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Abstract: Astaxanthin (AST) characteristics and pigment productivity of Adonis amurensis, one of
the few AST-producing higher plants, have not yet been studied extensively. In this study, the
geometrical and optical isomers of AST in different parts of the A. amurensis flower were determined
in detail, followed by a separation of the all-trans AST using HPLC chromatography. AST extracted
from the flower accounted for 1.31% of the dry weight (dw) and mainly existed in the di-esterified
form (>86.5%). The highest concentration was found in the upper red part of the petal (3.31% dw).
One optical isomer (3S, 3′S) of AST, with five geometrical isomers (all-trans, 9-cis, 13-cis, 15-cis, and
di-cis) were observed in all parts of the flower. All-trans AST was the predominant geometrical
isomer accounting for 72.5% of the total content of geometric isomers in total flower, followed by the
13-cis, and 9-cis isomers. The all-trans AST isomer was also isolated, and then purified by HPLC from
the crude oily flower extract, with a 21.5% recovery yield. The cis-AST extracted from the combined
androecium and gynoecium gives a very strong absorption in the UVA region due to a high level
of cis, especially di-cis, isomers, suggesting a prospective use in the preparation of anti-ultraviolet
agents. The production cost of AST from Adonis flowers can be as low as €388–393/kg. These
observations together with other factors such as the low technology requirement for plant culturing
and harvesting suggest Adonis has great potential as a resource for natural esterified (3S,3′S)-AST
production when compared with Haematococcus culturing.

Keywords: astaxanthin; Adonis amurensis; geometric isomers; optical isomers; pigment distribution

1. Introduction

Astaxanthin (AST), a pigment of commercial interest, imparts an attractive blue to
reddish hue to the feathers, carapace, skin, and flesh of many animals, such as flamingo,
shrimp, krill, crabs, salmon, and red snapper [1–4]. This lipid-soluble pigment has sub-
stantial economic value as a nutraceutical, feed additive for aquatic animals, and potential
source of new pharmaceuticals for the treatment of diseases caused by oxidative stress [3–6].
AST-containing products are increasingly popular as human health food supplements, with
a market size of over US$100 million in 2018, with double-figure annual growth rates [7].
These supplements are taken for many different reasons, including improving eye health
and vision, skin health, and enhancing athletic performance by speeding muscle recovery
after exercise. The global market for AST is rapidly increasing; however, the bulk of AST
available is produced synthetically, providing an opportunity for marketing a natural
product [8,9].

