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Abstract The skin provides an effective physical and biolog-
ical barrier against environmental and pathogenic insults
whilst ensuring tolerance against commensal microbes. This
protection is afforded by the unique anatomy and cellular
composition of the skin, particularly the vast network of
skin-associated immune cells. These include the long-
appreciated tissue-resident macrophages, dendritic cells, and
mast cells, as well as the more recently described dermal yo T
cells and innate lymphoid cells. Collectively, these cells or-
chestrate the defense against a wide range of pathogens and
environmental challenges, but also perform a number of ho-
meostatic functions. Here, we review recent developments in
our understanding of the various roles that leukocyte subsets
play in cutaneous immunobiology, and introduce the newer
members of the skin immune system. Implications for human
disease are discussed.

Keywords Innate immune system - Langerhans cells - y& T
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Introduction

The skin is a unique organ that serves as an interface between
the host and the environment, providing a mechanical and
biological barrier against chemical, physical and pathogenic
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insults. Anatomically, the skin comprises two distinct com-
partments: the epidermis, an avascular layer mainly composed
of keratinocytes, and the dermis, a fibroblast-rich network of
collagen and elastin fibers that provides the skin with strength
and elasticity. The dermis also contains capillary and lymphat-
ic vessels, which serve as the entry and exit portals for im-
mune cells. Additional skin appendages such as hair follicles,
sebaceous glands and sweat glands, as well as nerve endings
are also found in the dermis [1]. The skin is home to a number
of immune populations that reside in both the epidermis and
dermis. These cells ensure protection against pathogens whilst
maintaining tolerance to innocuous antigens, but also contrib-
ute to the pathology of a number of inflammatory skin dis-
eases. This immune network is comprised principally of
tissue-resident phagocytes, antigen-presenting cells, mast cells
and T lymphocytes, as well as innate lymphoid cells (Fig. 1).
Individually, these leukocyte subpopulations perform specialized
functions that collectively afford the host its ability to respond to
a variety of environmental challenges. In recent years, our un-
derstanding of skin immunology has been transformed, with
many new insights into both the ontogeny and function of most
of the skin-resident immune cells. These developments include
the discovery of two hitherto unknown leukocyte populations,
the dermal v T cells and group 2 innate lymphoid cells. Here,
we review the recent advances in our understanding of the
functional diversity of the different immune cell subsets and their
role in the cutaneous immune response.

The Skin-Resident Innate Immune Cells
Macrophages

Macrophages represent a key sentinel population for invading
pathogens and tissue damage. These cells also perform devel-
opmental and homeostatic functions [2]. Much of our under-
standing of their roles in vivo has derived from studying
macrophage-deficient mice, which include mice lacking the
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cytokine colony-stimulating factor-1 (CSF-1) or its receptor
[3-5]. These animals exhibit a number of developmental and
metabolic deficiencies, including defects in iron and erythrocyte
homeostasis [6]. Dysregulation or inappropriate activation of
macrophages can lead to proinflammatory conditions, and mac-
rophages have been implicated in a number of inflammatory
diseases such as atherosclerosis, type 2 diabetes, and cancer [7].

Macrophages comprise a remarkably diverse and hetero-
geneous population that is found in most tissues, including the
skin [8]. During steady-state conditions, macrophages are the
most abundant haematopoietic population in the skin [9, 10],
which likely underscores their importance in maintaining skin
integrity and function. They are also important in wound healing,
and their critical role in promoting wound closure and tissue
repair has been confirmed using recently developed, inducible
macrophage-depleter mice [11, 12, 13+]. Macrophages are
equipped with a vast array of genetically encoded cell surface
and intracellular molecules called ‘pattern recognition receptors’,
which detect both damage-associated and pathogen-associated
motifs [14]. Depending upon the nature of the stimulus (e.g.,
sterile damage or infection), they can produce a variety of
proinflammatory cytokines and chemokines that attract specific
immune cell subpopulations from the circulation to the site of
injury or pathogen invasion [ 15]. In the later stages of repair, they
are able to switch to a growth-promoting [16] and less inflam-
matory phenotype [17, 18], and begin to actively phagocytose
apoptotic cells, including apoptotic neutrophils [19], thereby
promoting the resolution of inflammation. This remarkable abil-
ity to acquire a spectrum of functional phenotypes depending on
stimuli allows macrophages to coordinate a myriad of context-
appropriate responses to environmental challenges.

