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*Department of Statistics, University of Wisconsin-Madison; †Department of Biostatistics and Medical Informatics, University of
Wisconsin-Madison; and ‡Department of Computer Sciences, University of Wisconsin-Madison

Microarray platforms are used increasingly to make comparative inferences through genome-wide surveys of gene
expression. Although recent studies focus on describing the evidence for natural selection using estimates of the within-
and between-taxa mutational variances, these methods do not explicitly or flexibly account for predicted nonindepen-
dence due to phylogenetic associations between measurements. In the interest of parsing the effects of selection: we
introduce a mixture model for the comparative analysis of variation in gene expression across multiple taxa. This class
of models isolates the phylogenetic signal from the nonphylogenetic and the heritable signal from the nonheritable while
measuring the proper amount of correction. As a result, the mixture model resolves outstanding differences between
existing models, relates different ways to estimate the across taxa variance, and induces a likelihood ratio test for se-
lection. We investigate by simulation and application the feasibility and utility of estimation of the required parameters
and the power of the proposed test. We illustrate analysis under this mixture model with a gene duplication family
data set.

Introduction

The availability of gene expression data en masse ad-
mits a genomic resolution comparative expression exper-
iment that measures many homologous gene transcripts
simultaneously across many taxa in the interest of deter-
mining which genes are likely to undergo selective forces
(Rifkin et al. 2003; Nuzhdin et al. 2004; Whitehead and
Crawford 2006). Through such an experiment, the investi-
gator may determine the relative strengths of neutral drift
and natural selection forces on gene expression traits (Fay
and Wittkopp 2008) at the single gene level while isolat-
ing whole groups of genes that act together and that might
have a common evolutionary history. These investigators
propose the use of the variance within and between taxa
to determine the strength and form of hypothesized selec-
tion forces. The expression of each gene is a single, con-
tinuously valued trait, and, as in the usual comparative
experiment, the analysis is potentially obfuscated by the
evolutionary dependence common to the taxa (Felsenstein
1985; Harvey and Pagel 1991; Martins and Garland 1991;
Purvis and Garland 1993; Garland et al. 2005; Rohlf
2006).

To account for this dependence, we may examine the
structured form of the phylogenetic covariance matrix de-
fined between taxa. The investigator typically considers
the evolutionary relationship evidenced by a phylogenetic
tree estimated from molecular sequence characters, but, for
model-based comparative analyses, we wish to translate
these trees into covariance matrices. Under the assumption
of a Brownian motion process underlying the evolution of
the trait, we may construct a phylogenetic covariance from
a known tree (Felsenstein 1988). For general phylogenetic
covariance matrices, Martins and Housworth (2002) sug-
gested an eigenvector decomposition to identify variance
with specific tree shapes. In Corrada Bravo et al. (2008),
we developed a new algorithm for estimating a tree and
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its matching Brownian motion covariance directly from
observed continuous trait data. As opposed to methods like
neighbor joining (Saitou 1987), this method globally opti-
mizes a projection criterion over all possible tree topolo-
gies using proven efficient methods for combinatorial
optimization. For expression from gene duplication fami-
lies, Gu (2004) and Oakley et al. (2005) both reparame-
terize the mutational rates on each branch of a known tree
covariance allowing it to better fit the phylogeny informa-
tion. Of particular note, the addition of an error component
allows these covariances to extend to a model for the en-
tire experiment with a single covariance matrix (Ives et al.
2007; Felsenstein 2008).

Practically, linear models model both dependence and
error by implicitly assuming a covariance structure that
decomposes the observed or experimental variance. Such
decompositions are especially desirable because they cor-
respond to known structures in the experiment. Lynch
(1991) defines a mixed-effects model across multiple traits,
capturing the phylogenetic structure in a relationship ma-
trix G and covariance between traits as a series of single pa-
rameter variance components. Although adapting Lynch’s
model for biological replicate data, Christman et al. (1997)
extend a memetic, due to Cheverud et al. (1985), where
the trait value (T ) is separated into a phylogenetic compo-
nent (P), a specific value (S), and a random error compo-
nent (E), namely T = P+S+E. This decomposition leads
the authors to conclude that Lynch’s model isolates heri-
table effects (P+ S) from noise (E) but fails to separate
them from one another (P from S). Housworth et al. (2004)
reformulate Lynch’s model to address this deficiency by
emphasizing a parameter that indirectly estimates the de-
gree of phylogenetic signal in the sample. Guo et al. (2007)
fit three types of Bayesian-flavored mixed-effects models
each parameterizing an increasing amount of phylogenetic
signal, finding that modeling the degree of signal present
yields better models.

The importance of determining the amount of phylo-
genetic signal in a sample cannot be understated. If there is
a phylogenetic signal, the comparative analysis ought to
find and remove the extra variation. If no signal can be
detected, then corrective methods will overzealously bias
the final estimates. Permutation tests at the level of tree
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estimation offer a way of testing for the presence of a sig-
nal or not (Blomberg et al. 2003). Pagel (1999) introduced
λ as a measure of the strength of the signal and de-
veloped a likelihood ratio test (LRT) for its presence. A
continuous estimate carries more information than a di-
chotomous hypothesis test and should indicate a strong
signal: we ought to apply an appropriate phylogenetic
correction.