The de novo biosynthesis of AST occurs in certain unicellular algae, some bacteria,
and fungi as well as Adonis flowers. So far, natural AST mainly comes from Haematococcus
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pluvialis (which may be better named H. lacustris [10]), shrimps, the bacterium Paracoccus spp.
and red yeast Xanthophyllomyces dendrorhous (also known as Pfaffia rhodozyma) [3,11–14]. It
was reported that the current commercialized (3S,3′S)-astaxanthin used as a fish additive is
mainly produced by P. carotinifaciens [8]. More recently, people also have tried to engineer
AST-producing plants by introducing genes from bacterial and algal pathways [15–17], al-
though successful mass production has not yet been achieved. In addition to H. pluvialis,
other microalgal species such as the Coelastrella spp. [18–20], Bracteacoccus aggregatus [20],
Chromochloris zofingiensis [21,22] also produce varying amounts of astaxanthin. ASTs from
different sources appear as different stereoisomeric forms, which show different physiolog-
ical activities [2,23–25]. Astaxanthin has a number of isomers on the basis of its chemical
structure. The many conjugated double bonds in the polyene chain allow astaxanthin to exist
as several geometric isomers, mainly the all-trans, 9-cis, 13-cis, and 15-cis isomers (Figure 1).
AST also has two identical asymmetric carbon atoms at the C-3 and C-3′ positions, making
possible three stereoisomers, including a pair of enantiomers (3S,3′S), (3R,3′R), and a meso
form (3R,3′S) (Figure 1). AST can be esterified in one or both hydroxyl groups with different
fatty acids such as palmitic, oleic, estearic, or linoleic: it may also be found free, that is, with
the hydroxyl groups without esterification; or else, forming a chemical complex with proteins
(carotenoproteins) or lipoproteins (carotenolipoproteins) [26]. The natural functions of AST
are determined by their physicochemical properties which depend on their molecular struc-
ture. Previous studies have suggested that cis-AST, especially 9-cis, have a higher antioxidant
activity than the all-trans isomer [5,26,27]. Carotenoids react rapidly with free radicals and
their reactivity depends on the length of the polyene system and the terminal rings. The
presence of the hydroxyl (OH) and keto (C=O) moieties on each ionone ring contributes to its
high antioxidant activity [28]. Based on this view, esterified AST is more stable than free one.
In synthetic AST, the ratio of (3S,3′S): (3S,3′R): (3R,3′R) isomers is about 1:2:1 [29]. In wild
shrimps, the proportions of the (3S,3′R)- and (3R,3′R)-isomers to the total AST ranged from
38.85–52.01% and 14.07–29.89%, respectively [23]. In H. pluvialis, the (3S,3′S)-isomer is the
predominant form; while that in the yeast is the (3R,3′R) form [29,30]. Therefore, there is a
challenge, that is, pure (3S,3′S)-AST can only be obtained from cultured Haematococcus unless
it can be separated from the synthetic product or krill oil. AST accumulation in Haematococcus
cells is greatly affected by light intensity, temperature, and nutritional stresses, especially
under the most frequently adopted photoautotrophic culture method [11,31]. It is generally
believed that a location with high solar radiation and high temperatures is most suitable for
AST production [32]. Furthermore, AST production by H. pluvialis is a highly skill-intensive
industry, which cannot be popularized in a decentralized manner. It is unlikely that the
cultivation of this alga could be performed by untrained farmers.

Figure 1. Structures of geometric and optical isomers of astaxanthin (AST).

Red-flowered Adonis species are the only AST-producing higher plants [33]. Different
from the culture of H. pluvialis, Adonis farming can be performed readily by farmers, based
on their extensive experience growing other crops. Most species of Adonis grow best in
moist soil with plenty of humus. Large-scale Adonis farming can be conducted in the
traditional solar greenhouse covered by a transparent plastic film. Mature agricultural
cultivation experience, especially in agricultural greenhouse cultivation, is sufficient for the
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cultivation of Adonis [34,35]. The cultivation of this plant has the advantages of requiring
only easy, relatively low-cost, farming technology, making it a low-risk investment that
is easy to decentralize [36]. So far, the biosynthetic pathway of astaxanthin in A. aestivalis
flowers has been elucidated [37,38]. The carotenoids and their fatty acid esters in the petals
of A. aestivalis were also identified [39]. The amount of astaxanthin that accumulates in
the flower petals of A. annua is reported to be about 1% of the dry weight [40]. However,
existing reports have focused on the extraction methods [40–43], biosynthetic pathway
analysis [37,38], and product quality improvement [39,44] of AST in Adonis. Up to now,
however, no report on the distribution and characteristics of AST and its isomers in different
parts of the Adonis flower has been reported.

We extracted the AST from different parts of the A. amurensis flower, and then, ana-
lyzed the extracts using UV-visible spectroscopy and high-performance liquid chromatogra-
phy (HPLC) methods. Related carotenoid substances and AST compositions, i.e., mono/di-
ester and geometrical/optical isomers, were also identified and quantified, followed by
purification of the all-trans isomer from the crude extracts of the total flower. Based on
the test data, we further compared the feasibility of natural AST production comparing
the microalga H. pluvialis and A. amurensis. To our knowledge, this is the first time AST
production based on the quality of AST in A. amurensis flowers has been discussed. We
expect that these data will help encourage high-yield production of AST from this plant.