A number of transgenic macrophage reporter mice have
proven particularly useful for studying macrophage biology
[20], and have enabled direct visualization of macrophage-
pathogen interactions in vivo by both conventional and intra-
vital multiphoton microscopy [21]. Similarly, transgenic mice
developed for lineage-tracing experiments have also trans-
formed our understanding of macrophage development.
Broadly speaking, macrophages may be tissue-resident or
may develop from circulating progenitors in the blood.
Developmentally, it was long believed that macrophages de-
rived from circulating monocytes [22], and while that likely
holds true for macrophages that arise following inflammation,
the origin of tissue-resident macrophages differs markedly.
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Rather, most of the tissue-resident macrophages in the skin,
spleen, pancreas, liver, brain and lung are, in fact, established
prenatally, and arise from the yolk-sac or fetal-liver progeni-
tors [23, 24e, 25¢¢, 26]. Under some experimental conditions,
tissue-resident macrophages appear to be capable of self-
renewing without the need for resupply from the blood [27],
although the relative long-term contributions of circulating
precursors versus self-renewing populations following inflam-
mation is still under debate [28, 29].

Another layer of complexity lies in the pronounced pheno-
typic and functional diversity of macrophage subsets. Despite
their developmental similarities, the function of macrophages
in different organs varies. Red pulp macrophages, for exam-
ple, are responsible for red blood cell clearance [30], while the
microglia in the brain are important for neuronal function [31].
Unsurprisingly, there is wide variation in the receptor usage of
macrophages from different tissues [32]. Even within the same
organ, there appears to be subset specialization within differ-
ent microanatomical niches. For instance, macrophages in the
different zones of the spleen perform different functions.
Marginal zone macrophages are important for trapping
blood-borne antigens, whereas red pulp macrophages perform
scavenger functions [33].

Within the skin, macrophages have long been thought to be
a homogeneous group, primarily serving as a first line of
defense against potentially invading pathogens. However, it
is likely that skin-resident macrophages are more heteroge-
neous than previously appreciated. Certainly, macrophages
within the skin exhibit a diverse distribution anatomically,
where they may be associated with blood vessels (perivascular
or “adventitial” macrophages), lymphatic vessels, or may
reside in the intervascular space [34, 35]. It is conceivable
then, that perivascular macrophages might be particularly
well-suited for regulating leukocyte extravasation, based on
their proximity to blood vessels. Similarly, perivascular mac-
rophages may also play a role in regulating local iron homeo-
stasis [36], while those associated with lymphatic vessels may
be more important during lymphangiogenesis [35]. Whether
strict partitioning of macrophage functions exists within the
skin, or if their multiple functions are achieved by functional
plasticity remains unclear. Further studies are required to
decipher the precise role of specific cutaneous macrophage
subsets in cutaneous homeostasis and disease, including
wound healing, infections, and skin tumors.
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Dendritic Cells

Dendritic cells (DCs) represent a subpopulation of antigen-
presenting cells that are largely defined by their capacity to
present antigens to naive T cells, for both the generation of
immunity against invading pathogens, as well as tolerance to
self-antigens and commensal bacteria [37]. With regard to
skin DCs, this function requires the capability to migrate via
the lymphatics to skin-draining lymph nodes (LNs), where
they initiate and shape the downstream adaptive immune
response. DC migration to the LNs requires engagement of
the chemokine receptor CCR7, expressed by the DC, with one
of its two ligands, CCL19 and CCL21, which are in turn
expressed by lymphatic endothelial cells [38]. DC migration
from the skin may be triggered by a range of noxious and
inflammatory stimuli, but also occurs constitutively during
steady-state conditions [39, 40]. Skin DCs can be divided into
two major populations: Langerhans cells (LC), which reside in
the epidermis, and dermal dendritic cells, which reside in the
dermis. Although both populations capture and process anti-
gens within the skin and migrate to draining LNs [41, 42], the
origins, developmental requirements and behavior of these
two populations are quite distinct, as are their functions.