Our goal in this paper was to integrate a framework
for studying selection forces into phylogenetic, variance-
decomposing models in a gene expression context. With
respect to tests of selection, Rifkin et al. (2003) proposed
the use of the estimated mean squares to model expected
variation between and within taxa. In this framework, ev-
idence of deviation from expectation under neutrality is
evidence of the effect of natural selection. Nuzhdin et
al. (2004) revised this idea using nested random effects
in an analysis of variance (ANOVA) model and propos-
ing the numerator and denominator of the standard un-
corrected F ratio to be estimates of the between- and
within-taxa variance. In particular, they give forms of the
tests that distinguish between purifying and adaptive selec-
tion. Whitehead and Crawford (2006) continue the use of
plain mean square estimates, adding a test for stabilizing
selection.

In this article, we present a mixture model for the
covariance in order to resolve predecessor models’ in-
ability to separate phylogenetic effects from nonphylo-
genetic ones. In such a model, the necessary degree of
correction is freely estimated so the investigator may draw
inferences on parameters unconfounded by dependence.
We discuss the convergence of existing models by demon-
strating the relationships between their assumptions on the
covariance; the mixture formulation covers a continuum of
models set between independent contrasts and the class of
phylogenetic mixed-effects models. We describe the main
assumptions and implications of the model from the prac-
tical analysis point of view, illustrating its effect with a
simulation study and demonstrating its use in the study
of gene family evolution in Saccharomyces cerevisiae
(Oakley et al. 2005).

Methods

We are interested in modeling the variance of gene
expression measurements, Ygr = (Ygr1, . . . ,YgrT ), which
are made across the T taxa of a known phylogenetic
tree for g = 1, . . . ,G many genes with r = 1, . . . ,n
many microarray replicates. Through a Brownian mo-
tion process (Felsenstein 1985), a rooted, bifurcating,
phylogenetic tree has a well-understood translation into
the covariance matrix of a multivariate normal random
vector.

Pagel (1999) and Freckleton et al. (2002) introduce
the parameter λ as a measure of the strength of phyloge-
netic correlation or the “loss of history,” which induces a
covariance matrix V (λ ). In defining V (λ ) to be a phylo-
genetic covariance matrix whose off-diagonals are multi-
plied by λ , the authors implicitly assume that opposing the

phylogenetic structure V0 is a specific, nonphylogenetic
structure Λ0:

V (λ ) = [λJT +(1−λ )IT ]◦V0

= λV0+(1−λ )Λ0. (1)

Here, JT is a T × T matrix of ones, IT is the identity
matrix of the same dimension, and ◦ is the elementwise
(Hadamard) product. We define Λ0 to be the diagonal ma-
trix with the same main diagonal as V0 and assume that
0� λ � 1.

Adding the experimental error to this variance, we
might model the variability of this set of measurements as

Var(Ygr) =τ2aλV0+ τ2a(1−λ )Λ0+σ2IT (2)

=
τ2λ

τ2+σ2 a(τ2+σ2)V0

+
τ2(1−λ )
τ2+σ2 a(τ2+σ2)Λ0

+
σ2

τ2+σ2 (τ
2+σ2)IT (3)

=p1(κ1V0)+ p2(κ1Λ0)+ p3(κ2IT ), (4)

where τ2 is the rate of variation in the expression trait
across taxa, σ2 is the rate of variation within taxa, and a
is a nuisance scale factor accounting for the difference in
units between sequence-based trees (typically, the expected
number of sequence substitutions) and the log ratio scale of
the gene expression measurements. This point is discussed
further in the following sections. The proportions p1, p2,
and p3 are constrained to sum to 1, and κ1 and κ2 are mea-
surements of total variation on the sequence scale and the
expression scale.

This variance has two important interpretations. The
relative rate interpretation (eq. 2) expresses the variance
in terms of rates of mutation so that sequence-based mod-
els and expression-based models of evolution may be com-
pared. The second mixture model interpretation (eq. 4) is
that p1, p2, and p3 represent the proportion of the ob-
served variance attributable to certain archetypical signals:
the phylogenetic history, nonphylogenetic variation, and
within-taxa variation, respectively. One should note that
this is precisely the desired decomposition of the vari-
ance into T = P+S+E components from Christman et al.
(1997).

Under this second interpretation, formalized in the
following section, these parameters are estimable and ev-
idence for selection forces can be evaluated. It may ap-
pear that a density with this mixture covariance is not
identifiable because different sets of (ppp,κκκ) yield the same
marginal covariance. In the mixture model, those densities
are not the same; that is, two identifiable mixtures may pro-
duce the same marginal covariance.

A Phylogenetic Mixture Model

We suppose that Ygr follows a mixture distribu-
tion with variance equation 4 and some mean vector µµµ .
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The mixture model probability density function of Ygr is
given by

Pr(Ygr;p,µµµ,κκκ,V0,Λ0, I0) =p1 f (Ygr|µµµ,κ1V0)

+ p2 f (Ygr|µµµ,κ1Λ0)

+ p3 f (Ygr|µµµ,κ2I0), (5)

where f (y|µ,Σ) is a normal density with mean µ and co-
variance Σ and p1 + p2 + p3 = 1, κ1,κ2 > 0. This mix-
ture model supposes that the observed variation has three
sources, the correlated phylogenetic signal, the uncorre-
lated nonphylogenetic signal, and residual experimental
variance each represented by the three distributions.

