
Spatial Genetic Structure of a Symbiotic Beetle-Fungal
System: Toward Multi-Taxa Integrated Landscape
Genetics
Patrick M. A. James1*¤, Dave W. Coltman1, Brent W. Murray2, Richard C. Hamelin3,4, Felix A. H. Sperling1

1 Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, 2 Natural Resources and Environmental Studies Institute, University of Northern

British Columbia, Prince George, British Columbia, Canada, 3 Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada, 4 Natural

Resources Canada, Québec, Canada

Abstract

Spatial patterns of genetic variation in interacting species can identify shared features that are important to gene flow and
can elucidate co-evolutionary relationships. We assessed concordance in spatial genetic variation between the mountain
pine beetle (Dendroctonus ponderosae) and one of its fungal symbionts, Grosmanniaclavigera, in western Canada using
neutral genetic markers. We examined how spatial heterogeneity affects genetic variation within beetles and fungi and
developed a novel integrated landscape genetics approach to assess reciprocal genetic influences between species using
constrained ordination. We also compared landscape genetic models built using Euclidean distances based on allele
frequencies to traditional pair-wise Fst. Both beetles and fungi exhibited moderate levels of genetic structure over the total
study area, low levels of structure in the south, and more pronounced fungal structure in the north. Beetle genetic variation
was associated with geographic location while that of the fungus was not. Pinevolume and climate explained beetle genetic
variation in the northern region of recent outbreak expansion. Reciprocal genetic relationships were only detectedin the
south where there has been alonger history of beetle infestations. The Euclidean distance and Fst-based analyses resulted in
similar models in the north and over the entire study area, but differences between methods in the south suggest that
genetic distances measures should be selected based on ecological and evolutionary contexts. The integrated landscape
genetics framework we present is powerful, general, and can be applied to other systems to quantify the biotic and abiotic
determinants of spatial genetic variation within and among taxa.
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Introduction

The current mountain pine beetle (MPB; Dendroctonusponderasae)

outbreak in western Canada is unprecedented in terms of extent

and severity and has had significant ecological and economic

consequences [1,2]. Bark beetle outbreaks are the product of

complex interactions among an endemic bark beetle, symbiotic

pathogenic fungi (e.g., Ophiostoma spp.), host trees (Pinus spp.),

landscape features, and climate [3,4]. Host tree mortality is the

result of the combined effects of beetle damage and fungi-induced

water stress [5,6]. Examination of the spatial apportionment of

genetic variance in these two species and how their respective

genomes are correlatedcan be useful in predictingoutbreak risk

and in understanding coevolution between bark beetles and their

associated fungi.

The mountain pine beetlehas a symbiotic relationship with

several fungi in the Ophiostomataceaefamily [7]. These fungi

provide benefits to the beetle including larvalnutrition, protection

from tree defenses, and stressing attacked trees to facilitate beetle

mass attack [5,8,9]. Likewise, the MPB provide the fungus with a

dispersal mechanism and access to a tree’s conductive tissues

[10,11]. Dispersal of fungal spores by the MPB can occur actively

through transport in highly specialized mycangia, or passively

through incidental transport on the beetle exoskeleton [10].

Previous work has investigated the phylogenetic history of this

beetle-fungal symbiosis [12] but no studies have yet examined or

compared the contemporary population genetic structure in these

two species. Otherstudies have compared the contemporary

genetic structure of interacting species including termites and

symbiotic fungi [13], ants and their cultivated fungi [14], and

other host-parasitoid interactions [15]. However, few of these

studies have compared contemporary genetic variation of

symbionts in a spatially explicit context, although the importance

of spatial heterogenetiy to species interactions and coevolution is

well accepted [15,16].

In this study we compare and contrast spatial genetic

variation in the mountain pine beetle and its primary fungal

symbiont G. clavigera. We assess the extent and pattern of genetic

PLoS ONE | www.plosone.org 1 October 2011 | Volume 6 | Issue 10 | e25359



structure in each species, whether these patternsin genetic

variability were associated with geographic location, an-

dwhether these patterns were similar between species. Then,

using a landscape genetics approach [17,18], we investigate

whether landscape features help explain observed genetic

variation in each species. Finally, we extend the landscape

genetics framework to include biotic variables and use beetle

and fungal genotypes in combination with landscape features to

model genetic variation of both species. This novel ‘integrated

landscape genetics’ framework allows us to test the hypothesis

that genetic variation within one symbiont can be used to

predict the genetic structure of the other (Figure 1). Here, the

reciprocal interactions between taxa can be thought of as

another type of ‘landscape’ that canfacilitate or constrain gene

flow and hence influence spatial genetic variation similar to an

‘‘extended phenotype’’ [19]. Our goal was to partition genetic

variance in both species that is explained by spatial, environ-

mental, and geneticfactors and to test the strength of the

different pathways among environmental and genetic variables

using constrained ordination (Figure 1).