Langerhans Cells

Langerhans cells (LC) reside in the basal and suprabasal
epidermis, where they form a network between keratinocytes.
Intravital experiments have shown that LCs remain sessile
during steady-state conditions, but that their dendrites extend
between keratinocytes in a repetitive fashion [43-45], which
may enable the sampling of antigens [46, 47]. While it is well-
accepted that LCs capture antigens and migrate to skin-
draining LNs during both steady-state conditions and follow-
ing inflammation [40], what instruction they provide to naive
T cells is still hotly debated, with evidence that they can both
suppress and initiate skin immune responses [48, 49].
Developmentally, LCs have more in common with macro-
phages than dermal dendritic cells. LCs develop from a prim-
itive macrophage population during embryogenesis, which
can be yolk-sac or fetal liver-derived [25¢¢], and in the absence
of inflammation maintain their numbers within the epidermis
throughout life by in situ proliferation [41, 50, 51]. This
capacity for local self-renewal renders LCs radio-resistant,
and the vast majority of LCs do not get replaced by donor
bone marrow-derived progenitors following irradiation and
stem cell transplantation, a finding that is true of both mice
and humans [52, 53, 54¢]. LC development requires 1L-34
signaling through the CSF-1 receptor [55¢¢, 56¢¢], and LC
homeostasis is maintained by TGF-f3 [57], which is produced
by both keratinocytes (paracrine) and LCs themselves
(autocrine). During steady-state conditions, a small percentage
of LCs constitutively emigrates to the skin-draining LNs [40],

but this loss is readily maintained by local proliferation of the
remaining LC pool [58]. However, following relatively severe
inflammation, for example that induced by ultraviolet irradi-
ation or herpes simplex virus infection, increased numbers of
LCs migrate to the LNs [41, 51, 59] (estimated to be approx-
imately 10-20 % of the total pool; B. Roediger unpublished
observations). More significantly, if the epidermal niche be-
comes sufficiently perturbed, LC homeostasis is compromised
and requires replenishment from bone marrow-derived mono-
cytes. These monocytes enter the skin in response to inflam-
matory chemokines, and follow a chemotactic gradient from
the base of the hair follicle to the upper epidermis where they
differentiate into LCs [60]. It is currently unclear whether
there are functional differences between fetal-origin LCs com-
pared to these monocyte-derived LCs. Although the original
study suggested that monocyte-derived LCs could proliferate
and maintain themselves in situ [51], a recent study suggests
that, following the resolution of inflammation, these cells are
ultimately out-competed by those of fetal-origin [61].

Despite being discovered over 100 years ago, the exact
immunological role of LCs remains controversial [48, 49].
Early studies suggested that LCs were potent stimulators of T
cells, but this was based largely on in vitro experiments, and
has been challenged by a number of in vivo studies. The
identification of Langerin as a LC-specific marker [62] led
to models for specific LC depletion [63—65]. However, these
models provided inconsistent data regarding their role in
adaptive immune responses, with positive, negative and re-
dundant contributions of LCs to contact hypersensitivity re-
sponses being reported [66]. The use of langerin-eGFP report-
er mice led directly to the discovery of Langerin® dermal
dendritic cells, which further confounded interpretations of
the LC-depletion models [63—65]. More recently, we and
others have exploited the radio-resistance of LCs to exclude
the confounding contributions of dermal dendritic cells to
naive T cell responses [39, 67]. Remarkably, LCs were com-
mitted to initiating the tolerance of naive T cells, regardless of
the inflammatory stimulus [67]. An immunosuppressive role
for LCs in vivo has also been described in other models
[68—71], underscoring the difference between the stimulatory
behavior of LC in vitro and their suppressive capabilities
in vivo. Presumably due to this discrepancy, the murine results
have not been confirmed in human studies, which are per-
formed mostly in vitro [72—75].