These component distributions may be interpreted as
particular archetypical scenarios. If the data show phy-
logenetic signal (a particular type of nonindependence),
then we believe that they come from the f (Ygr|µµµ,κ1V0)
component. If the data were independent but not identi-
cally distributed (each has is own specific variance), then
f (Ygr|µµµ,κ1Λ0) is the correct model. If the taxa were truly
independent and identically distributed (i.i.d.) noise, then
f (Ygr|µµµ,κ2I0) takes precedence. Mixing proportions p1,
p2, and p3 represent the relative strengths or the probabili-
ties of each component.

Because V0 and Λ0 are sequence-based estimates, they
require a different scale (κ1) than the expression log ratio–
based error term (κ2). Recall that V0 is a tree-structured
covariance, Λ0 is a diagonal matrix with the same diag-
onal entries (same specific variance but no covariance),
and we typically assume that I0 is the identity matrix of
size T .

This model can be fit using the Expectation Maxi-
mization algorithm (Dempster et al. 1977) outlined in the
Appendix, where the strategy is to find the maximum-
likelihood estimates (p,κκκ) and to transform them into (τ2,
σ2, λ , a). Some technical details (Everitt and Hand 1981)
require that V0 and Λ0 are identifiable that the off-diagonal
entries of V0 are not too small or that V0 is a reasonable tree
estimate, a case readily checked by the investigator.

Testing Selection Hypotheses

We consider the evidence in favor of natural selection
forces characterized by the variance between and within
taxa (Rifkin et al. 2003) and the ratio between them, the
F ratio. Nuzhdin et al. (2004) identify genes with both
variance estimates low as undergoing stabilizing selection,
genes with low F ratios may be undergoing balancing se-
lection, and genes with large F ratios may undergo adap-
tive divergence. Whitehead and Crawford (2006) add the
constraint that genes undergoing adaptive divergence ought
to favor a particular direction, that is, correlate with an ad-
ditional environmental covariate.

The variance estimates in these studies vary: the
first article uses the mean squared error for the variance
within taxa and the mutational variance scaled by time
for the variance between taxa. The second uses the vari-
ance of a nesting factor (species) and the nested factor
(line). The last uses the variance among the population

means and the variance within populations. Using these
ANOVA, sums of squares implicitly assumes the following
variances,

Var(Ygr) = σ2
errorIT

(Rifkin et al. 2003) (6)

= σ2
speciesIT +σ2

line (species)IT

(Nuzhdin et al. 2004) (7)

= σ2
pop.IT +σ2

individual (pop.)IT

(Whitehead and Crawford 2006). (8)

Although these studies do consider phylogenetic cor-
rections at other points in their analysis, their ANOVA
mean square estimates for the variances are uncorrected for
possible phylogenetic dependence (they use diagonal IT ).

In our mixture parametrization, τ2 is the gene-specific
between-taxa variance (numerator of the F ratio) and σ2

is the gene-specific within-taxa variance (denominator of
the F ratio). Because σ2 is interpreted as the rate of mu-
tation in the expression trait, the relative sizes of τ2 and
σ2 imply the following different evolutionary scenarios.
When τ2 = σ2, the signal is consistent with a Brownian
motion process evolving along the given tree, represent-
ing the neutral drift null hypothesis. If τ2 < σ2, there
is less expression divergence than predicted by sequence
divergence, suggesting that the gene may be undergoing
balancing selection. Inversely, τ2 > σ2 favors directional
selection because the observed divergence is larger than ex-
pectation. We relax the requirement that the residuals must
also show correlation with environmental covariates, that
is, that they show a particular direction as well. If τ2 and
σ2 are both “small,” then we conclude that there is evi-
dence of purifying or stabilizing selection. Because it is
not clear what constitutes an unusually small variance, we
do not consider testing stabilizing selection hypotheses at
this time (see Discussion section).

For relative rate type models, a neutral model vari-
ance supposes that the divergence given by a sequence-
based tree directly predicts the divergence in the expression
trait up to a mutation rate constant, that is, it assumes that
σ2 = τ2 or that

Var(Ygr) = 2σ2(p1aV0+ p2aΛ0+ p3IT ), (9)

where p1 = λ/2, p2 = (1−λ )/2, and p3 = 1/2. This vari-
ance may be used as the null model for a LRT, which
compares the log likelihoods of the model fit under the
general mixture variance (eq. 4) and the model under the
neutral variance (Hulsenbeck and Rannala 1997). Because
the within- and between-taxa variance estimates can take
several possible values, we can test for evidence of each
of these types of selection using a single omnibus test. If
the test is not significant, we cannot reject the neutral drift
model, but if it is significant, we must look at the estimates
of τ2 and σ2 to determine the type of selection evidenced.

