proportion and ignore the
minority class. However, accurately predicting the minority class, SI and KSI in this case,
is the main purpose of machine learning training. Existing research has tried to combine
the categories of severe injuries in traffic crashes and turn multi-class problems into a
binary-class problem to make predictions. However, training a binary-class classifier limits
the model’s ability to distinguish different levels of injury severity and therefore reduces
the model’s practical value.

This research performs oversampling and category combination to solve the problem
of imbalanced data. We combine the five crash severity levels into three classes in order to
reduce the difficulty in severity prediction. We propose all six possible ways of category
combination that can convert five crash severity levels into three classes while keeping an
ordinal nature (illustrated in Figure 3). Each class contains at least one of the five crash
severity levels, and the severity levels are exclusive over classes. For all combinations, NIC
is always included in class 1, and KSI is always included in class 3. All instances in class 3
have higher severity levels than instances in class 2, and all instances in class 2 have higher
severity levels than instances in class 1. The difference between combinations is how COP,
OVI, and SI are assigned into classes. As shown in Figure 4, the proportion of each class
in the traffic crash data is still uneven in each combination, but the imbalance is relieved
compared to the original five categories. In addition, the 3-class classification problem has
more explanatory ability compared to the 2-class problem. It can be interpreted that the five
severity categories are combined into three new classes: minor injury crashes, moderate
injury crashes, and serious injury crashes.



Int. J. Environ. Res. Public Health 2021, 18, 11564 6 of 20

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 6 of 21 
 

 

more explanatory ability compared to the 2-class problem. It can be interpreted that the 
five severity categories are combined into three new classes: minor injury crashes, mod-
erate injury crashes, and serious injury crashes. 

Another important task we need to complete is oversampling of the minority class. 
At present, there are two main sampling methods to deal with the imbalance-data prob-
lem, namely under-sampling and oversampling. Machine learning algorithms are data-
hungry and require extensive data for model training, making under-sampling unprefer-
able, especially when the minority class sample size is small. Because the dataset is a mix 
of categorical and continuous features, this research uses SMOTE-NC sampling, a varia-
tion of SMOTE sampling. SMOTE-NC creates synthetic data for categorical as well as con-
tinuous features in the data set. SMOTE-NC treats categorical features differently from 
continuous features. For continuous features, SMOTE-NC sampling is an interpolation 
algorithm that looks for features between the data sample and supplements data with 
similar characteristics for minority class instances. By contrast, the categorical variable’s 
value of a newly generated sample is decided by picking the most frequent category of 
the nearest neighbors present during the generation [21]. The proportion of each class in 
each combination after oversampling is shown in Figure 5. Class 1 is the majority class in 
all six combinations. Classes with an instance number smaller than 20% of class 1 are cho-
sen to be oversampled. For all combinations except combination 3, class 3 is oversampled. 
For combination 6, class 2 is also oversampled. SMOTE-NC sampling is performed on 
class 3 in combination 1, 2, and 4–6, and on class 2 in combination 6. The sampling rate 
ensures that the minority class instance size equals one-fifth of the majority class instance 
size. The new proportion of classes in each combination after sampling is shown in Figure 
5. Since classes 2 and 3 are more than one-fifth of class 1 in combination 3, no sample in 
combination 3 is oversampled. 

 
Figure 3. Six methods of 5-category combination. 

0% 20% 40% 60% 80% 100%

Combination 6

Combination 5

Combination 4

Combination 3

Combination 2

Combination 1

Class 1 Class 2 Class 3

Figure 3. Six methods of 5-category combination.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 7 of 21 
 

 

 

Figure 4. The proportion of classes in each method of categorizing. 

 
Figure 5. The proportion of classes in each method of category combination after sampling. 

3.2. Ordinal Classification 
3.2.1. Cumulative Binary Decomposition 

Given a dataset   1
,

N

i i i
D y


 x  with the class label  1 2, , ,i Ky C C C   where 

1 2 KC C C   , as expressed in (1), the cumulative binary decomposition method en-

codes iy  into K-1 binary labels (1) (2) ( 1), , , K
i i iy y y   that  ( )k

i i ky y C 1 . The indi-

cator function  i ky C1  is 1 when i ky C  and 0 when i ky C .  

0% 20% 40% 60% 80% 100%

Combination 6

Combination 5

Combination 4

Combination 3

Combination 2

Combination 1

Class 1 Class 2 Class 3

NIC OVI SI KSI 

Combination 1 

Combination 5 

Combination 6 

Combination 4 

Combination 3 

Combination 2 

Class 1 Class 3 Class 2 

COP 

Figure 4. The proportion of classes in each method of categorizing.