2. Results
2.1. UV-Visible Absorption Spectra of Acetone Extracts

Lipid-soluble pigments from A. amurensis have a visible absorption spectrum in
acetone similar to that of the AST standard, with a maximum absorption wavelength
(λmax) of 480 nm (Figure 2). Peaks at 665 nm, observed in the spectra of the sepal and the
combined androecium and gynoecium, indicated the presence of a trace of Chl a in these
parts of the flower. Extracts of the flower, especially the androecium and gynoecium and
the sepal, also showed a peak around 330–340 nm, the specific peak for cis- isomers of
carotenoids. Inflections in the blue region in the gynoecium and androecium and sepal
fractions can also be observed.

Figure 2. Spectrogram of pigment extracted from different parts of Adonis amurensis flower using
pure acetone.

2.2. Pigment Contents of Flower Parts

Different flower parts showed a similar level of moisture, which ranged from 67.70%
to 73.85% (Table 1). The highest carotenoid content was obtained from the red part of the
petal (3.31%); in contrast, the sepal and the combined androecium and gynoecium had
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significantly lower pigment levels than the other parts. Chl a content of both the sepal and
the combined androecium and gynoecium was relatively higher than that in other flower
parts. Chl b content was lower than that of Chl a in total flower. Higher contents of Chl
b were obtained in the upper red part of petal and sepal, with the values of 0.027% and
0.029%, respectively. Meanwhile, the contents of these two chlorophylls were both much
lower than that of carotenoids.

Table 1. Pigments and moisture content in different parts of the Adonis amurensis flower.

Sample Moisture
(%)

Carotenoids
(dw, %)

Chlorophyll a
(dw, %)

Chlorophyll b
(dw, %)

Total flower 69.13 1.31 ± 0.21 0.029 ± 0.003 0.021 ± 0.005
Petal 71.97 2.58 ± 0.10 N. D. 0.019 ± 0.005

Upper Red part of petal 67.72 3.31 ± 0.04 N. D. 0.027 ± 0.007
Lower Purple part of petal 73.85 1.21 ± 0.06 N. D. 0.010 ± 0.001

Sepal 67.70 0.32 ± 0.07 0.074 ± 0.013 0.029 ± 0.005
Androecium and gynoecium 69.42 0.14 ± 0.00 0.035 ± 0.002 0.018 ± 0.001

N. D. means not detected. dw means on biomass dry weight basis. Values are averages of four replicates ±
standard error (SE).

2.3. AST Isomers of Flower Parts

In Figure 3a, peak 4 at the retention time 8.0 min is the characteristic absorption band
of all-trans AST. Peak 1 at 2.0–2.5 min of all plant samples was determined to be di-esterified
AST, which is not present in the standard. The highest and lowest ratios of di-ester to free
AST were obtained in the petal and the combined androecium and gynoecium, at 40:1 and
7:1, respectively. The chromatogram of AST after enzymatic hydrolysis (Figure 3b) showed
that peaks 1–6 (retention time 5.7, 7.8, 8.5, 9.9, 10.4, and 10.9 min), represent astacene, di-cis,
all-trans, 9-cis, 13-cis, and 15-cis AST, respectively, and these were observed in all the plant
samples; however, the peak at the retention time 3.2 min (peak 7) was only observed in
the spectrum for the combined androecium and gynoecium, which differed from other
samples. With regard to AST optical isomers, only a peak for (3S, 3′S)-AST was found in
the spectra of all samples (Figure 3c).