Genetic variation of interacting species may be correlated for

several reasons: (1) genomes may interact directly through the

selective advantage of particular combinations of alleles (i.e.,

coevolution), (2) genomes may appear correlated because species

share similar life histories and/or movement patterns (e.g.,

symbioses), or (3) genomes may appear correlateddue to indirect

factors such as shared responses to environmental heterogeneity

(e.g., spatial dependence). Because microsatellite markers

aregenerally not correlated with adaptive variation [20], we

focus on the second and third possibilities. Here, the genetic

structure of the interacting symbionts acts as a surrogate

variable for unmeasured environmental or demographic pro-

cesses. Indentifying relationships between species movement

and spatial heterogeneity through the integration of environ-

mental and genomic variation is of fundamental importance to

understanding and predicting spatial population dynamics in

systems with tightly coupled and interacting species or

communities [21].

Methods

Study Area and Sampling
Beetles and fungi were collected in Alberta and British

Columbia, Canada in two sample periods (Figure 2, Table S1)

from visibly attacked mature lodgepole pine (Pinuscontorta) and

hybrid jack (Pinusbanksiana)-lodgepole pine trees. Permits were

obtained when required to cover both the collection and transport

of beetle and fungal materials. Parks Canada provided permits for

the mountain parks Kootenay and Yoho. Alberta Tourism, Parks,

and Recreation provided permits for collection in the Wilmore

Wilderness, Cypress Hills and around Canmore (Kananaskis). We

also received permission from Tembec to collect in their forest

around Sparwood.

There were three levels to the sampling design: (1) landscapes,

(2) sites within landscapes, and (3) individual trees within sites

(Figure 2; Table S1). Not all locations were sampled in both

periods. Landscapes were selected to represent a range of

ecoregions [22] at the leading edge of the MPB outbreak, with

up to five sites sampled in each landscape at a minimum of 5 km

apart (Table S1). The study area is approximately 158 000 km2,

and extends from 49.6u to 56.9unorth latitude and 114.4u to

121.9u west longitude. Beetle larvae and adults were sampled from

galleries within 50 phloem disks extracted from individual trees.

Full details onspecimen collection are found in Roe et al. [23] and

details on sampling locations are reported in the Table S1. In

addition to examining the entire study area, we examined twosub-

regions, a northern and asouthern, which reflect the progression of

the recent outbreak [2,24].

In total, 2943 individual beetles and 174single spore fungal isolates

were collected from 44sites within 16 landscapes. Fungal data were

corrected for clonality by removing individuals with identical

microsatellite profiles at all loci which resulted in 156 unique

isolates. Analysis was performed on allele frequenciesor matrices of

pair-wise Fst values summarized to the level of the landscape to

ensure adequate sample sizes for both species. Werestricted our

analysis to landscapes for which both fungal and beetle samples were

available. Fungi were sampled from galleries and adjacent wood

tissue [23]. We assessed whether there were differences in the level of

genetic structure of fungi isolated from both sources using AMOVA

(Smouse et al 2001). We pooled samples from different sources and/

or years if fungal source was not was not a statistically significant

predictor of molecular variance. Also, some landscapes were

sampled for beetle and fungi in both sample periods (GP, WK,

CA, CN; Table S1). We assessed the significance of year of sampling

in these locations using AMOVA to rule out the possibility that

observed spatial patterns were due to temporal variation. All

AMOVA were carried out using Arlequinv3.5.1.2 [25].

Molecular Markers
We used 13 microsatellite loci to identify genetic structure in the

mountain pine beetle [26] and 7 microsatellite locifor G. clavigera

[27]. All markers were in Hardy-Weinbergand linkage equilibri-

um. Allele frequencies were calculated for beetles and fungi within

each landscape and geo-referenced to the centroid of the

minimum convex polygon surrounding the sites that comprise

each landscape. Frequencies were standardized by the lowest value

and natural log-transformedwhile retaining zero values. Log-

transformation is necessary to account for statistical non-

independence among alleles within each locus [28].

Genetic Structure
Genetic structure for each species was assessed using a global

estimate of Fst and the landscape as the sample units [29]. We then

Figure 1. Conceptual depiction of integrated landscape
genetics framework in which multiple paths may connect
environmental features and the spatial genetic structure of the
mountain pine beetle and G. clavigera. Our objective was to
characterize and quantify these numbered paths using constrained
ordination and model selection. Paths for which we found support are
summarized in Table 5.
doi:10.1371/journal.pone.0025359.g001

Integrated Landscape Genetics
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used AMOVA [30] to partition fungal and beetle genetic variation

among the sample landscapes and the northern and southern

regions of the study area (Figure 2). We tested for isolation by

distance through plots of Fst against geographic distance (log-

transformed) for the entire study area and within the northern and

southern regions.