Dermal Dendpritic Cells

Dermal dendritic cells (DDCs), in contrast to LCs, are a more
heterogenous population that relies upon continuous resupply
from bone marrow-derived progenitors. In both mice and men,
the dermis contains multiple DDC subsets, although the func-
tional specialization of each subset remains largely unknown. In
mice, the majority of DDCs express CD11b but not CD103
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(CD11bMCD103"), but there are also CD11b°CD103 Langerin”
and CD11b"CD103" subsets [63—65, 76, 77]. In contrast to the
sessile LCs, DDCs are highly mobile and continuously migrate
throughout the dermis, presumably as part of their immune-
surveillance role [44]. During inflammation, DDCs are mobi-
lized rapidly from the skin and arrive in draining LNs within
48 hours, preceding the arrival of LCs, which peak at day 4 [43,
77]. Thus, DDCs are likely to be responsible for shaping the
initial T cell response to skin pathogens.

In addition to their potential to initiate pathogen-specific
immune responses [44, 59, 78], skin DDCs are also detectable
within cutaneous LNs during steady-state conditions, suggest-
ing that they are important for maintaining tolerance to skin
antigens [39]. They have also been implicated in regulation of
the immune response to skin damage [79]. It appears that
functional specialization amongst the different DDC subsets
enables them to fulfill a variety of diverse requirements. The
best example is that of CD11b"°CD103 Langerin® DDCs,
which are highly efficient at cross-presenting antigens to naive
CD8" T cells compared to the other DDC subsets [76, 80], and
likely promote Th1-type immune responses [78]. In contrast, a
CD301b" DDC, distinct from Langerin” DDCs, was recently
shown to be important for the generation of Th2 responses
[81, 82]. Of note, equivalent subpopulations have been de-
scribed in human skin, suggesting that many of these func-
tions may be conserved between mice and humans [75, 83].
Indeed, a CD141™ DC population has recently been identified
in the dermis that shows both transcriptional and functional
equivalence to CD103" DDC [84¢¢], which may have impli-
cations for future vaccine design.

Mast Cells

Mast cells are especially abundant at host-environmental in-
terfaces, including the skin, where they are found in close
proximity to the blood vessels in the dermis. Skin mast cells
are best known as critical effectors of Th2 immune responses,
including allergic inflammatory diseases, in which environ-
mental allergens trigger their release of pre-formed inflamma-
tory molecules such as histamine, a potent vasodilator [85].
This process is generally mediated via the cross-linking of
high-affinity IgE-receptors (FceRI) on the mast cell surface by
IgE-bound allergens, which in turn promotes tissue inflamma-
tion such as urticaria and angioedema. In addition to their role
as Th2 effectors, it has been proposed that mast cells partici-
pate in pathogen defense, contact hypersensitivity responses,
and wound healing, during which they perform both pro- and
anti-inflammatory functions [86]. Indeed, the dual pro- and
anti-inflammatory properties of mast cells have confounded
our understanding of their role in numerous inflammatory
conditions, including allergic diseases such as atopic der-
matitis. More controversially, mast cells have been
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implicated in the pathogenesis of a number of autoimmune
disease models [87].

Developmentally, mast cells require signaling from the
stem cell factor through the Kit receptor for their survival
and development, such that mice with defects in Kit signaling
and/or expression also lack mast cells. This deficiency can be
restored following intradermal injection of in vitro- generated
mast cells, which has formed the basis for elucidation of mast
cell function in vivo [86, 88]. Studies using these ‘knock-in’
models have implicated mast cells in protection against bac-
teria, parasites, and viruses in the skin [89-91].