Another important task we need to complete is oversampling of the minority class.
At present, there are two main sampling methods to deal with the imbalance-data problem,
namely under-sampling and oversampling. Machine learning algorithms are data-hungry
and require extensive data for model training, making under-sampling unpreferable, es-
pecially when the minority class sample size is small. Because the dataset is a mix of
categorical and continuous features, this research uses SMOTE-NC sampling, a variation of
SMOTE sampling. SMOTE-NC creates synthetic data for categorical as well as continuous
features in the data set. SMOTE-NC treats categorical features differently from continuous
features. For continuous features, SMOTE-NC sampling is an interpolation algorithm that
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looks for features between the data sample and supplements data with similar character-
istics for minority class instances. By contrast, the categorical variable’s value of a newly
generated sample is decided by picking the most frequent category of the nearest neighbors
present during the generation [21]. The proportion of each class in each combination after
oversampling is shown in Figure 5. Class 1 is the majority class in all six combinations.
Classes with an instance number smaller than 20% of class 1 are chosen to be oversampled.
For all combinations except combination 3, class 3 is oversampled. For combination 6, class
2 is also oversampled. SMOTE-NC sampling is performed on class 3 in combination 1, 2,
and 4–6, and on class 2 in combination 6. The sampling rate ensures that the minority class
instance size equals one-fifth of the majority class instance size. The new proportion of
classes in each combination after sampling is shown in Figure 5. Since classes 2 and 3 are
more than one-fifth of class 1 in combination 3, no sample in combination 3 is oversampled.
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3.2. Ordinal Classification
3.2.1. Cumulative Binary Decomposition

Given a dataset D = {xi, yi}N
i=1 with the class label yi ∈ {C1, C2, · · · , CK} where

C1 < C2 < · · · < CK, as expressed in (1), the cumulative binary decomposition method
encodes yi into K-1 binary labels y(1)i , y(2)i , · · · , y(K−1)

i that y(k)i = 1{yi > Ck}. The indicator
function 1{yi > Ck} is 1 when yi > Ck and 0 when yi ≤ Ck.

y =


C1
C2
...

CK

⇒


0 0 · · · 0
1 0 · · · 0
...

... · · · 0
1 1 · · · 1

 (1)

A single multi-output model or K-1 single-output models can be trained with the

binary decomposed dataset
{

xi, y(k)i

}N

i=1
where k ∈ {1, 2, · · · , K− 1}. After training, the

predicted probability of y(k)i is essentially the predicted cumulative probability p̂(yi > Ck).
Frank’s method and Cheng’s method are both based on p̂(yi > Ck).
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Frank’s method [22] first calculate the probability of each class based on (2), and the
predicted class is given by (3).

p̂(yi = Ck) =


1− p̂(yi > Ck), k = 1

p̂(yi > Ck−1)− p̂(yi > Ck), k ∈ {2, · · · , K− 1}
p̂(yi > Ck−1), k = K

(2)

ŷi= argmax
k

[ p̂(yi = Ck)] (3)

Cheng’s method [23], by contrast, predicts class labels by (4).

ŷi =
K−1

∑
k=1

1{ p̂(yi > Ck) > 0.5}+1 (4)

3.2.2. One-vs-All Binary Decomposition

Different from cumulative binary decomposition, one-vs-all binary decomposition
method encodes yi into K binary labels y(1)i , y(2)i , · · · , y(K)i that y(k)i = 1{yi = Ck}, which is
expressed in (5).

y =


C1
C2
...

CK

⇒


1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 · · · 1

 (5)

A single multi-output model can be trained to predict p̂(yi = Ck) and guarantee that

K

∑
k=1

p̂(yi = Ck) = 1 (6)

Beckham and Pal [24] propose a method that

ŷi =
K

∑
k=1

βk· p̂(yi = Ck) (7)

where βk is to be determined. One option is setting βk = k; another is to calculate βk by
optimizing the following objective function (8). We denote these two options as Beckham1
and Beckham2.

max
βk

N

∑
i=1

[
yi −

K

∑
k=1

βk· p̂(yi = Ck)

]2

(8)

3.2.3. Existing Drawbacks

Both cumulative binary decomposition and one-vs-all binary decomposition have
drawbacks.