To conduct the test, compare the LRT statistic versus
its asymptotic distribution, where ll(σ2,τ2,λ ) is the log
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FIG. 1.—Example tree for simulation study.

likelihood of the unrestricted model and ll0(σ2,λ ) is the
log likelihood of the model when σ2 = τ2:

LR=−2{ll(σ̂2, τ̂2, λ̂ )− ll0(σ̃2, λ̃ )} ∼ χ2
1 , (10)

for unrestricted maximum-likelihood estimates (σ̂2, τ̂2, λ̂ )
and estimates (σ̃2, λ̃ ) under the null model. An algorithm
for computing both likelihoods is given in the Appendix.

Results
Simulation: Need for Corrections

Although it is well accepted that phylogenetic correc-
tions are necessary in comparative studies, we construct the
following simulation study to illustrate the cost of failing to
correct a phylogenetic signal on the statistical evolutionary
hypotheses posited above. Suppose that V0 is the following
tree-structured matrix with corresponding tree in figure 1,
that is, the main diagonal entries are the specific variances
for each taxa (total branch length) and the off-diagonals are
the covariances between taxa (shared branch lengths). For
example, with reference to the branch lengths in figure 1,
Var(Taxa A) = 1+2+1+1 = 5 = [V0]11; Var(Taxa B) =
1+ 2+ 1+ 3 = 7 = [V0]22; and Cov(Taxa A,Taxa B) =
1+2+1= 4= [V0]12.

V0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

5 4 3 1 0

4 7 3 1 0

3 3 7 1 0

1 1 1 5 0

0 0 0 0 8

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Under the mixture model proposed above, we define
the selection hypotheses in table 1. We construct an
artificial array of 350 genes (50 genes undergo each
type of selection) and an artificial experiment where
each gene is measured 500 times (5 taxa in V0 above,
100 individuals). λ is generated by sampling a Uni-
form(0,1) random variable once for each of the 350 genes.
Each gene has replicates drawn from one of three sources

Table 1
Simulation Design

Number
Hypothesis τ2 σ2 of Genes Plot Color

Neutral drift 1.00 1.00 50 Black
Balancing selection, weak 1.00 5.00 50 Light red
Balancing selection, strong 1.00 10.00 50 Dark red
Directional selection, weak 5.00 1.00 50 Light blue
Directional selection, strong 10.00 1.00 50 Dark blue
Stabilizing selection, weak 0.10 0.10 50 Light green
Stabilizing selection, strong 0.05 0.05 50 Dark green

Total 350

with probabilities p1 =
τ2λ

τ2+σ2 , p2 =
τ2(1−λ )
τ2+σ2 , and p3 =

σ2

τ2+σ2 . The details of the data generation are given
below.

Xgr ∼Multinomial(p1, p2, p3) (11)

Ygr|{Xgr = 1} ∼N (0,(τ2+σ2)V0) (12)

Ygr|{Xgr = 2} ∼N (0,(τ2+σ2)Λ0) (13)

Ygr|{Xgr = 3} ∼N (0,(τ2+σ2)I0). (14)

Note that we choose a large number of individuals (ar-
rays) to illustrate this problem clearly; if the problem exists
for a large number of individuals, then it ought to exist for
a small number of individuals. Also, all the methods pre-
sented operate gene by gene so that these conclusions scale
to any sized experiment.

We are most interested in considering the adequacy
of methods based on ANOVA sums of squares. For each
gene g, the mean square approach generates estimates from
the usual one-way ANOVA table and considers significant
effects using an F-ratio test. Because there are T = 5 rows
in V0, and we select n= 100 replicates, the proper reference
for this test is the F distribution with 4 and 495 degrees of
freedom.

The resulting simulated data are analyzed in figure 2,
which plots the logged values of τ2 and σ 2 under the
scenarios tabled above. The seven versions of the variance-
based hypotheses are color coded: the black points repre-
sent a neutral drift null scenario, the two shades of blue
are genes undergoing strong and weak directional selec-
tion; two shades of red, balancing selection and two shades
of green, stabilizing selection. Two gray lines indicate the
level 0.05 two-sided thresholds for the F-ratio test. Points
above the upper threshold show evidence of directional se-
lection. Points below the lower threshold show evidence of
balancing selection. We do not implement the correspond-
ing stabilizing selection tests.

The top two panels illustrate the same data when V0
captures the true correlation between taxa. The true values
of τ2 and σ2 are the same for every gene in the same group,
so the spread of points represents sampling variability (and
to some extent the effect of λ ). The plot on the left (fig. 2a)
shows the ANOVA estimates and on the right (fig. 2b)
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FIG. 2.—Simulation example. Simulation under ideal settings for selection hypotheses defined in the text with a tree-structured covariance (V0)
and a nonphylogenetic covariance (I0) shows that the ANOVA estimators do not discriminate between the hypotheses. The gray lines identify tests
of selection: the corresponding two-sided F-test thresholds at α = 0.05 for F4,95. Panel (a) shows the ANOVA estimates of data generated under V0;
panel (b) shows the mixture model estimates under V0; and panel (c) illustrates that the ANOVA estimates are inflated even under i.i.d. characters (the
primary ANOVA assumption).