Nevertheless, studies using Kit-deficient mice must be
interpreted in the context of the additional cellular defects
exhibited by these animals, since the Kit signaling pathway
is also important for hematopoietic stem and progenitor cell,
red blood cell and neutrophil development [92-94]. To over-
come these shortcomings, mast cell researchers have more
recently developed Kit-independent mast cell depleter
models, which are currently being used to re-address the role
of mast cells in different settings. To date, these studies have
confirmed the requirement for mast cells in both the sensiti-
zation and effector phases of cutaneous hypersensitivity re-
sponses [95] and allergic inflammation [96¢], but have
questioned their role in autoimmunity [95, 97]. These mice
have also been used to demonstrate the contribution of mast
cells to pathology in a murine model of atopic dermatitis [98¢],
which was consistent with the efficacy of anti-IgE therapy in
treating patients with severe atopic dermatitis [99, 100].

Mast cells can also be studied by multiphoton microscopy,
and it was recently shown that skin mast cells extended
cellular processes across vessel walls in vivo in order to
acquire IgE from the circulation [101]. We have also used
multiphoton microscopy to visualize skin-resident mast cells
in situ, where we observed them interacting with group 2
innate lymphoid cells in vivo ([102e¢]; discussed below).

v6 T Cell Receptor-Expressing Cells (v T cells)
Dendritic Epidermal T Cells

In addition to being the home of LCs, the murine epidermis is
also home to a population of T cells that have been termed
dendritic epidermal T cells (DETC), based on their location and
morphology [103]. DETCs are vy T cells that express the
canonical Vy5/V31 T cell receptor (nomenclature: [104]). They
have no human equivalents but are included in this review to
provide context to the recently characterized population of
dermal yd T cells that can be found in both mice and humans.

DETCs form tight associations with E-cadherin expressed
on keratinocytes [105], and this contributes to their dendritic
morphology. Similar to LC, they remain largely immobile, as
observed by intravital microscopy [106¢]. The ligand for the
DETC TCR remains unknown but appears to be constitutively
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expressed by keratinocytes [107]. DETCs require both IL-7
and IL-15 for their maintenance in the skin [106e, 108—110],
where they appear to be important for epidermal homeostasis
and repair [111]. However, much of our understanding of
DETC function, particularly in vivo, has derived from the
use of TCR& ™ mice, which has been predicated upon the
assumption that these cells represented the sole y& T cell
population within the skin. The recent discovery of an addi-
tional population of skin-resident yd T cells, namely the
dermal y6 T cells, necessitates a revision of these studies.
For instance, while the increased keratinocyte apoptosis and
delayed wound healing observed in TCRS ™~ mice is consis-
tent with the role for DETCs in the epidermis [111-114], the
impaired leukocyte recruitment during skin infection with
Staphylococcus aureus may be attributed to functions shared
by dermal yd T cells, in particular IL-17 production [115].

Dermal 6 T Cells

Despite the long-held view that DETCs were the sole yd T cell
population within the mouse skin, previous studies had indi-
cated the presence of an additional skin-resident population of
v T cells that do not express Vy5 [116, 117]. In transgenic
mice engineered to overexpress IL-7 from keratinocytes,
spontaneously occurring skin lesions were found to comprise
predominantly Vy5 & T cells, both within the dermis and
epidermis, with only a few DETC. These yd T cells could be
elicited from IL-7-stimulated skin organ culture, suggesting
they were normally skin-resident. More recently, we and
others have extensively characterized this dermal yd T cell
subset [106e, 118, 119], confirming they are indeed a dermal-
resident population that is both phenotypically and function-
ally distinct from DETCs.

Dermal y$ T cells constitute 50 % of the total dermal T cell
population in mice, 30-50 % of which express the Vy4 TCR.
They are round or amoeboid in morphology, and a significant
proportion are migratory [106+], albeit with slower kinetics
than TCRof3 T cells [120]. Unlike DETCs, dermal & T cells
require IL-7 but not IL-15 for their development, and form a
long-lived population in the skin that is capable of self-
renewal [106e, 121]. Dermal yd T cells constitutively express
IL-23 receptor, CCR6, and RORyt molecules associated with
Th17 cells [122]. Indeed, they are able to produce IL-17A in
response to stimulation by IL-1 and IL-23 or selected toll-
like receptor agonists [106e, 118, 123]. Thus, dermal y6 T
cells are likely to be involved in innate pathogen defense by
augmenting neutrophil recruitment via IL-17. Recent studies
have also revealed the importance of dermal yd T cells in
imiquimod- and IL-23-induced psoriasiform lesions in mice,
in which they were the major source of IL-17. Interestingly, it
was dermal & T cells, not 3 T cells or DETCs, that were
important for lesion development [118, 121, 124¢]. These
findings suggest the intriguing possibility that dermal yé T

cells may contribute to the pathology of human psoriasis,
given the pivotal roles of IL-17 and IL-23 in this disease
[125-127], although this remains speculative.