The levels of different AST isomers are shown in Figure 4. Among the geometrical
isomers, the all-trans isomer was the dominant form in A. amurensis flowers (about 70%).
Regarding all the cis isomers, the proportions of the 9-cis and 13-cis isomers were signifi-
cantly higher than that of 15-cis in the total flower. Interestingly, the levels of di-cis and free
AST in the combined androecium and gynoecium extract were both higher than the 9-cis,
13-cis, and 15-cis forms, which differed from the pattern in other parts of the flower.
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Figure 3. HPLC chromatograms of astaxanthin extracted from different parts of the Adonis amurensis
flower. (a) Geometrical isomers of astaxanthin without enzymatic hydrolysis with all-trans astaxan-
thin as standard; (b) geometrical isomers of astaxanthin after enzymatic hydrolysis with all-trans
astaxanthin as standard. HPLC condition: colum: Agilent Eclipse XDB-C18 column; mobile phase:
methanol: water (95:5, v/v); flow rate: 1.0 mL min−1; detection: 478 nm; column temperature: 25 ◦C.
(c) Optical isomer of astaxanthin and, synthesized (3S,3′S), (3S,3′R) and (3R,3′R)-astaxanthin in the
ratio of 1:2:1 as standard. Astaxanthin used to detecting (c) were all enzymatically treated. HPLC
condition: column: CHIRALPAK®IC column; mobile phase: methyl tertiary butyl ether: acetonitrile
(35:65, v/v); flow rate: 1.0 mL min−1; detection: 470 nm; column temperature: 25 ◦C. The lines were
staggered to show the isomer composition of each extract. Peaks 1, 2, 3, and 4 in (a) are di-ester,
unknown derivatives, 13-cis, and all-trans astaxanthin respectively. In (b), peaks were assigned as
astacene (1), di-cis (2), all-trans (3), 9-cis (4), 13-cis (5), and 15-cis (6) astaxanthin and β-carotene (7). In
(c), peaks 1, 2, and 3 were identified as (3S,3′S), (3S,3′R), and (3R,3′R)-astaxanthin, respectively.
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Figure 4. The percentages of astacene and astaxanthin in the measurable astaxanthin extracted from
Adonis amurensis flower. (a) all-trans and astacene; (b) di-cis, 9-cis, 13-cis and di-cis; (c) free astaxanthin.
Values are averages of four replicates ± standard error (SE). Eight randomly selected flowers were
used to perform the determination.

2.4. Isolation of the All-Trans Isomer of (3S,3′S)-AST

In Figure 5a, the peak at the retention time of 34.23 min was confirmed to be the
all-trans isomer of (3S,3′S)-AST. We then purified it from a crude extract of the total flower
(contains 8.52% AST on the wet mass base of extract detected according to Section 4.3). The
HPLC chromatograms and the UV-visible absorption spectrum of the purified all-trans
isomer are shown in Figure 5b,c. As predicted, no peak was found in the 330–340 bands,
consistent with the standard spectrum shown in Figure 1. Further calculations showed that
the recovery of the all-trans isomer of (3S,3′S)-AST from the total carotenoids of the crude
extract was 21.50 ± 0.81%.

Figure 5. HPLC chromatograms of the crude extracts of the total flower (a) and the isolated all-trans
isomer of (3S,3′S)-astaxanthin (b). c. the UV-visible spectrum of the purified all-trans isomer of 3S,3′S
astaxanthin. The detection was performed at 478 nm.

3. Discussion
3.1. Distribution of AST and Its Isomers in Adonis Flowers

The carotenoid content (mainly AST, Figure 2) in the total flower of A. amurensis can
be up to 1.31% (dw), found mainly in the petals. The highest AST content, 3.31%, was
recorded for the upper red part of the petal, followed by the purple spot (1.21%), the sepal
(0.32%), and the androecium/gynoecium (0.14%) (Table 1). The AST content of the red part
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of the petal resembles the content in H. pluvialis (commonly from 2.5% to 3.5%, dw) [45].
The AST content in the total petal is also encouraging, with a value of 2.58%.

Because free AST is relatively unstable, most AST in nature exists in the form of an
ester, i.e., mono-ester or di-ester [34,46]. In H. pluvialis cells, approximately 70% of the AST
exists as mono-esters, 25% as di-esters, and only 5% is unesterified (free) [31]. Previous
studies have reported that esterified AST in cultured shrimps ranged from 47.69% to 95.56%
of the total AST [23]. For A. amurensis, almost all of the AST exists in the di-ester form with
the lowest proportion (85%) in the androecium/gynoecium and the highest level in the
petal (>97.5%, Figure 3a).