shows the estimates from the mixture model. Intuitively,
both variance estimation procedures partition the total
observed variance into within- and between-taxa parts. Be-
cause we assume the mixture model is the true generat-
ing model, we can see that the ANOVA estimates tend to
over estimate σ2 and make up for the excess by increasing
the variance in the estimate of τ2. In a joint bias–variance
tradeoff, the ANOVA estimate trades low variance in the
σ2 estimate for bias and higher overall error in the τ2

estimate.
The left-hand plots (panels 2a and c) employ the mean

square estimates for the between- and within-taxa vari-
ances. In panel 2a, because all the groups of genes in each
class of hypotheses are centered about the identity line, it is
clear that choosing genes using their F ratio is not specific
for the directional alternative or the balancing alternative;
some genes from each group fall above or below the cor-
responding threshold. This pattern holds even in the lower
left plot (2c) where we assume the data really are i.i.d.

In addition to problems with the hypothesis tests, the
estimates of σ2 and τ2 appear overestimated when we do
not account for the dependence structure. In figure 2a and

c, the neutral drift cluster and the stabilizing selection clus-
ters (which are and should be centered on the identity line)
appear biased much farther up the identity line than they
should.

Next, we contrast these observations with the esti-
mates from with the mixture model (panel 2b). The plot
shows what we would ideally like to see: all the genes
clearly separate based on the true values of their param-
eters. The effects are clearly separated implying that there
are a sufficient number of replicates to identify all the ef-
fects. Note that this scenario represents artificially ideal
conditions: a large number of observations, good separa-
tion, each gene class has the same true parameter. The point
is that the mean square estimates do not behave as expected
under this optimal setting and we would not expect them
to do so under more realistic experimental conditions. In
practice, we might expect each gene to have a different set
of parameters (τ2 and σ2) and the groups to overlap signif-
icantly. Furthermore, the proportion of genes undergoing
natural selection may alter the plot significantly, the plot
will depend on the proportion of genes under each type of
selection and their relative strengths.
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Simulation: Calibration

As we discussed in the Methods section, the mix-
ture model relies on a V0 matrix that captures the phylo-
genetic relationship between the taxa. Additionally, tests
of selection hypotheses require a model that preserves the
relationship between τ2 and σ2. Because estimates of the
phylogenetic tree are typically obtained from sequence in-
formation (or similar independent sources), there is no
reason to believe that it is of the appropriate scale for
expression level data. If the given covariance structure is
scaled too small, then estimates of τ2 will be artificially
large; likewise, if the given covariance is too large, τ2 will
be too small. The mixture model variance includes the pa-
rameter a to account for this scale (eq. 2).

We need to emphasize that the mixture assumption,
made in the Methods section, is necessary to obtain an
identifiable estimate of a. Had we assumed a marginal
mixed-effects model (Lynch 1991; Martins and Hansen
1997; Guo et al. 2007) with the same variance (eq. 2),
the scale parameter and the variance would only be es-
timable as aτ2. Practically, the investigator would have to
assume some value of a in order to conduct selection tests,
but this would create an uncorrectable bias in the testing
framework.

Figure 3 summarizes the scaling problem and this cor-
rection using the same set of seven hypotheses from the
simulation section. For these plots, we assume that we
know V0, the same as in the last section, but that data are
generated from scaled versions of V0. In the left panels (3a
and d), the true V1/100 = V0/100 is 100 times smaller than
the given V0. In the middle (3b and e), the scale is correct.
In the right panels (3c and f ), the true V100 = 100V0 is 100
times larger than the given V0.

The top row of figure 3 demonstrates the effect of
the wrong-sized covariance by fitting the mixture with V0
given. Note that estimates are drawn uniformly downward
in panel 3a but pushed upward in panel 3c. For reference,
panel 3b is the same plot from figure 2b. Fewer points ap-
pear in the latter plot because estimates may be unobtain-
able when this scaling is too far off. The bottom row of
figure 3 shows the effect of estimating nuisance scale a for
large and small true values.

It makes sense that the procedure fails for a very small
because this case corresponds to the scenario where the
heritable component is weak, that is, there is very little sig-
nal. At present, this case can be identified by observing an
unusually large proportion of genes for which λ̂ = 0 be-
cause very small a forces λ to shrink even if the signal is
present.

Simulation: Tests

Based on the data presented in the next section, we
choose more realistic strong and weak presentations of bal-
ancing and directional selection forces for studying the
LRT. As we mentioned in the Methods section, each hy-
pothesis depends on the ratio τ2

/σ2 assuming that τ2 = σ2

represents the null hypothesis. We set n = 5,10 for small
sample microarray studies and n= 15,30,50 to check that
the asymptotic distribution is correctly chosen. For each

hypothesis, we draw a simulation data set by selecting three
nuisance parameters (σ2,a,λ ),

σ2 ∼ χ2
1 , (15)

a= a′|a′ > 1, a′ ∼ χ2
1 (16)

λ ∼ Uniform(0,1), (17)

and computing the LRT. We repeat this procedure 10,000
times, tabulating the proportion of tests with P values less
than 0.05 in table 2. Repeating the procedure 50 times
allows us to compute the simulation error (in all cases
< 0.005). Note that we consider a > 1 because the cali-
bration simulation indicates that when a< 1, the available
signal is hard to estimate.