Rank monotonicity requires that p̂(yi > Ck) ≤ p̂
(
yi > Cj

)
for any k > j. However, pre-

dicted cumulative probabilities based on cumulative binary decomposition do not guaran-
tee rank monotonicity [25] since cumulative probabilities p̂(yi > Ck) and p̂

(
yi > Cj

)
are pre-

dicted independently. If p̂(yi > Ck) > p̂
(
yi > Cj

)
for any k > j, then p̂

(
Ck ≥ yi > Cj

)
< 0,

which is unrealistic and hurts model performance.
Predicted class probabilities based on one-vs-all binary decomposition do not guaran-

tee rank consistency, which requires pi(k) = p̂(yi = Ck) to have a convex shape, illustrated
in Figure 6.
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3.2.4. Proposed Method

We summarize all methods in Table 1. Frank’s method and Cheng’s method are
both based on cumulative binary decomposition. Frank’s method converts predicted
cumulative probabilities into class probabilities, while Cheng’s method applies cumulative
probabilities directly to predict class labels without knowing class probabilities. Beckham1
and Beckham2 are based on one-vs-all binary decomposition and class probabilities.

Table 1. Summary of ordinal classification methods.

Class Prediction Based on Cumulative Binary Decomposition One-vs-All Binary Decomposition

Class Probability Frank’s method [22] Beckham1 and Beckham2 [24]
Cumulative Probability Cheng’s method [23] This paper

We propose a new method that uses one-vs-all binary decomposition and K single
output models to predict class probabilities. The main difference between our method
and Beckham1/Beckham2 is that we convert predicted class probabilities into cumulative
probabilities:

p̂(yi > Ck) =
K

∑
j=k+1

p̂
(
yi = Cj

)
(9)

The advantage of this method is that it generates predicted cumulative probabilities
satisfying rank monotonicity. Then the class label is determined as follows:

ŷi =
K−1

∑
k=1

1{ p̂(yi > Ck) > Tk}+1 (10)

where Tk is the optimal threshold of y(k). Some machine learning algorithms, such as tree-
based learning, usually generate biased probabilities. Probabilities can also be distorted
because of data imbalance and sampling [26]. Therefore, we find the F1-maximizing Tk
with validation data instead of simply setting Tk to 0.5.

Since p̂
(
yi = Cj

)
in (6) could be biased, the bias is delivered to p̂(yi > Ck) and causes

inaccurate estimation of ŷi in (7). We perform probability calibration by isotonic regression
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to remove bias in p̂
(
yi = Cj

)
. There are two main methods to calibrate probability: Platt

scaling and isotonic regression. Platt [27] introduced Platt scaling, which trains a logistic
regression to map the original output to the real class probability. Isotonic regression is a
non-parametric approach introduced by Zadrozny and Elkan [28,29]. Isotonic regression is
preferable to Platt scaling when the sample size is large enough. Isotonic regression fits
a piecewise constant non-decreasing function, where predicted probabilities or scores in
each bin are assigned the same calibrated probability that is monotonically increasing over
bins. More formally,

min
θ,a

M
∑

m=1

N
∑

i=1
1(am ≤ p̂i < am+1)(θm − yi)

2

subject to 0 = a1 ≤ a2 ≤ · · · ≤ aM+1 = 1, θ1 ≤ θ2 ≤ . . . ≤ θM

(11)

where M is the number of bins, a1, a2, · · · , aM+1 are the interval boundaries, θ1, θ2, . . . , θM
are the corresponding calibrated probabilities for that falls in each bin.

3.3. Machine Learning Algorithms

We test the performance of three classifiers, Multi-Layer Perceptron (MLP), eXtreme
Gradient Boosting (XGBoost), and Support Vector Machine (SVM), on 5-category classi-
fication. The winner of three candidates is kept for a 3-class problem and other analysis
tasks after.

MLP is a pass-forward artificial neuron network that maps an n-dimensional input
vector to an m-dimensional output vector. It has many successful applications in classifi-
cation tasks such as MNIST handwriting digit number recognition by transforming high
dimensional input of related elements to low dimensional discriminative representation.
Several researchers have attempted to utilize deep learning frameworks to model potential
factors that may lead to different injury severity levels [30,31]. They input the randomly
shuffled dataset directly into the network to capture the feature of all input factors of a
particular crash.

Back-propagation multi-layer perceptron (BP-MLP) applies weighted input from
every previous layer to a non-linear function, evaluates the difference between network
output and actual label, and optimizes the parameters in the network using optimizers
such sophistic gradient decedent (SGD) or Adam optimizer. Thus, the characteristic of
a particular MLP model can be defined by its depth, non-linear function of each layer,
loss function, and optimizer. This research utilizes two hidden layers in the network. The
numbers of neurons are 64 and 10, respectively. Both layers use a rectifier linear unit
(ReLU) as the activation function. We then feed the mapped 3-dimension output learned
representation vector to a softmax layer to compute the final predicted class and predict
probabilities for the input variables.