Variation in allele frequencies among landscapes for each

species was summarized and visualized using principal compo-

nents analysis (PCA) calculated using the rda function in the

veganpackage in R [31]. To assess concordance between beetle

and fungal spatial genetic variation we used a Procrustesrota-

tiontest, also known as co-inertia analysis, [32], which is similar to

the Mantel test in that it assessessimilarity between multivariate

data tables. The difference between this approach and the Mantel

test is that the analysis is performed on the raw data or their

ordination solutions, rather than derived distance matrices, and is

as a result more powerful [32]. Partial analyses are also possible

where the effects of Euclidean distanceare ‘removed’ prior to

analysis through partial linear regression. We assessed congruence

between beetle and fungal ordinations of (1) raw allele frequency

data; and (2) frequency data that were detrended with respect to

Euclidean connectivity among sites. Tests were performed within

the northern and southern regions independently, as well as for the

entire study area using the protest function in the vegan package in

R [31].

PCA calculates distances among sites in multi-dimensional

space based on allele frequencies but does not make many of the

evolutionary assumptions of more traditional distance measures

such as Fst [33]. Given that the mountain pine beetle in our study

were in outbreak phase, and their recent and rapid spread into

northern British Columbia and Alberta [2,24], many of these

assumptions are likely to be violated [33]. However, to assess its

performance relative toFst [34], we compared the PCA ordination

to a principal coordinates analysis (PCoA) of pair-wise Fst values.

PCoA summarizes and plots differences among sites based on an

input distance matrix [35]. Concordance between the ordination

solutions of the different methods (PCA vs. PCoA with Fst) was

assessed using a Procrustestest, as described above. Pair-wise Fst

values (Nei 1973) were calculated using the pairwise. fst function in

the adegenet package in R [36]. Principle coordinates (PCoA)

were calculated using the capscale function in the vegan package in

R [31].

Landscape Genetics
After characterizing genetic structure in both species, we

investigated whether landscape features could explain further

Figure 2. Location and regional context of sample landscapes comprised of multiple sites from which beetle and fungal genotypes
were obtained. Dashed line separates the northern and southern regions. Details of each sample landscape are summarized in the Table S1.
doi:10.1371/journal.pone.0025359.g002
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marginal variation in allele frequencies among landscapes using

redundancy analysis (RDA), a form of constrained ordination.

RDA is the canonical extension to PCA in whichthe principal

components produced are constrained to be linear combinations

of a set of predictor (environmental) variables [37]. The objective

of this analysis was to identify the best ordination modelsthat

describe genetic similarities among landscapesin the different

regionsto better understand how spatial heterogeneity affectsgene

flow in the mountain pine beetle and G. clavigera.

Within RDA models we used log-transformed allele frequen-

cies as the response matrixand several measures of spatial

connectivity as predictors. Predictor variablesincluded connec-

tivity among locations based on geographic (Euclidean) distance,

elevation, climatic suitability [38], and pine volume [39,40]. All

environmental predictor variables were standardized to a zero

mean and unit variance [37]and detrendedsuch that environ-

mental connectivity was independent of Euclidean connectivity.

The spatial genetic structure of each symbiont, represented by

the first and second principal component scores (PC1 and PC2)

from the respective original PCAs, wasalso included to assess

whether symbiontscan help to explain each other’s genetic

structure. The PC variables are location-based, as opposed to

connectivity based, and were not detrended. The best model

comprised of significant predictors was selected using forward

selection with permutation and an inclusion threshold of a= 0.05

using the ordistep function of the vegan package in R [31].

Forward selection refers to a process to build parsimonious

statistical models in which successive predictors are added to a

model and assessed as to whether they significantly improve

model fit [35]. When more than one predictor was found to be

significant in a given model, we used variance partitioning [35]

to identify the unique and shared contributions of each

significant predictor to variance explained using the varpart

function in vegan.

Similar to the comparison between PCA and an Fst-based

PCoAdescribed above, we compared models constructed using:

(1) RDA in which Euclidean distances are the response variable,

and (2) distance-based redundancy analysis (dbRDA; [41]) in

which pair-wise Fst values are used as the response matrix. In the

case of dbRDA, the spatial genetic structure of each species was

represented among the set of predictors as the first and second

PCoA axes. Models were similarly selected using forward

selection.

Spatial Connectivity
A challenge to using constrained ordination in landscape

genetics studies is to convert spatial environmental data into

location-specific information rather than measures of dissimilarity

as are often employed in Mantel testing frameworks [42]. We

measuredthe connectivity of each site to the rest of the network

based on resistance surfaces that represent hypotheses of the

influence of different landcover types to beetle movement. Here,

connectivity within the network of sample locations for each site i

(Si) was calculated using a general ecological connectivity metric

often used in meta-population studies [43].

Connectivity of a site was represented as the average

connectivity of that point to all othersites in the network for a

given resistance surface. Connectivity for each site for each of the

four resistance surfaces (Table 1) was calculated as:

Si~
Xj

1

1

1zbdij

, ð1Þ

where Si is the connectivity of patch i to the rest of the points in the

network (j), dij is the effective distance calculated from the least-cost

path between points i and j based on the resistance surface, and b
is the estimated mean beetle dispersal distance that parameterizes

a kernel that weights a connection between a given pair of

locations.