Although the LRT has reasonable power only at mod-
erate sample sizes (n = 15), it should be noted that it is
an omnibus test in the sense that it tests for any deviation
from σ2 = τ2. It is likely that a more powerful test can
be built when it is of interest to test for either balancing
or directional selection. One could also conduct these tests
separately (as in Whitehead and Crawford 2006), but that
procedure would raise concerns about multiple testing.

Housworth et al. (2004) observed that the small num-
ber of replicates available in comparative experiments may
not reach the statistical power necessary to make strong in-
ferences. For gene expression data, we observe elsewhere
(Eng et al. 2008) that this sort of per gene analysis may
also suffer from low power but propose that clustering to-
gether genes with similar a covariance structure may gen-
erate additional power. That is, if we believe that several
genes evolved in concert and are willing to draw selec-
tion inferences on a whole group (i.e., a each member of
a group undergoes the same selection force versus a sin-
gle gene under a unique force), then we may employ genes
as identical replicates in order to increase the power of the
test. For example, if we have n= 5 replicates, then the pow-
ers tabulated are quite poor. If we are able to suppose that
g= 2 genes (or experiments in the example in the next sec-
tion) have the same covariance structure, then there are ef-
fectively n = 5× 2 = 10 available replicates so the power
nearly triples for the balancing and stabilizing selection
hypotheses.

Gene Family Data Example

The application of phylogenetic techniques to gene
duplication families in the yeast S. cerevisiae supposes
that the members of these families have sequences that
are linked to a common ancestor sequence, the target of
a duplication event, and that the expression level of these
descendent sequences is itself a trait subject to evolution-
ary forces (Thornton and DeSalle 2000; Gu 2004; Oakley
et al. 2005). In such an analysis, the members of these fam-
ilies constitute the taxa of interest and the models devel-
oped in Gu (2004) and Oakley et al. (2005) test how well a
sequence-derived covariance matrix matches the predicted
history of the expression trait. Because there is good rea-
son to expect a phylogenetic structure between the genes,
we will re-analyze the data set presented in Oakley et al.
(2005) to illustrate the mixture model.
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FIG. 3.—Calibration problem/solution. Estimation of σ2 and τ2 is sensitive to mis-specifying the scale of the phylogenetic covariance matrix, a.
When a is not accounted for (panels a–c), estimates are shrunk for a small (panel a). When a is big, estimates are too big (panel c). The ideal pattern
appears in the top center (panel b). Simultaneously estimating a fixes the problem (panels e and f ) for all but the smallest case (panel d).

Using Gu’s procedure (2004) for searching the pro-
teome to identify 10 large gene families (between 7 and 18
genes each), Oakley et al. (2005) process expression ar-
rays from 19 experiments from the Stanford Microarray
Database (http://genome-www5.stanford.edu) and com-
pute maximum-likelihood phylogenetic trees for each fam-
ily. Each experiment represents a different experimental
condition, so we may draw inferences about the evidence
of selection under particular conditions. There are 19 ex-
periments each of which contains some of the 10 gene
families for a total of 169 family-specific measurements.
Each experiment is a separate data set where g corre-
sponds to a gene family, t a single transcript in the gene
family, and r an array in the experiment. The data analyzed

Table 2
Simulated Power for LRT

Selection
Hypothesis

Estimated Power

τ2
/σ2 n = 5 n = 10 n = 15 n = 30 n = 50

Neutral drift (null) 1/1 0.017 0.034 0.038 0.049 0.050
Balancing, weak 1/2 0.006 0.079 0.178 0.374 0.573
Balancing, strong 1/5 0.002 0.223 0.517 0.884 0.981
Directional, weak 2/1 0.034 0.091 0.121 0.336 0.549
Directional, strong 5/1 0.043 0.167 0.278 0.648 0.845

NOTE.—The neutral drift null hypothesis row corresponds to the level
of the test. The four selection hypotheses rows are estimated statistical
power at level 0.05. All powers were estimated with 10,000 replicates
and 50 simulation replicates (simulation errors < 0.005).

are available from the supplementary materials from
Oakley et al. (2005) (http://www.lifesci.ucsb.edu/eemb/
labs/oakley/pubs/MBE2005data/).

First, we consider the application of an ANOVA
model, which assumes that the residuals from its fit will be
i.i.d. For each gene family in table 3, the maximum residual
correlation between all pairs of taxa over all replicates in all
experiments demonstrates that the residuals are frequently

Table 3
Diagnostics for ANOVA Residuals

Maximum Residual Levene’s Test
Gene Family Correlation (P Value)

ABC Transporters 0.40 0.0093
ADP Ribosylation 0.56 0.0751
Alpha Glucosidases 0.71 0.1139
DUP 0.84 0.3998
GTP Binding 0.51 <0.0001
HSP DnaK 0.78 <0.0001
Hexose Transport 0.93 <0.0001
Kinases 0.43 0.0001
Permeases 0.60 <0.0001
Putative Helicases 0.75 0.0626

NOTE.—The ANOVA method for estimating the mutational variances
assumes that the residuals will be i.i.d. The maximum residual correlation
between pairs of taxa over all replicates in all experiments demonstrates
that the residuals are frequently not independent (8 of 10 have correlation
greater than 0.50) and Levene’s test for the homogeneity of variances
shows that the identically distributed assumption holds for only 4 of the
10 families.