AST has a broad absorption curve with a maximum wavelength of 480 nm, as shown
in Figure 2. The peak at 330 nm, a characteristic of the cis-isomer [47,48], can be observed
in the pigment’s UV-visible spectrum. Geometrical isomers of AST were further measured
by using an HPLC method. The proportions of di-cis AST in the sepal and the androe-
cium/gynoecium (2.10% and 15.91%, Figure 4) were both higher than in other flower
parts. This result is consistent with Figure 2, in which peaks at 330 nm of the sepal and
the androecium/gynoecium were significantly higher than those of other parts. However,
the total cis-AST ratios in other parts of the flower, i.e., petal 29.3.0%, red spot 24.0%, and
purple spot 25.9%, are also at the same level as that of androecium and gynoecium (23.2%)
and sepal (28.2%) (Figure 4). But the intensities of the cis peak in the AST extracted from
the petal, the upper red part of the petal, and the lower purple part of the petal are much
weaker (Figure 2). High cis peak intensity cannot be simply attributed to the high cis isomer
content. A previous study has shown that chlorophyll has a wide absorption band at
330 nm [49]. The relatively high content of Chl a in sepal and androecium and gynoecium
(Table 1) may lead to higher cis peak intensities in these two parts, which needs further
study. Another interesting note was the inflections in the blue region in the gynoecium and
androecium and sepal fractions in Figure 2. This can also be explained by the relatively
high content of Chl a in these two parts (Table 1). The absorption in the blue light region
was caused by Chl a.

The peak at 3.2 min for the androecium/gynoecium in Figure 3b, which differed
from the other spectra, was identified as β-carotene. In A. amurensis, AST exists as the di-
esterified form (Figure 3a), which is consistent with the situation in A. aestivalis as reported
by Kamata and Simpson [44]. Double esterification of AST with fatty acids added to 3 and
3′ hydroxyl groups of astaxanthin allow the AST to have more solubility and stability in
the cellular environment. High di-ester AST content in the crude extract of A. amurensis
flowers will also help to prolong the storage time of the pigment products. Esterification
is also important to store the pigment in the hydrophobic environment. Interestingly, the
proportions of free AST in the purple part of the petal and the androecium/gynoecium
are significantly higher than that of the red area, which may mean less difficulty in getting
highly pure free AST from these two parts without enzymatic hydrolysis.

The (3S,3′S) form has higher bioavailability and is more suitable for the health of
humans [50]. Our result shows that (3S,3′S)-AST is the only optical isomer in A. amurensis
(Figure 3c), which is consistent with the previous studies of A. annua [40], A. aestivalis [39],
and A. amurensis [33], respectively.

In the androecium/ gynoecium, the ratio of all-trans AST was lowest; however, free,
di-cis, and astacene had their highest values here as compared to their values in other
flower parts (Figure 4). Little is known about the AST cis-trans isomerization pathway.
To date, an epimerase for AST isomerization has not been identified. According to the
results of studies conducted in humans [51] and rainbow trout [52], the in vivo isomeriza-
tion of AST may lead to a different geometrical isomer composition. In A. amurensis, the
mechanism(s) leading to the differences in AST composition between the Adonis flower
components remains a question that needs to be investigated further. Given that animals
cannot synthesize carotenoids de novo, AST in the shrimp must be obtained from food.
When the white shrimp were fed using natural AST consisting of pure (3S,3′S)- isomer, the
ratio of (3S,3′S): (3S,3′R): (3R,3′R) in the L. vannamei body (with the value 6:2:1) differed
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from that of its feed supplement [2]. In A. aestivalis, the cDNA encoding the enzyme
that catalyzes the addition of the carbonyls has been identified, and the possible route to
AST from β-carotene is clear, in which the addition of a carbonyl to carbon C4 involves a
keto-enol tautomerization [37]. However, only a few studies have focused on the hydroxyl
to C3 relating to the optical isomers in prawn [53–55]. In animals, the transformation mech-
anism of AST from (3S,3′S)- to (3S,3′R)- and/or (3R,3′R)-isomer is far from being clarified.
We deduced that epimerases exist in the AST metabolic pathway both in animals and
plants [25], which changes the initial optical isomer composition. A further comparative
study performed on the AST pathways in animals and higher plants could provide more
information about this unresolved issue.