The mountain pine beetle is capable of long-distance dispersal

[44]. However, the frequency of long-distance dispersal is

uncertain and difficult to measure [39,44]. Long-distance dispersal

is thought to be the result of convective air movements that

coincide with beetle flight periods that allow passive long-distance

movement in the atmospheric boundary layer [44]. For this study,

b was set to 40 km to accommodate recently observed dispersal

events of greater than 100 km that brought beetles over the Rocky

Mountains into Alberta [24,44].

Resistance Surfaces
Resistance surfaces (Table 1) were used to calculate least-cost

effective distances between sample locations and connectivity

among them. Least-cost effective distances measure the degree of

resistance of a landscape with respect to an environmental variable

along a least-cost path [45]. We calculated pair-wise effective

distances between sites using the ‘spatial graphs’ package in

Table 1. Summary of predictor variables used in constrained ordinations.

Data Source Original Resolution Connectivity Based? Why chosen Ref.

Elevation ASTER DEM1 30 m. Yes Hypothesized beetle dispersal
limitation at high elevations.

[58]

Climatic Suitability
Index (CSI)

CFS2 1000 m. Yes Demonstrated climatic limitations
to successful reproduction.

[38,53]

Pine Volume CFS3 1000 m. Yes Beetles preferentially attack large
diameter trees and high-volume stands.

[24,39]

Geographic Dist. Calculated 1000 m. Yes Null hypothesis - Isolation By Distance. [59]

Beetle PC1& PC24 Initial PCA NA No Hypothesis based on known symbiosis. [7]

Fungus PC1& PC24 Initial PCA NA No Hypothesis based on known symbiosis [7]

1NASA DEM data were accessed through https://wist.echo.nasa.gov/api/.
2Climate suitability data were obtained through the Canadian Forest Service (CFS).
3Yemshanov, D, McKenney, D, Pedlar, J. in review. Mapping forest composition from the Canadian National Forest Inventory and satellite landcover classification maps.
Environmental Monitoring and Assessment.

4The first and second axes of a principal coordinates analysis using Fst (PCoA) were used in distance based redundancy analysis (dbRDA).
doi:10.1371/journal.pone.0025359.t001
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SELES [46] and estimated consequent connectivity for each

location and resistance surface using equation 1. High values for

elevation were hypothesized to restrict beetle movement while

high pine volume was hypothesized to facilitate movement and

connectivity. Climatic suitability was modelled using aclimatic

suitability index [38] that integrates number of degree days above

5.5uC, minimum winter temperatures, maximum August temper-

atures, precipitation, and aridity. Greater climatic suitability was

also hypothesized to facilitate movement. Resistance surfaces were

composed of raw continuous values that represented the landscape

feature without reclassification, thus maintaining the highest

thematic resolution possible (Cushman and Landguth 2010).

Spatial resolution of all resistance surfaces was 1 km.

Results

Genetic Structure
Beetles and fungi exhibited similarly weak genetic structure

(Fst = 0.036 and 0.039, respectively) across the entire study area

(Table 2). In the northern region, beetles had very little genetic

structure (Fst = 0.01) whilethe fungus resembled the entire study

area (Fst = 0.034). Both species were very weakly structuredin the

southern region (Fst,0.01). The 95% confidence intervals around

these Fst estimates did not include zero for the total and northern

regions (Table 2). However, in the southern region, the confidence

intervals around Fst estimates for both species did include zero and

indicate non-significant genetic structure.

Isolation by distance
We identified significant IBD for the entire study area for both

beetles and fungi (Figure 3a, 3b) based on Mantel tests of

correlation between matrices of geographic and genetic (Nei’s Fst)

distance. However, much of the structure identified was related to

comparisons between regions. When examining each region

separately, we found IBD for the beetles in the north, but not

for the fungus (Figure 3c, 3d). IBD was not detected for either

species in the south (Figure 3e, 3f).

Analysis of Molecular Variance
The majority of genetic variation for the beetle was found

within individuals (91.2%, p,0.001; AMOVA; Table 3), whereas

the majority of genetic variation for the fungus was foundamong

individuals within landscapes (92.5%, p,0.001; AMOVA;

Table 3). For both taxa, variation between regions was also

significant and accounted for 6.04% and 8.6% of genetic variation

in beetles and fungus, respectively (AMOVA; Table 3).

Fungi sampled from larvae within galleries were less genetically

structured (Fst = 0.039) than fungi from wood tissue (Fst = 0.086).

However, the proportion of variance explained by the fungal

source (wood vs. fungus) was not significant (AMOVA;

s2 = 0.0001; p = 0.391). Therefore, fungal data from both sources

were pooled for further analysis.