2370 Eng et al.

Table 4
Yeast Gene Family Data

Gene Family Number of
Tests at Level 0.05

(Number of Taxa) Experiments λ > 0.5 Directional Balancing

ABC Transporters (8) 17 4 1 0
ADP Ribosylation (7) 17 7 0 0
Alpha Glucosidases (6) 19 4 1 0
DUP (10) 13 8 0 0
GTP Binding (11) 17 7 0 1
HSP DnaK (10) 16 1 0 1
Hexose Transport (18) 14 8 0 7
Kinases (7) 16 8 2 1
Permeases (17) 12 5 0 1
Putative Helicases (11) 11 2 0 4

NOTE.—Gene family data analyzed under the mixture model. A small
number of experiments show strong phylogenetic signal (λ > 0.5),
whereas the number of experiments with level 0.05 significant ratios
τ2/σ2 large (directional) or small (balancing) are tabulated above.

not independent (8 of 10 families have correlation greater
than 0.50 in at least one pair of taxa) and Levene’s test
for the homogeneity of variances rejects the identically dis-
tributed assumption for 6 of the 10 families. These obser-
vations reinforce the need for an adjustment to account for
the violation of the i.i.d. assumptions.

The same 10 gene families appear in table 4, which
lists the number of experiments in which the gene family
was measured, the number of these experiments that show
some evidence of phylogenetic signal (λ > 0.5) and the
number of experiments that may had significant selection
LRTs at level 0.05. The tests are split into balancing and
directional selection hypotheses. Tables of the experiments
with significant tests and their P values are available in the
supplementary materials.

The plot in figure 4 shows the ANOVA estimates and
the mixture model corrected estimates on log scale (τ2 is
between taxa and σ2 is within taxa). We have enlarged and
colored points with a significant LRT at level 0.05 to il-
lustrate their positions on these plots. As in the simulation
plots, points about the identity line favor neutral expecta-

tions and points significantly distant from the line favor se-
lection hypotheses. Not every extreme point is consistently
highlighted because each test has a different sample size
(number of genes in the family).

The ANOVA estimates appear to have a strong trend
where τ2 is smaller than expected, reflecting the tendency
of the ANOVA estimate to favor σ2 at the cost of shrink-
ing τ2 to zero if necessary (we saw this same pattern in
fig. 2). The mixture estimates are more in line with neutral
expectations.

The third panel (fig. 4c) subtracts the estimated com-
mon variance estimate under the neutral model; this is
the scale that the LRT considers for significant deviations
from the common variance. We see that most of the points
with nonsignificant tests appear near the origin (the un-
restricted maximum-likelihood estimates are close to the
neutral variance estimate) and points further from the ori-
gin have significant test statistics.

Concordant with the finding in Oakley et al. (2005)
that most families have a “nonphylogenetic” model in dif-
ferent experimental conditions (117 of 152), a large pro-
portion of experiments corrected with the mixture model
show weak phylogenetic signal, λ < 0.5 (115 of 169). This
raises some questions about how to interpret the results be-
cause Whitehead and Crawford (2006) only defined selec-
tion scenarios for τ2 and σ2 supposing that λ = 1. We do
find, however, that the Hexose Transport gene family ap-
pears to show strong phylogenetic signal in 8 of 14 exper-
iments versus 12 of 14 in Oakley et al.’s analysis (2005).
This family is also strongly represented in the balancing
selection list (5 of 7 significant experiments).

As an illustration for combining experiments, the fam-
ily of heat shock proteins has 10 genes and the data sets
examined in Oakley et al. (2005) contain two separate heat
shock–related experiments with n = 2 and n = 7 arrays
each. When analyzed separately, neither experiment has a
significant LRT. But, if we suppose that the experiments
may be treated as replicates, there are n = 9 arrays avail-
able and the LRT is significant at level 0.05 (P = 0.037)
with ratio 0.286 indicating balancing selection.

FIG. 4.—ANOVA and mixture model estimates for data from Oakley et al. (2005). Uncorrected ANOVA estimates (a) show a marked trend toward
small between-taxa variances (τ2), whereas corrected estimates (b) fit more neutral expectation. The effect of the common variance in the neutral model
is removed in panel (c). The ANOVA estimates show the same low variance pattern in the σ2 estimate as in figure 2. Ten extreme points are omitted
from panels (b and c) to make the scales comparable. Points with significant tests at level 0.05 are enlarged and colored red for balancing and blue for
directional selection evidence.
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Discussion

We have investigated the estimation of the variance
of expression traits within and between the tips of a given
phylogenetic tree, demonstrating a problem with current
analyses and proposing a solution. The model we devel-
oped anticipates the use of microarray platforms to make
general inferences about the strength of evidence for natu-
ral selection forces in expression traits. As described pre-
viously, mutational variability/mean square type selection
inference relies on estimating τ2 and σ2. We have paid less
attention to the frameworks put forward in Gu (2004) and
Oakley et al. (2005) that define natural selection on the ba-
sis of a likely history parameterized in the form of V0. This
model is also different from the Bayesian type Guo et al.
(2007) model, which allows one of some, all, or no phylo-
genetic signal; we emphasize the transformative role of λ ,
τ2, and σ2 in the sense that they also find a tree-structured
covariance matrix consistent with observed data. Further-
more, likelihood ratio–based hypothesis testing is straight-
forward with these parameters.