Among the 17 variables used to predict injury severity, there are 14 categorical vari-
ables, except driver’s age, occupant’s age, and vehicle model year. When training a neural
network, one-hot encoding is more appropriate for categorical data where no specific nu-
merical relationship exists between categories. This involves representing each categorical
variable with a group of binary vectors that has one {0,1} code for each unique variable
value. However, One-hot encoding dramatically increases the dimension of data. For ex-
ample, if a {0,1} code is used to represent every numerical code of object1, then the one-hot
encoding will create 99 more dimensions than numerical encoding. One-hot encoding also
leads to sparse data space, making it challenging to optimize neural networks.

XGBoost is a Gradient Tree Boosting-based algorithm that has been proven to be a
powerful classifier. The advantage of XGBoost in this study is that decision tree-based
machine learning has no issues with the numerical encoding of categorical variables.
Moreover, XGBoost requires much less training time than neural network and often produce
remarkable prediction results in crash-related studies [32–34].
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SVM has been and still is a widely used classifier. Many studies of traffic crash injury
prediction have applied SVM as a benchmark classifier [30,35,36]. Therefore, it is used as
such in this study.

To extract the maximum performance out of classifiers, we need hyperparameter
tuning to determine the optimal combination of hyperparameters. Hyperopt is one of
the most popular hyperparameter tuning packages and implements the Tree of Parzen
Estimators (TPE) algorithm to search the optimal value of hyperparameters efficiently in a
search space described by the user [37]. We apply Hyperopt in this paper to optimize the
main hyperparameters of MLP, XGBoost, and SVM. The hyperparameters of MLP include
the number of layers/neurons, activation function in each layer, optimizer, learning rate,
number of epochs, and batch size. The hyperparameters of XGBoost include the number of
estimators, learning rate, maximum depth, subsample ratio, etc. The hyperparameters of
SVM are the C parameter and gamma.

3.4. Cross-Validation and Evaluation Metrics

We use stratified 10-fold cross-validation to evaluate the classification algorithm’s
performance. Stratified 10-fold cross-validation divides the 139,555 records randomly
into ten equal-sized subsets. Each subset has the same proportion of each class as the
total dataset. At each time, eight subsets are used for sampling (if required) and training,
and one subset is used for probability calibration and threshold optimization (only for
the ordinal classification method proposed in this paper). The last subset is used to test
the performance of the trained model. This process rotates through each subset, and the
average precision, recall, and F1 score of each class represent the algorithm’s performance.

3.5. Statistical Significance Test

Machine learning algorithms are commonly evaluated using k-fold cross-validation,
and their evaluation metrics, such as mean accuracy scores, are compared directly. Statis-
tically significance tests are designed to test whether the difference between evaluation
metrics is statistically significant or the result of a statistical fluke. The null hypothesis is
that metric scores observed from two algorithms were drawn from the same distribution.
If this assumption is rejected, it suggests that the difference in metric scores is statistically
significant. Otherwise, the two algorithms’ performances are statistically equal.

K-fold cross-validated paired Student’s t-test is the most used statistical test for ma-
chine learning algorithms comparison. However, the calculation of the t-statistic in the test
is misleading since the metric scores in each sample are not independent [38]. In k-fold
cross-validation, a given observation will be used in the training dataset k-1 times. This
means that the estimated metric scores are dependent.

Dietterich [38] recommended a resampling method called 5 × 2 cross-validation that
involves five repeats of 2-fold cross-validation. Two-fold cross-validation can ensure that
each observation appears only in the train or test dataset once. A paired Student’s t-test is
used on the results.

t =
µ√

1
5

5
∑

i=1

((
∆(1)

i − µ
)2

+
(

∆(2)
i − µ

)2
) (12)

where:

∆(1)
i is the scores difference of two algorithms for the first fold of the i-th 2-fold cross-

validation;
∆(2)

i is the scores difference of two algorithms for the second fold of the i-th 2-fold cross-
validation;

µ =
∆(1)

1 +∆(2)
1

2 is the mean of scores difference for the first 2-fold cross-validation.

Under the null hypothesis that two algorithms are statistically equal, t is assumed to
follow a Student’s t-distribution with 5 degrees of freedom. If t stays close enough to 0,
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then the null hypothesis is satisfied. The threshold is 2.571 at the 95% confidence level.
5 × 2 cross-validation is used in this paper to compare algorithms’ performance.

4. Results
4.1. Comparison of Classifiers

The result of the 5-category classification problem is listed in Table 2. We compare
each classifier’s precision rate and find that XGBoost has the highest precision rate in COP,
SI, and KSI categories. MLP only outperforms other classifiers in category OVI. The gap
between the performance of XGBoost and MLP may be caused by the data characteristic
that most variables are categorical. Therefore, we utilize XGBoost as the only classifier
used for analysis in the following sections.

Table 2. Precisions of five-category classification problem.