Year of sampling did not explain any significant variation in the

fungus (AMOVA; s2 = 20.0004; p = 0.74) or in the beetle

(AMOVA; s2 = 20.0002; p = 0.93) in the four sites that were

sampled in both periods. Here, the negative variance (s2) simply

indicates that the predictor performs more poorly than random

values. Therefore, differences among sites are not due to

differences between sample periods for both fungi and beetles

(Table S1).

Spatial genetic structure
The first beetle principal component indicated a very strong

north-south gradient in beetle genetic structure (Figure 4a) and

accounted for 48.6% of the variation in the allele frequency data.

The second axis captured 10.9% of the variation. This strong

pattern of association between location and genetic structure was

not present in the fungus (Figure 4b). Here, the first axis captured

only 13.23% of the variation and the second axis captured 10.27%

(Figure 4b). Visual inspection of factor loadings did not suggest

that any single allele was disproportionately influencing the

ordinations. Principal coordinates analysis using Fst (not shown)

were highly correlated with the ordination solutions from the

PCA. Fungal variation was more similarly described by the two

methods than the beetles except in the southern region.

Correlations between the PCA and PCoAfor the beetles were

equal to 0.77 (p = 0.001), 0.898 (p = 0.001), and 0.818 (p = 0.027) in

the total, northern, and southern regions, respectively. Correla-

tions for the fungus were equal to 0.90 (p = 0.001), 0.93 (p = 0.001),

and 0.79 (p = 0.03) also for the total, northern, and southern

regions, respectively.

Latitudeaccounted for a significant proportion of the beetle

allele frequency variation acrossthe entire study area (RDA;

R2
adj = 0.389, F = 9.89, p = 0.005), but not for fungi (R2

adj = 0.032,

F = 1.466, p = 0.130). This same pattern was found in both sub-

regions. In the north, beetle genetic variation covaried with

latitude (R2
adj = 0.138, F = 2.12, p = 0.025) but fungalvariation did

not (R2
adj = 0.013, F = 1.09, p = 0.34). We also found this pattern in

the south for beetles (R2
adj = 0.115, F = 1.78, p = 0.01) and fungi

(R2
adj = 0.058, F = 1.36, p = 0.107).

Concordance in beetle and fungal genetic structure
Procrustes rotation on the PCA ordination solutions, in which

the effect of spatial locationwas present, showed correlation of

allele frequencies between taxa, bothin the total study area and in

the southern region (Table 4). Afterremoving the effect of

Euclidean connectivity among locations, only the relationship at

the level of the total study area was significant. Genetic variation of

beetles and fungus was also correlated based on PCoA ordinations

of Fst-values at the level of the total study area. Similar to the PCA

comparisons, that correlation was not significant once the effects of

Euclidean distance were removed. However, unlike the compar-

isons based on PCA, no correlation was identified between beetle

and fungal PCoAs in the southern region (Table 4).

Landscape Genetics
The different ordination methods also identified similar spatial

predictors of genetic variation for both species (Table 5). In the

entire study area, a model of connectivity based on Euclidean

distance (IBD) best explained spatial genetic variation regardless of

genetic distance employed. However, the amount of variance

explained was generally low (R2adj,0.14; Table 5). In the

Table 2. Summary of global Fst for D. ponderasae and G.
clavivera in different sample regions.‘‘North’’ and ‘‘South’’
refer to regions in Figure 2.

Fungus Beetle

n Fst 95% CI Fst 95% CI

All 15 0.036 0.002–0.090 0.039 0.026–0.053

North 8 0.034 0.003–0.084 0.010 0.006–0.014

South 7 0.009 20.028–0.051 0.002 0.000–0.003

n refers to the number of landscapes used for calculation. Confidence intervals
that include zero indicate non-significant structure.
doi:10.1371/journal.pone.0025359.t002

Integrated Landscape Genetics
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northern region, the best beetle dbRDA model included pine

volume (R2adj = 0.35), whereas the best beetle RDA model

included both pine volume and climate (R2adj = 0.32). The

unique contributions (R2adj) of climate and pine volume were

12.8% and 9.6%, respectively, with 9.1% of the variation

explained shared between the two predictors. For both

approaches, nothing predicted fungal genetic variation. Models

in the southern region differed between methods. Using dbRDA,

nothing accounted for beetle genetic variation, whereas using

RDA, fungal genetic variation (PC1) was a significant predictor

(R2adj = 0.11; Table 5). Conversely, RDA did not identify any

significant predictors for the fungus, but the best dbRDA model

included both Euclidean distance and beetle genetic structure

(PCo2; R2adj = 0.33; Table 5), which had unique contributions

Figure 3. Isolation by distance plots. Genetic distance is plotted as a function of geographic distance for beetles (left columns) and fungus (right
column) for the entire study area (A & B), the northern region (C & D), and the southern region (E & F). Note the different scales for the beetle and
fungal plots. Red lines show the best fit line to the data and are included for illustration only. r values represent correlation between geographic and
genetic distances matrices assessed using Mantel tests.
doi:10.1371/journal.pone.0025359.g003

Integrated Landscape Genetics
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(R2adj) of 9.2% and 9.3%, respectively, with 14.6% of the

variation explained shared.