3.2. Potential Uses of Adonis Flower AST

UVA can penetrate the dermis layer of the skin and damage the elastic fibers and
collagen fibers, causing the skin to lose its elasticity. At the same time, it darkens the
epidermis layer, while inflicting damage to the skin [56]. AST is commonly used in
the cosmetics industry for its well-known antioxidant, anti-inflammatory, and antitumor
properties [5]. The androecium and gynoecium of the A. amurensis flower appear to be a
potential source of AST for cosmetic purposes if a process for sorting flower components can
be made economically viable. In addition, AST has been approved as a dietary supplement
and is widely used in the development of novel foods [31,57]. Improving the yield of AST
from natural sources, such as A. amurensis, to satisfy the demands for human applications,
especially the anti-ultraviolet agent, deserves further study.

The function and application of specific carotenoids depend on their molecular struc-
ture [58]. From the thermodynamic point of view, the stability of all-trans AST is better than
cis isomers but they may be isomerized from one form to another, and natural AST is easily
oxidized and converted to astacene [28]. We have summarized the pigment content and
isomer composition of most AST-containing organisms, in Table 2. Cis isomers together in
A. amurensis flowers account for a higher proportion of AST (20.0%), in comparison with
those of other natural sources. Compared with the all-trans isomer, cis AST, and especially
9-cis AST, has been shown to have higher antioxidant activity in vitro [28]. The highest
concentration of cis isomers found so far is in the A. amurensis flower, which might make
this a more suitable source for extraction of antioxidant material than other sources, e.g.,
Haematococcus, shrimp, and P. rhodozyma. There have been attempts to utilize AST from
another Adonis species, A. aestivalis, as the pigmentation for fish [36,59], although its safety
for humans has not been established.

3.3. Adonis Flower as a Promising Source of AST

The high production cost of natural AST is still the primary factor impacting the avail-
ability of this pigment. A previous study showed that the production cost of natural AST
can be as low as €632/kg, which is lower than the cost for synthetic AST at €880/kg [45].
This encouraging price is not too surprising considering the low labor, land, and utility costs
in China a decade ago. A recent assessment has shown that the production cost of natural
AST is unable to compete with the synthetic alternative (as summarized in Table 3). The
costs of natural AST in Livadeia and Amsterdam are €1536/kg and €6403/kg, respectively,
both much higher than that of synthetic AST [32]. According to our results and published
data, we estimate that the cost of producing natural AST from total Adonis flowers can be as
low as €388–393/kg (Table 3), suggesting it is a very promising source for producing natural
AST. As far as we know, the commercially available all-trans AST standard is a mixture of
(3S,3′S), (3S,3′R) and (3R,3′R)-AST, and a pure all-trans isomer of (3S,3′S) AST is still lacking
in the market. Our results suggest that Adonis flowers would be particularly suitable as raw
material for obtaining pure all-trans (3S,3′S) AST.
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Table 2. Distribution of astaxanthin in plants, aquatic animals, and zooplankton.

Species Astaxanthin Content c Proportion of Geometric Isomers (% of AST)
References

All-trans 9-cis 13-cis 15-cis di-cis

Plant
Microalga Haematococcus pluvialis 0.2–3.93 (% dw) 80–90 7–10 2–8 <1 N.D. 42

Higher plant Adonis amurensis 1.31 (% dw) 72 7.8 9.8 0.57 1.8 This study

Aquatic animals
Shrimp

Litopenaeus vannamei 1.9–271.4 (mg kg−1ww) 72–85 5–10 7–14 <2.5 <2 [2,23]
Penaeus monodon 26.2–105.4 (mg kg−1ww) 70–80 6–15 2–17 2–4 <9 [23]

Fenneropenaeus chinensis 1.9–137.7 (mg kg−1ww) 63–76 4–10 11–16 <9 <9 [23]
Exopalaemon carinicauda 3.1–25.6 (mg kg−1ww) 72–92 3–9 5–17 <2 <3 [4,23]

Trachysalambria curvirostris 11.0–106.0 (mg kg−1ww) 65–75 4–12 11–16 <4 4–7 [24]
Crab Eriocheir sinensis 12.9–343.4 (mg kg−1ww) 80–97 <6 1–8 1–13 N.D. [60]
Fish Oncorhychus mykiss 2.1–4.3 (mg kg−1ww) 87–90 1–2 8–12 N.D. N.D. [61]