Human skin also contains a population of dermal vy T
cells, most of which express V61 TCR, contrasting with the
v6 T cells found in human peripheral blood that comprise
largely V582" cells. Whether this population is the human
equivalent to the murine dermal yd T cell remains unclear,
although the evidence to date suggests that the two popula-
tions do not equate. In contrast to murine yd T cells, which are
pre-committed to IL-17 production in the embryonic thymus
[121, 128], human dermal V51" T cell lines produce TNFx
and IFNy when stimulated in culture [129, 130]. Human
blood contains a Vy9"V62" subset expressing cutaneous
lymphocyte-associated antigen (CLA), the skin-homing recep-
tor. Importantly, these circulating Vy9 V62" cells produced
IL-17 after bacterial infection and have been identified in
psoriatic lesions [131¢]. Understanding IL-17-producing innate
cells and their functional and survival requirements could lead
to targeted therapies, for instance, RORyt antagonists.

Innate Lymphoid Cells

Innate lymphoid cells (ILCs) are a family of newly described
cells derived from a common lymphoid progenitor, and are
identified by their lack of lineage marker expression (T-cell
receptor, B-cell receptor, myeloid and/or DC markers) and
their lymphoid morphology [132]. They are further
subcategorized according to their developmental requirements
and the cytokines that they produce: group 1 ILCs (ILC1) are
T-bet dependent and produce IFNy; group 2 ILCs (ILC2) are
GATA-3 dependent and produce the type 2 cytokines IL-5 and
IL-13; and group 3 ILCs (ILC3) are RORvyt-dependent and
produce IL-17, IL-22, or both (nomenclature: [133]).

Although originally described in mucosal tissues, signifi-
cant numbers of ILC2s have been identified in the dermis of
both mice and humans [102ee, 134¢¢]. Specifically, they were
one-third as numerous as T cells and comprised 5-10 % of
CD45" cells isolated from murine skin. Like other ILCs,
dermal ILC2s required IL-7 for their development and surviv-
al, and could be replenished by bone marrow-derived cells
following irradiation. Dermal ILC2s constitutively produced
IL-13, and could upregulate IL-5 and IL-13 production when
activated by systemic IL-2 treatment [102e¢], or by topical
administration of the vitamin D analogue calcipotriol [134ee].
Intravital imaging of dermal ILC2s revealed that these cells
scan the dermis but also frequently stop to interact with skin-
resident mast cells, another effector of type 2 responses
[102e°]. Interestingly, ILC2s were enriched in human atopic
dermatitis lesions [134e¢], implicating this population in the
pathology of eczema.

Although there is no evidence yet to date that ILCls or
ILC2s reside within normal skin, ILC3s were recruited to
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imiquimod-induced psoriasiform lesions [124¢]. Whether
equivalent populations of ILC3s are enriched in human pso-
riasis remains to be determined.

Concluding Remarks

Research over the past few years has shed new light on the
complex functions of skin-resident immune cells in homeo-
stasis and inflammation. The discovery of novel cell popula-
tions, such as dermal yd T cells and ILC2s, has expanded our
knowledge of innate immune sensing and early responses
towards pathogens entering the skin. How exactly epidermal
and dermal inhabitants interact with each other and the envi-
ronment and coordinate downstream adaptive immunity is
still largely unexplored. The development of transgenic re-
porter mice with fluorescently tagged immune cell subsets in
combination with advanced imaging approaches provides a
unique opportunity for furthering our understanding of cuta-
neous biology in the steady-state and during disease condi-
tions in the years to come.
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