Because this model only considers likelihood-based
decompositions of the variance, we can augment it with the
application of standard statistical linear model theory to ac-
commodate much more complicated experiments. In time
course expression experiments, this form of linear model
may account for the correlation over time (Guo et al. 2007)
and also approximate gene associations by clustering genes
with similar mean and variance effects together (Eng et al.
2008). For comparison, Oakley et al. (2005) corrected for
correlated adjacent time points by using the first-order dif-
ferences, whereas Gu (2004) found the effect negligible. It
is not unbelievable that more complex factors like expres-
sion under various conditions/treatments across taxa will
be of interest and the model we have presented may serve
as a useful component in that analysis.

Supplementary Material

Supplementary file 1 including tables of signif-
icant gene families from the example analysis are
available at Molecular Biology and Evolution online
(http://mbe.oxfordjournals.org/).
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Appendix
EM Algorithm for V0 and Λ0 known up to scale a for a
single gene.

For all replicates r= 1, . . . ,R of a single gene, let C be
the class variable taking values 1, 2, and 3 for components
N (µ,κ1V0), N (µ,κ1Λ0), and N (µ ,κ2IT ), respectively.
Suppose T is the rank of V0 (the number of taxa). The algo-

rithm stops when the observed data log likelihood (eq. 5)
increases by less than 0.001. Because the estimate µ does
not depend on C, its estimate is µ̂ = 1

R ∑R
r=1(Z

′Z)−1Z′Yr for
design matrix Z (e.g., for balanced replicates, these are the
group means).

1. E-Step

Ĉri = E(Cr = i|Yr, µ̂, κ̂1
(t), κ̂2

(t), p̂(t)i ),

=
P(Yr− µ̂ |Cr = i, κ̂1

(t)κ̂2
(t))p̂(t)i

∑3
i′=1 P(Yr− µ̂|Cr = i′, κ̂1

(t), κ̂(t)2 )p̂
(t)
i′
.

2. M-step

p̂(t+1)
i =

∑r Ĉri

R
,

κ̂(t+1)
1 =

1
T ∑R

r=1[Ĉr1(Yr− µ̂)′V−1
0 (Yr− µ̂)+Ĉr2(Yr− µ̂)′Λ−1

0 (Yr− µ̂)]
∑R

r=1 Ĉr1+Ĉr2
,

κ̂(t+1)
2 =

1
T ∑R

r=1[Ĉr3(Yr− µ̂)′(Yr− µ̂)]
∑R

r=1 Ĉr3
.

The required estimates from this algorithm are con-
verted back to the original parametrization:

τ̂2 = κ̂2(1− p̂3),

σ̂2 = κ̂2(p̂3),

λ̂ =
p̂1

1− p̂3
,

â=
κ̂1

κ̂2
.

Null Model EM Algorithm for LRT.

The previous EM estimates (τ2,σ2,λ ,a) under the
unrestricted full model to compute the LRT, we compare
the log likelihood of that model with the log likelihood of a
restricted model (neutral drift). Supposing that τ2=σ2, the
mixing proportions become (p1, p2, p3) =

(
λ
2 ,

1−λ
2 ,

1
2

)
.

The component densities are components N (µ,κ1V0),
N (µ ,κ1Λ0), and N (µ,κ2IT ) where τ2 = σ2 = κ2/2
and a= κ1/κ2.

1. E-Step

Ĉri = E(Cr = i|Yr, µ̂, κ̂1
(t), κ̂2

(t), p̂(t)i ),

=
P(Yr− µ̂|Cr = i, κ̂1

(t)κ̂2
(t))p̂(t)i

∑3
i′=1 P(Yr− µ̂|Cr = i′, κ̂1

(t), κ̂(t)2 )p̂
(t)
i′
.

2. M-step

p̂(t+1)
1 =

∑r Ĉr1

2∑r Ĉr1+Ĉr2
,

p̂(t+1)
2 =

∑r Ĉr2

2∑r Ĉr1+Ĉr2
,

κ̂(t+1)
1 =

1
T ∑R

r=1[Ĉr1(Yr− µ̂)′V−1
0 (Yr− µ̂)+Ĉr2(Yr− µ̂)′Λ−1

0 (Yr− µ̂)]
∑R

r=1 Ĉr1+Ĉr2
,

κ̂(t+1)
2 =

1
T ∑R

r=1[Ĉr3(Yr− µ̂)′(Yr− µ̂)]
∑R

r=1 Ĉr3
.
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Again, we obtain the required estimates by converting
back to the original parametrization:

σ̂2 = κ̂2/2,

λ̂ = 2p̂1,

â=
κ̂1

κ̂2
.
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