Zooplankton Rotifer Brachionus plicatilis 0.06–0.6 (mg g−1ww) 82–92 7–10 2–3 0.5–5 N.D. [62]
Cladoceran Moina macrocopa 0.043–0.059 (mg g−1ww) >90 N.D. <10 N.D. N.D. Unpublished data

Yeast/Bacteria
Phaffia rhodozyma 11.4–13.4 (mg g−1ww) 70–78 2–3 15–21 4 2–3 [63]

Paracoccus carotinifaciens 21.8 (mg g−1ww) 95.5 1.7 2.8 N.D. N.D. [64]

Note: N.D.: not detected; dw: dry weight; ww: wet weight. The data in shrimp are for the muscle, cephalothorax, and shell while the data in crab are for the ovaries and carapace.
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Table 3. Productivity and production cost of natural astaxanthin using Adonis flower and Haematococcus pluvialis.

Resource Adonis Flower Haematococcus pluvialis

Location Inner Mongolia Livadeia [32] Amsterdam [32] Shenzhen [45]
Production of biomass

(kg/ha/year, dw) 1125 a 18,280 6150 450

Astaxanthin content in the biomass 1.31% — — 2.50%
Production of astaxanthin

(kg/ha/year) 14.74 426 143 11.25

Production costs of astaxanthin (€/kg) 388–393 b 1536–1857 6403–6723 632

Note: a. the production was estimated according to the data provided by Huang [65]. b. the price was calculated according to the data
provided by Li and Xiu [66], which covers the cost of mechanical operation, fertilizer, labor, watering, and land lease. The rent of film
greenhouses (Figure 6) for planting flowers is €255/year.

Figure 6. Adonis farming in a solar greenhouse covered by transparent plastic film.

4. Materials and Methods
4.1. Plant Materials and Reagents

A. amurensis was cultivated by sowing in Shandong province, May 2017. Fresh flowers
were handpicked from the plants and then sorted into different flower parts, i.e., total
flower, the petal including the red spot and the purple spot, the sepal, and the remainder
(mainly the combined androecium and gynoecium) (Figure 7). All materials were weighted,
then stored in liquid nitrogen until further analysis.

Figure 7. Samples of the different parts of the Adonis amurensis flower.
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An all-trans AST standard for AST quantification was obtained from Sigma Chemical
Co., while cholesterol esterase for hydrolysis came from Wako Pure Chemical Industries,
Ltd. HPLC-grade methanol, n-hexane, acetonitrile, methyl tert-butyl ether, and 2-propanol
were obtained from Adamas Reagent Ltd. Acetone used as extracting reagent was pre-
filtered through 0.22 µm GF/C filters (Whatman International Ltd., Maidstone, UK).

4.2. Preparation of Pigment Extracts from Adonis

Chl a and carotenoids from various flower parts were extracted by acetone using
the modified method of Arnon [67] and Johnston et al. [68]. The tissue (about 0.5 g fresh
weight) was placed in 10 mL centrifuge tubes in ice, then 6.0 mL of pre-cooled 100%
acetone was added. The flower parts were blended, soaked for 30 min in acetone, and then
homogenized in an ice-water bath. The pigment extracts were collected by centrifugation
at 2500× g for 8 min at 4 ◦C. The cell debris was repeatedly extracted with the same
solvent until it was colorless. All the pigment extracts for individual samples were merged
into a 50 mL volumetric flask and then filtered using 0.22 µm GF/C filters (Whatman
International Ltd., Maidstone, UK).

4.3. Quantification of Pigments

The acetone extracts were dehydrated with sodium sulfate. Then, the absorption spec-
tra of pigment extracts were measured using a spectrophotometer (U-2900, HITACHI Co.,
Ltd., Tokyo, Japan). The optical path length was 10 mm. Chl a, Chl b, and total carotenoid
concentrations of the acetone extract were calculated using the following equations [69]:

Chl a (%) = (12.7 × D663 nm − 2.69 × D645 nm) × V/W (1)

Chl b (%) = (22.9 × D645 nm − 4.68 × D663 nm) × V/W (2)

Carotenoids (%) = (D480 nm − 0.634 × D645 nm + 0.114×D663 nm) × V/2180/W (3)

where D663 nm, D645 nm, and D480 nm represent the absorbance recorded at the indicated
wavelengths, V is the diluted volume of the sample, W is the dry weight of the sample.