Classifier
Precision (%) Macro-Average

NIC COP OVI SI KSI

MLP 99.1 56.4 36.5 0.4 1.9 38.9
XGBoost 99.3 64.9 23.4 1.9 4.5 38.8

SVM 100 64.7 12.7 0 0 35.5

The performance of SVM relies on marginal data that lies near the separating hyper-
plane. SVM yields poor performance when fed with data with ambiguous distinction or
imbalanced class. Several modifications to the SVM kernel function and preprocessing
methods have been used to improve SVM’s capability to distinguish minority samples. This
paper uses radial basis function (RBF) as SVM’s kernel function and achieves significant
improvement on minority class prediction compared to other kernel functions. Although
SVM can identify 100% NIC instances, it is still the worst classifier and fails to identify any
SI and KSI instances.

In general, the precision of injury severity decreases as the severity level rises. More
than 99% of NIC cases can be correctly classified regardless of the classifier used. For
COP, the precision is about 60%, but the precision of SI and KSI decreases dramatically to
almost 0. As discussed in the Introduction, the poor performance on serious injury crashes
is caused by class-imbalance.

4.2. Comparison of Category-Combination and Sampling

In order to overcome the shortcomings of the five-category problem, this research
proposes six ways of category-combination and generates a 3-class problem through
category-combination. As shown in Table 3, it is clear that the macro-average precision
rate is improved for most combinations except combination 6. However, it can be seen that
the precision rate of class 3 (KSI only) is still very low in combinations 1 and 4 because KSI
is not combined with others to relieve the imbalance.

Table 3. Precisions of three-class classification problem for six combinations before SMOTE-NC
sampling.

Combination
Precision (%) Macro-Average

Class 1 Class 2 Class 3

1 98.0 73.7 0.0 57.2
2 98.4 73.1 4.8 58.8
3 99.3 62.6 33.6 65.2
4 97.7 34.6 0.0 44.1
5 98.3 25.0 6.9 43.4
6 99.9 1.1 6.1 35.7

In Table 4, after preprocessing by SMOTE-NC, the precision rate of each class is further
improved. Among all combinations, combination 3 has the highest F1 score of 45.0% for
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class 3, but it combines OVI with SI and KSI and loses the ability to predict serious injury
crashes. Combination 5 has the second-highest F1 score of 24.5% for class 3, but its F1 score
for class 2 is only 19.4%. Combination 2 achieves acceptable F1 scores of 90.1%, 78.3%, and
24.1% for classes 1, 2, and 3, respectively. Moreover, combination 2 groups COP and OVI
into class 2 and groups SI and KSI into class 3, which is a reasonable combination strategy.
The three classes can be considered as minor injury crashes, moderate injury crashes, and
serious injury crashes. Therefore, we apply combination 2 to convert 5-category into a
3-class classification problem.

Table 4. Performance of three-class classification problem for six combinations after SMOTE-NC
sampling.

Combination Group Class 1 Class 2 Class 3 Macro-Average

1
Precision (%) 97.8 71.0 22.7 63.9

Recall (%) 83.5 95.6 7.2 62.1
F1 (%) 90.1 81.5 11.0 60.9

2
Precision (%) 98.0 67.8 27.5 64.4

Recall (%) 83.3 92.6 21.4 65.8
F1 (%) 90.1 78.3 24.1 64.2

3
Precision (%) 99.3 62.6 33.6 65.2

Recall (%) 82.4 75.4 68.2 75.4
F1 (%) 90.1 68.4 45.0 67.8

4
Precision (%) 97.1 23.1 36.4 52.2

Recall (%) 91.2 66.4 5.6 54.4
F1 (%) 94.1 34.3 9.7 46.0

5
Precision (%) 97.1 11.8 36.7 48.5

Recall (%) 90.7 54.8 18.4 54.6
F1 (%) 93.8 19.4 24.5 45.9

6
Precision (%) 97.0 21.6 27.3 48.6

Recall (%) 98.4 18.6 8.7 41.9
F1 (%) 97.7 20.0 13.2 43.6

4.3. Feature Importance

After category-combination and SMOTE-NC sampling, the classification model is
more efficient in predicting the severity of crash injuries than the original five-category
problem. We analyze the permutation feature importance of the classification models, as
shown in Table 5. In combination 1-3, occupant type has the most significant impact on the
injury severity to crash-injured individuals. Ejected from vehicle has the second-highest
importance in combinations 3 and 5. In combination 1 and 2, the number of vehicles
involved in the crash has the second-greatest impact on the severity of injuries to crash-
injured individuals. Vehicle model year is also an important feature in combinations 3, 4,
and 5. Based on repeated permutation feature importance calculation, we find that the
differences between the most and less important input features are statistically significant.