Discussion

Genetic Structure
Given the symbiotic relationship between the mountain pine

beetle and G. clavigera we expected the genetic structure of these

two species to be similar. This was the case when we examined the

entire study area (Fst,0.04) but species differed within regions.

The fungus retained its structure in the north, while the beetle did

not. Both species demonstrated very weak genetic structure in the

south (Fst,0.01). Similarly, the correlations in genetic structure

between species were not consistent between regions or between

methods (Table 4, Table 5). Correlations at the level of the entire

study area confirmed our expectations, as did the finding that this

correlation was largely due to shared spatial dependence. In the

south, significant correlation between species persisted even after

controlling for spatial structure when using Euclidean distance

between allele frequencies; however, no correlation was identified

using Fst and it remains puzzling why we did not find any

correlation in the north where both species have recently

expanded. We found significant IBD when examining the entire

study area but also found that this pattern was largely due to

differences between regions in both species. That the two species

differed among regions suggests that different processes may be

responsible for governing gene flow in these symbiotically

interacting species.

Beetle and fungus allele frequencies respond differently to

environmental heterogeneity (Table 4 and Table 5). Most

importantly, beetles demonstrated a strong geographical trend

between regions whereas the fungus did not (Figure 3, Figure 4).

Using PCA, we clearly demonstrated the divide between regions in

the beetle (Figure 4a); almost 40% of the beetle variation can be

Table 3. AMOVA summaries that describe the proportion of genetic variance in the fungus and the beetles at different
hierarchical levels.

Fungus

Source df SS Variance Percent p-value

Between regions 1 36.159 0.210 8.628 ,0.001

Among landscapeswithin regions 14 55.177 20.031 21.271 0.903

Among individuals within landscapes 139 626.806 2.247 92.469 ,0.001

TOTAL 309 718.142 2.430

Beetle

Source df SS Variance Percent p-value

Between regions 1 651.615 0.245 6.054 ,0.001

Among landscapeswithin regions 15 145.203 0.020 0.497 ,0.001

Among individuals within landscapes 2600 10063.182 0.089 2.207 ,0.001

Within individuals 2617 9661.500 3.692 91.241 ,0.001

TOTAL 5233 20521.500 4.046

Regions refer to northern and southern (Figure 2; Table S1). Variation within individuals is not reported for the fungus because it is haploid.
doi:10.1371/journal.pone.0025359.t003

Figure 4. Principal Components Analysis (PCA) of raw allele frequency data. Plots of site scores for the first two principal components are
shown for (a) beetles, and (b) fungi. Percentage values associated with each axis represent the respective proportion of overall variance in allele
frequencies captured.
doi:10.1371/journal.pone.0025359.g004
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described by latitude. The division between north and south

regions was also demonstrated using AMOVA (Table 3) and the

decrease in beetle heterozygosity from south to north (Table S1).

Bootstrapped rarefaction of the beetle genetic data to a set of

samples similar in size to the fungus still revealed a strong response

to latitude (datanot shown). Previous studies of the concordance of

genetic structure between symbionts have suggested that different

scales of dispersal between species may account for the

incongruence in spatial genetic variation [16]. In this case, this

explanation seems unlikely because it is generally thought that G.

clavigeradoes not disperse independently of the beetle [10].

Nonetheless, because the cryptic sexual stage of this fungus is

rarely observed, there may yet be more to discover regarding the

dispersal of sexual spores [23,47].

Landscape Genetics
When examining the study area as a whole, Euclidean

connectivity was found to best predict genetic variation in both

species, likely due to the strong differences between regions.

Similarly, landscape genetic models differed between regions for

both methods used and within regions, the influence of

environmental heterogeneity on genetic variation differed between

species. In the north, pine volume significantly predictedbeetle

genetic connectivity using both methods. Using RDA, which does

not make any evolutionary assumptions, climate was also identified

as a significant predictor. In the south we found some evidence for

significant reciprocal genetic influences, although these influences

were not symmetrical between methods: the fungus helped explain

the beetle using RDA, but beetles helped explain the fungus using

dbRDA.

The differences between regions have most likely arisen because

each region has had a different period of association with the

mountain pine beetle and different processes determine beetle and

fungal movement and hence spatial genetic variation. The

northern region was recently colonized and is at the front of the

current outbreak [24,44]. In contrast, the southern region has had

a long history with the beetle under both endemic and epidemic

conditions [24,48]. Presumably, the longer association with the

beetle in the south also means a longer association with the fungus.