The moisture of the sample was calculated as:

Moisture (%) = 100 × (Mo −Me)/Mo (4)

where Mo is the wet weight of the fresh tissue; Me is the dry weight of the biomass after
drying for 24 h at 80 ◦C.

4.4. Identification of Carotenoids by HPLC

The hydrolysis of the carotenoid esters and the analysis of carotenoids followed the
methods described in previous reports [69,70]. An Agilent 1200 HPLC system (Agilent
Technologies Inc., Santa Clara, CA, USA) with a Luna Silica column (3 µm, 150 mm × 4.6
nm, Phenomenex, Torrance, CA, USA) was used for qualitative and quantitative analysis
of carotenoids. Hydrolysis of astaxanthin was performed with cholesterol esterase for
60 min to remove esters according to our previous study [69] before identification and
quantification by conventional HPLC. Identification of carotenoids without standards,
such as di-cis-AST, astacene, and 15-cis-AST, was performed by comparing their spectra
or retention times with those of published data [27,69,71–73]. Optical isomers of AST
were further separated according to the method described by [29]. The levels of different
optical isomers, i.e., (3S,3′S), (3R,3′R), and (3S,3′R)-AST, were calculated according to the
peak areas and by comparing the retention time of sample peak to synthetic AST standard
(CaroteNature, Lupsingen, Switzerland), respectively.

4.5. Preparation of the All-Trans Isomer of (3S,3′S)-AST

The all-trans isomer of (3S,3′S)-AST was prepared from the crude extracts of the total
flower on an Agilent 1200 HPLC system (Agilent Technologies Inc., Santa Clara, CA, USA)
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with an InertSustain C18 column (5 µm, 250 mm × 10 mm, GL Science, Tokyo, Japan) [27].
The oily flowers extract is provided by the manufacturer settled in Weifang, China. The
binary mobile phase consisted of A: 0.1% trifluoroacetic acid in water (v/v) and B: 95%
methanol mixed with 5% acetonitrile (v/v). The solvent gradient was as follows: 0–5.8 min,
60–80% B; 5.8–32.6 min, 80–100% B; 32.6–35 min, 100% B; 35–47 min, 100–60% B; 47–50 min,
60% B. Peaks were detected at 470 nm. The flow rate was set at 3.0 mL/min. Under these
conditions, the fraction containing the all-trans isomer of (3S,3′S)-AST eluted at a retention
time of 34 to 35 min and was collected and dried under a nitrogen stream.

4.6. Statistics

SPSS 16.0 software was used for statistical analyses. One-way analysis of variance (ANOVA)
and Tukey test (p < 0.05) was used to analyze differences for the multiple comparisons.

5. Conclusions

One optical isomer (3S, 3′S) of AST, with five geometrical isomers (all-trans, 9-cis,
13-cis, 15-cis, and di-cis) were observed in all parts of the flower, i.e., the petal including
the red spot and the purple spot, the sepal, and the remainder (mainly the combined
androecium and gynoecium). The highest carotenoid content was obtained from the red
part of the petal (3.31%, dw). All-trans AST was the predominant geometrical isomer
accounting for 72.5% of the total content of geometric isomers in total flower, followed by
the 13-cis (9.8%), 9-cis (7.8%), di-cis (1.8%), and 15-cis (0.6%) isomers. The cis-AST extracted
from the combined androecium and gynoecium can be used to prepare the anti-ultraviolet
agents. The production cost of AST from Adonis flowers can be as low as €388–393/kg,
which is far lower than that from Haematococcus culturing. Together with other factors such
as the low technology requirement for plant culturing and harvesting, suggest Adonis has
great potential as a resource for natural esterified (3S,3′S)-AST production.
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