It is worth noting that in each combination, features with high importance are basically
the same. They are ejected from vehicle, number of vehicles, occupant type, and vehicle
model year. As shown in Appendix A, ejected from vehicle and occupant type are highly
related to the severity of the injury. The driver’s injury severity is more considerable when
the number of vehicles involved is one or two. The proportion of cases in which drivers
were ejected from vehicles is not particularly large, accounting for only 2.45% of the data. In
cases where drivers were ejected from vehicles, the proportion of fatal and severe injuries
is high, accounting for 27–29%. In cases where drivers were not ejected from vehicles, the
ratio of fatal and severe injury is only 1.7%.
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Table 5. Permutation feature importance for six combinations.

Variable Definition
Combination

1 2 3 4 5 6

occupant Occupant type 0.13 0.25 0.19 0.07 0.07 0.04
seat Seating position 0.06 0.06 0.07 0.05 0.06 0.06

collision Collision type 0.06 0.06 0.07 0.07 0.07 0.07
factor First associated factor 0.05 0.04 0.05 0.06 0.06 0.06
cause Primary collision cause 0.05 0.03 0.04 0.06 0.05 0.05
road Roadway class 0.05 0.03 0.04 0.06 0.05 0.07
eject Ejected from 0.10 0.09 0.11 0.02 0.11 0.09

object First object struck 0.06 0.06 0.05 0.05 0.07 0.07
vehicles number of vehicles 0.11 0.10 0.06 0.07 0.08 0.12
alcohol alcohol involved 0.01 0.01 0.01 0.05 0.01 0.02
gender driver’s gender 0.02 0.01 0.01 0.06 0.01 0.02

drv_safe Driver safety equipment 0.05 0.06 0.06 0.10 0.07 0.06
occ_age Occupant’s age 0.06 0.04 0.04 0.01 0.06 0.07
drv_age Driver’s age 0.04 0.03 0.03 0.01 0.04 0.04
motor Motorcycle involved 0.02 0.01 0.01 0.11 0.01 0.02

occ_safe Occupant safety equipment 0.06 0.06 0.06 0.06 0.07 0.06
veh_year Vehicle model year 0.08 0.07 0.11 0.11 0.11 0.08

4.4. Comparison of Ordinal Classifications

In total, we test the performance of 5 ordinal classification methods on injury severity
data, including Frank’s method, Cheng’s method, Beckham1, Beckham2, and the method
proposed by this paper. We also compared the results of ordinal classification methods
with nominal classification to prove ordinal classification’s advantage. In each method,
XGBoost is used as the basic classifier.

In Section 1, we explained why ordinal classification methods are better than nominal
classification when the labels are ordinal. In Section 3, we interpreted the drawbacks of
ordinal classification benchmarks used in this paper and why our proposed ordinal classifi-
cation method is more advanced theoretically. We believe that our proposed method should
outperform other ordinal classification methods, which outperform nominal classification.
Most results shown in Table 6 are consistent with our expectations.

Table 6. Performance of six classification methods.

Method Evaluation Metric
Class Macro-Average

1 2 3

Nominal
classification

Precision (%) 98.0 67.8 27.5 64.4
Recall (%) 83.3 92.6 21.4 65.8

F1 (%) 90.1 78.3 24.1 64.2

Beckham1
Precision (%) 92.9 73.6 22.7 63.0

Recall (%) 85.6 83.9 21.8 63.8
F1 (%) 89.1 78.4 22.3 63.2

Beckham2
Precision (%) 95.6 75.7 0.00 57.1

Recall (%) 84.4 86.9 0.00 57.1
F1 (%) 89.7 80.9 0.00 56.9

Frank
Precision (%) 97.6 68.2 31.6 65.8

Recall (%) 83.6 92.1 23.6 66.4
F1 (%) 90.1 78.4 27.0 65.1

Cheng
Precision (%) 96.0 70.3 29.2 65.2

Recall (%) 84.4 88.9 24.1 65.8
F1 (%) 89.8 78.5 26.4 64.9

This paper
Precision (%) 94.0 68.9 41.2 68.0

Recall (%) 85.2 86.4 21.3 64.3
F1 (%) 89.4 76.7 28.1 64.7
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The ordinal classification method proposed in this paper achieves the highest precision
rate for class 3, at 41.2%. The corresponding recall rate is acceptable, at 21.3%. The F1 score
is 28.1%, which is also the highest among all methods. In the meantime, the proposed
approach can still get high F1 scores for classes 1 and 2. This method also has the highest
macro-average precision and the third-highest macro-average F1 score.

As expected, Frank’s method and Cheng’s method have the second highest and third
highest F1 score for class 3. Cheng’s method gets almost the same F1 scores for classes 1
and 2 as Frank’s method. This shows that Frank’s and Cheng’s methods are superior to the
traditional nominal classification method, although rank monotonicity is not satisfied.