These differences mean that the northern region is likely farther

from mutation-drift equilibrium than the south, and suggests that a

non-evolutionary distance metric based on allele frequencies (e.g.,

PCA), is more appropriate for analysis. In addition to representing

different spatial contexts, the regions may represent different

temporal stages of the outbreak system that proceeds from initial

colonization to the development of correlated spatial genetic

structure over time. Thus, in the south, Fst may be more

appropriate as a distance measure as its assumptions are more

likely to be met. Differences between the two methods in the south

may reflect these differences in population genetic structure,

history of association, or temporal stage of the outbreak.

Interestingly, Fst and Euclidean distance perform similarly in the

area of recent expansion.

With specific regard to the fungus, the different structure

between regions can also explained by spatial variation in MPB-

associated fungal community and the relative frequency of G.

clavigera in northern Alberta. Recent work on the MBP-associated

Table 4. Results from Procrustes rotation tests to determine
the strength and significance of correlation between spatial
patterns in beetle and fungal allele frequencies.

PCA PCoA

Data T p t9 p9 t p t9 p9

All 0.498 0.040 0.381 0.263 0.487 0.038 0.344 0.354

North 0.450 0.498 0.487 0.431 0.393 0.670 0.442 0.545

South 0.811 0.024 0.737 0.046 0.657 0.140 0.607 0.202

t represents correlation between matrices and p represents the significance of
that correlation. t9 and p9 represent the same correlation between matrices in
which the effects of Euclidean distance were controlled for. PCA refers to
comparisons between ordination solutions using Euclidean distances and PCoA
refers to ordination solutions from PCoA based on Fst values. Significant
correlations are in bold.
doi:10.1371/journal.pone.0025359.t004

Table 5. Summary of model selection on constrained ordination models (RDA and dbRDA) that describe the influence of spatial
heterogeneity on beetle and fungal genetic variation.

RDA Region Species Model F p-value R2 R2
adj

ALL Beetle ,Euclidean Distance 2.804 0.034 0.177 0.114

n = 15 Fungus ,Euclidean Distance 2.680 0.007 0.171 0.107

NORTH Beetle ,CSI+Pine Volume 2.614 0.005 0.511 0.316

n = 8 Fungus - - - - -

SOUTH Beetle ,Fungi PC2 1.743 0.025 0.258 0.110

n = 7 Fungus - - - - -

dbRDA Region Species Model F p-value R2 R2
adj

ALL Beetle ,Euclidean Distance 1.953 0.028 0.131 0.064

n = 15 Fungus ,Euclidean Distance 3.175 0.005 0.196 0.134

NORTH Beetle ,Pine Volume 4.737 0.015 0.441 0.348

n = 8 Fungus - - - - -

SOUTH Beetle - - - - -

n = 7 Fungus Euclidean Distance+Beetle PCo2 2.463 0.015 0.552 0.328

For each species, forward selection was applied to identify which variables best described variation in allele frequencies using an inclusion threshold of a= 0.05.
Significant correlations are in bold. Dashes indicate that no variables were selected.
doi:10.1371/journal.pone.0025359.t005
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fungal community found that G. clavigera is typically found in the

south, whereas L. longiclavatum, is more typically found in the north

of Alberta [49]. In light of this work, it is plausible that the genetic

differences between regions and between species are the result of a

recent range expansion as wellas a relatively small population of G.

clavigera in the north. It will be valuable to contrast these results

with those from other fungal species.

In the north, pine volume affectedbeetle spatial genetic variation

(Table 5) according to both RDA and dbRDA models. Host

connectivity has been previously shown to play an important role

in the rate of spread of outbreaks [24,50]. Pine volume is

important because MPB preferentially attack large trees and

greater host connectivity means that dispersing beetles are more

likely to find high volume regions to produce brood and facilitate

further spread [24,51]. These results further indicate that

management of host connectivity is important for managing pine

beetle outbreaks, and specifically, this connectivity may need to be

managed at large spatial scales. However, it remains to be

investigated whether host availability affects genetic connectivity

also at fine spatial scales and highlights the importance of

considering scale in landscape genetic studies [52].

Climate also explained a significant proportion of variance in

beetle genetic variation in the northern region, but only in the

RDA model (Table 5). In this context, climate represents the

connectivity of all sites to the other sites based on a spatial surface

of climatic suitability [38]. The current expansion and large scale

outbreak in western Canada has been previously attributed to

changes in climatic conditions [2,53]. Here, using neutral genetic

data, we were able to demonstrate that at the leading edge of the

outbreak, and assuming non-equilibrium conditions, sites separat-

ed by less resistance in terms of climate tend to have more similar

beetle genetic structure, but the fungus did not exhibit the same

relationship.