Surprisingly, Beckham1 and Beckham2 perform worse than nominal classification.
Beckham1′s F1 scores for class 2 and 3 are smaller than these of nominal classification.
Beckham2 cannot even predict any cases in class 3, resulting in a 0% F1 score for class 3. A
possible reason is that Beckham’s method is adversely impacted by the class-imbalance
issue. Beckham’s method relies on the estimation of βk, which could be biased if the
numbers of cases in classes are not equal-sized.

5 × 2 cross-validation and paired Student’s t-test are used to test whether the ordinal
classification method proposed in this paper is statistically better than other methods. As
shown in Table 7, we compare this paper’s method (method A) and other methods (method
B) by testing whether their accuracy scores are from the same distribution. All p-values
are smaller than 0.01, indicating that performance differences are statistically significant,
and this paper’s method is superior to the nominal classification method and other ordinal
classification methods.

Table 7. Paired Student’s t-test result.

Method A Method B t p-Value

This paper

Nominal classification 24.99 0.000
Beckham1 15.82 0.000
Beckham2 12.68 0.000

Frank 4.89 0.005
Cheng 16.58 0.000

The computational cost of the proposed method is not much higher than nominal
classification and other ordinal classification methods. The main computational cost of
classification, either categorical or ordinal, is training k or k-1 single output XGBoost
classifiers, which takes 21.8 s on the computing platform. Compared to other methods, the
extra computational work of the proposed method is probability calibration and threshold
moving, which costs about 4.5 s and are much faster than XGBoost training. Therefore, the
proposed method can improve model performance with minimal extra computational cost.

Figures 7 and 8 present the predicted probabilities before and after calibration, re-
spectively. The probability plot is a standard way to check how predicted probabilities
fit empirical probabilities. Take class 1, for example, in which all samples are binned into
groups based on their predicted probabilities of class 1. For each bin, we calculate the
percentage of samples that are actually in class 1 (fraction of positives). The horizontal axis
of Figures 7 and 8 are the mean predicted probabilities of each bin, and the vertical axis is
the corresponding fraction of positives. Perfectly calibrated probabilities should have the
mean predicted probability equal to the fraction of positives in each bin and should form a
diagonal line in the probability plot.

Before calibration, the predicted probabilities of class 1 are very close to being perfectly
calibrated. The predicted probabilities of class 2 are slightly underestimated. For example,
when the predicted probability of class 2 is around 60%, the actual fraction of positive cases
is 80%. This underestimation bias could be caused by XGBoost itself since decision tree-
based classifiers do not generate calibrated probabilities. The predicted probabilities of class
3 are obviously overestimated since the probability plot is below the perfectly calibrated
line. This problem is due to class imbalance and oversampling, which distorts the class
distribution in the original data. Therefore, if the biased and uncalibrated probabilities of
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classes 1, 2, and 3 are directly used to calculate the cumulative probabilities, the cumulative
probabilities will also be wrong and unreliable.
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After isotonic regression, all predicted probabilities are perfectly calibrated, as shown
in Figure 8.

The thresholds Tk in (7) are determined by finding the F1-maximizing thresholds
for the validation data. The optimal thresholds found for the data used in this paper
are T1 = 0.43 and T2 = 0.33. Since 0.5 is the default threshold used in many studies and
algorithms, we compare the optimal thresholds to the default threshold in Table 8. The
default threshold leads to significantly worse results than the optimal thresholds. For the
default threshold, the precision rate of class 3 is 15.8%, much smaller than 41.2% of the
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optimal thresholds, and the F1 score of class 3 is also smaller than that of the optimal
thresholds.

Table 8. Performance of proposed method with different thresholds.

Method Evaluation Metric
Class Macro-Average

1 2 3

T1 = 0.5 T2 = 0.5
Precision (%) 86.4 81.5 15.8 61.2

Recall (%) 88.2 77.4 27.3 64.3
F1 (%) 87.3 79.4 20.0 62.2

T1 = 0.43 T2 = 0.33
Precision (%) 94.0 68.9 41.2 68.0

Recall (%) 85.2 86.4 21.3 64.3
F1 (%) 89.4 76.7 28.1 64.7

5. Conclusions

This research proposed an ordinal classification machine learning method to improve
the prediction of imbalanced traffic crash injury severity. SMOTE-NC oversampling and
category-combination are applied to relieve the class imbalance problem. XGBoost, SVM,
and multi-layer perceptron machine learning are utilized to predict the injury severity of
traffic crashes. Based on the analysis results, the effects of ejected from vehicle, number
of vehicles involved, occupant type, and vehicle model year on the severity of traffic
crashes are found to be important. The experimental results suggest that the proposed
ordinal classification method provides better prediction results than other existing ordinal
classification methods and traditional nominal classification, especially in minority classes.
It was shown from the results that probability calibration and optimal thresholds are
helpful in injury severity prediction.