Genetic Interactions
Genetic correlations were identified in the southern region using

both ordination approaches. Using RDA, asignificant proportion

of variation in beetle allele frequencies (,11%) was explained by

the first fungus PCA axis (PC1). There was not an equivalent effect

of beetles on the fungus. The opposite effect was found using

dbRDA and the beetles, in combination with Euclidean distance,

significantly described the fungus. Thesefindings represent an

important aspect of the symbiotic relationship that we identified

using the integrated landscape genetics approach. Most likely,

these effects represent either an unmeasured environmental

variable to which both species respond or demographic interac-

tions between species and highlights the utility of using additional

biotic information in landscape genetic studies. Previous work has

demonstrated the importance of host plant genotypes on the

dynamics of associated insect herbivores [54] and plant pathogens

[55]. Although we did not examine adaptive genetic variation, our

findings suggest that similar genetic interactions may play a role in

paired symbiont dynamics and gene flow. That we found these

relationships exclusively in the south further supports our assertion

that the processes governing gene flow are different or at different

temporal stages between the two regions. It will be worthwhile to

examine the northern region in the future to assess whether

concordance develops over time to a level similar to that of the

south.

Pathways
All pathways (Figure 1) were supportedin some capacity but

varied in terms of their relative strengthsand the regions in which

they were supported (Table 5). Most important was the

relationship between Euclidean distance and genetic variation in

both species in the entire study area and that the supported

pathways differed between regions. Pathways 3 and 4 (genetic

correlations) were only present in the south and were not

equivalent between methods. The relatively low variance (R2adj)

explained by the environment suggests that landscape resistance-

may not be the most suitable model for examining the landscape

genetics of a highly mobile species such as the mountain pine

beetle, at least at the spatial and temporal scale we examined.

Indeed, much of the genetic variation resides within individuals

and within sample sites (AMOVA; Table 3). Furthermore,

uncertain long distance dispersal events may obviate the influence

of landscape heterogeneity on genetic variability during a large

outbreak. Continued immigration from northern BC may act to

effectively ‘‘reshuffle the genetic deck’’ and confound our efforts to

understand gene flow at local scales. Finally, differences in

generation time and sexual systems between taxa could mean

that the genetic markers used in this study capture different

ecological and evolutionary processes.

Methodological considerations
We used constrained ordination to examine relationships

among allele frequencies (RDA) or genetic distance (dbRDA)

and environmental connectivity, and dimensionally reduced

symbiont genetic variation. Recently, Balkenhol et al. [56]

reviewed statistical methods of landscape genetic analysis and

identified constrained ordination as one of the more powerful

methods of analysis. Analyses based on correlations among

distance matrices (e.g., Mantel tests) have been shown to be less

powerful for linear modelling than ordination-based methods

[32,42]. Furthermore, our objective was to partition genetic

variance and to assess the relative contributions of different

environmental and biological factors. Constrained ordinationsup-

portedcalculation of unbiased adjusted R-squared values for each

model and each component within models [57]. Finally, these

methods allowed us to investigate the genetic correlations between

species in a robust and integrated way using principal components

and principal coordinates. This framework is general and can be

used to analyse many different types of genetic data and can

include any measure of dissimilarity among sample locations.

Some challenges remain to decide how to convert different types of

genetic data such as SNP or genomic sequence data into a format

suitable for variance decomposition using this approach.

We assessed concordance in genetic patterns and gene flow

between the mountain pine beetle and G. clavigera but did not

address whether the two species are adaptively responding to each

other or their environment. This study represents one of the first to

use a biological predictor, specifically genetic information, to

describe genetic variation of an interacting species in a landscape

genetics framework. Future work using this integrated framework

will assess adaptive genomic interactions among taxa in the

mountain pine beetle system as well as concordance in

evolutionary responses to environmental heterogeneity. Opportu-

nities also exist to further investigate the relative strengths of

different measures of genetic distance (e.g., Euclidean distance vs.

Fst) for describing landscape genetic relationship in different

spatial contexts. Ongoing research to identify SNP markers and to

characterize functional genes in the beetle, the fungus, and host

pine trees will be used to investigate these relevant evolutionary

questions in a spatially explicit and integrated context.

Conclusions
We presented a novel integrated landscape genetics framework

to investigate reciprocal genetic correlationsbetween species while
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also testing for the influence of spatial heterogeneity. Contrary to

expectation, we found differences in genetic structure between the

mountain pine beetle and G. clavigera. We also identified important

differences in the genetic congruence between species within the

historical southern range of the MPB that depend on the

assumptions underlying different measures of genetic distance.

Finally, we identified genetically-based support for the role of host

connectivity (pine volume) and climate in the spread of the

outbreak in the north. The different patterns of genetic structure

between regions likely reflect the different processes that determine

endemic vs. epidemic population structure and the recent

northward population expansion. The next challenge will be to

examine the three-way genetic correlationsamong the beetle, its

fungal symbionts, and its host pine trees.

Supporting Information

Table S1 Summary of all sample sites arranged from
north to south. Site names include the location followed by a

letter indicating the unique site within the sample landscape.

Single letters after the underscore indicate year sampled: ‘‘_A’’

represents a sample from Feb.–May 2007; ‘‘_B’’ represents a

sample from Sept.–April 2008. Elevation is indicated in metres

above sea level.
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