Future efforts should focus on the following aspects: (1) establish a more compre-
hensive ordinal classification that combines cost-sensitivity with the ordinal classification
method proposed in this paper. (2) try to solve the 5-category classification problem
without combining any two or more categories.
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Appendix A

Table A1. Input variables and counts of different crash injury severity cases.

No. Variables Code Value
Severity

NIC COP OVI SI KSI

1
occupant:
occupant type

1 Driver 0 27,964 10,989 1904 461
2 Passenger 80,474 13,674 4209 809 199
4 Bicyclist 0 0 2 0 0
5 Other 0 4 0 1 0

2
seat:
seating position

0 Other occupants 1022 81 37 16 3
1 Driver 42,623 34,360 12,728 2220 581

2~6 Passengers 33,206 6849 2301 449 68
7 Station wagon rear 1402 164 61 15 1
8 Truck/van rear 1121 102 44 8 2
9 Position unknown 1100 86 29 6 5

3
collision:
type of collision

10 Head-on 883 1045 588 277 106
11 Sideswipe 17,943 4244 1717 271 51
12 Rear end 43,690 23,685 3632 472 95
13 Broadside 5460 4436 1563 317 62
14 Hit object 9572 6093 4962 832 232
15 Overturned 1531 1829 2520 502 105
16 Auto-pedestrian 192 16 22 1 0
17 Other 981 187 147 37 9

4 factor:
first associated factor

10 Vehicle code violation 3338 1981 2762 671 186
14 Vision obscurement 100 63 39 1 1
15 Inattention 1438 747 462 68 4
16 Stop and go traffic 5056 2358 301 39 5
17 Enter/leave ramp 2163 994 310 32 7
18 Previous collision 928 493 154 37 10
19 Unfamiliar with road 119 35 36 11 1
20 Defect vehicle

equipment
259 158 132 20 6

21 Uninvolved Vehicle 612 345 190 25 0
22 Other 327 198 135 27 10
23 None apparent 65,694 33,904 10,586 1765 427
24 Runaway vehicle 100 49 14 0 0

5
cause:
primary collision
factor

1 Under influence of
alcohol

3594 2044 2478 648 146

2 Following too closely 3990 1382 476 77 17
3 Failure to yield 3197 2162 695 139 27
4 Improper turn 9711 6417 4527 741 227
5 Speeding 41,831 23,529 4710 681 137
6 Other violations 18,151 6108 2314 428 106

6 road: roadway class

1 Urban freeways 58,265 28,482 9088 1273 255
2 Urban freeways < 4

lanes
259 91 49 9 1

3 Urban two-lane roads 1398 969 289 73 17
4 Urban multilane

divided non-freeways
4133 3376 810 121 21

5~11 Others 16,419 8724 4964 1238 366

7 eject: ejected from

0 Not ejected 79,883 40,309 13,382 1969 400
1 Fully ejected 24 760 1500 658 223
2 Partially ejected 4 68 134 52 33
3 Unknown 563 505 184 35 4
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Table A1. Cont.

No. Variables Code Value
Severity

NIC COP OVI SI KSI

8
object:
first object struck

1~7 Bridge structure 281 229 181 44 19
10~15 Pole or sign post 1573 1003 828 138 26
16~24,
27, 30

Concrete barrier 5646 4761 3840 611 176

25~26 Water /drainage ditch 122 116 116 28 9
28~29,

40
Plants 279 223 227 69 12

41~43 Temporary barricades 1416 296 286 53 18
44~46 Overturned/crash-

cushion
993 1213 1864 377 62

51 Call box 53 23 13 6 2
98~99 Unkown or no object

involved
486 191 225 42 18

100 Vehicle 69,495 33,449 7517 1339 317

9 vehicles: number of
vehicles

1 Total vehicle number = 1 10,087 7272 6971 1240 304
2 Total vehicle number = 2 56,147 24,906 6116 1159 268
3 Total vehicle number > 2 14,240 9464 2113 315 88

10 alcohol:
alcohol involved

1 Yes 6327 3183 1209 214 32
2 No 74,147 38,459 13,991 2500 628

11
motor:
motorcycle involved

1 Yes 78,400 40,480 14,780 2635 642
2 No 1517 738 292 56 15

12
drv_gender:
driver’s gender

1 Female 32,269 19,975 5481 792 185
2 Male 48,205 21,667 9719 1922 475

Total 80,474 41,642 15,200 2714 660
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