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Many biological characteristics of evolutionary interest are not scalar vari-

ables but continuous functions. Given a dataset of function-valued traits

generated by evolution, we develop a practical, statistical approach to

infer ancestral function-valued traits, and estimate the generative evolution-

ary process. We do this by combining dimension reduction and phylogenetic

Gaussian process regression, a non-parametric procedure that explicitly

accounts for known phylogenetic relationships. We test the performance of

methods on simulated, function-valued data generated from a stochastic

evolutionary model. The methods are applied assuming that only the

phylogeny, and the function-valued traits of taxa at its tips are known.

Our method is robust and applicable to a wide range of function-valued

data, and also offers a phylogenetically aware method for estimating the

autocorrelation of function-valued traits.
1. Introduction
The number, reliability and coverage of evolutionary trees are growing rapidly

[1,2]. However, knowing organisms’ evolutionary relationships through phylo-

genetics is only one step in understanding the evolution of their characteristics

[3]. Three issues are particularly challenging. The first is limited information:

empirical information is typically available only for extant taxa, represented

by tips of a phylogenetic tree, whereas evolutionary questions frequently con-

cern unobserved ancestors deeper in the tree. The second is dependence: the

available information for different organisms in a phylogeny is independent

because a phylogeny describes a complex pattern of non-independence;

observed variation is a mixture of this inherited variation and specific variation

[4]. The third is high dimensionality: the emerging literature on function-valued

traits [5–7] recognizes that many characteristics of living organisms are best

represented as a continuous function rather than a single factor or a small

number of correlated factors. Such characteristics include growth or mortality

curves [8], reaction norms [9] and distributions [10], where the increasing

ease of genome sequencing has greatly expanded the range of species in

which distributions of gene [11] or predicted protein [12] properties are avail-

able. Therefore, a function-valued trait is defined as a phenotypic trait that

can be represented by a continuous mathematical function [9].

Previous work [13] proposed an evolutionary model for function-valued

data d related by a phylogeny T. The data are regarded as observations of a

phylogenetic Gaussian process (PGP) at the tips of T. That work shows that a

PGP can be expressed as a stochastic linear operator X on a fixed set f of

basis functions (independent components of variation), so that

d ¼ XTf: ð1:1Þ

However, the study does not address the linear inverse problem of obtaining

estimates f̂ and X̂ of f and X: our first contribution in this paper is to provide

an approach to this problem in §2.2 via independent principal component

analysis (IPCA; [14]).
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Figure 1. The three methods presented in this paper (ovals) and their
interrelationships.

Figure 2. The random phylogenetic tree used and examples of the function-
valued traits shown at the tips (extant taxa) and the internal nodes (ancestral
taxa). A subset of these is used in figure 5.
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We refer to X as the mixing matrix, and to the (i,j )th entry

of X as the mixing coefficient of the ith basis function at the jth
taxon. It is these mixing coefficients that we model as evol-

ving. For each fixed value of i, the Xij are correlated (owing

to phylogeny) as j varies over the taxa; the basis functions

themselves do not evolve in our model.

In §2.3, we address the problem of estimating the statistical

structure of the mixing coefficients by performing phylogenetic

Gaussian process regression (PGPR) on each of the rows of

X̂ separately. This corresponds to assuming independence

between the rows (i.e. that the coefficients of the different

basis functions evolve independently). It is commonly argued

in the quantitative genetics literature [15] that evolutionary pro-

cesses can be modelled as Ornstein–Uhlenbeck (OU)

processes. Under these assumptions, the estimation of the for-

ward operator reduces to the estimation of a small vector g of

parameters [13]. In §2.1, we clarify the interpretation of these

parameters in evolutionary contexts. The explicit PGPR pos-

terior likelihood function is then used to obtain maximum-

likelihood estimates (MLEs) for g. The estimation of g is

known to be a challenging statistical problem [16]. We suggest

an approach based on the principle of bagging [17] in §2.4.

Our final contribution (§2.5) addresses the problem of

estimating the function-valued traits of ancestral taxa. The

earlier-mentioned PGPR step also returns a posterior distri-

bution for the mixing coefficient of each basis function at

each ancestral taxon in the phylogeny. At any particular

ancestor, the estimated basis functions may be combined stat-

istically, using the posterior distributions of their respective

mixing coefficients, to provide a posterior distribution for

the function-valued trait. Because the univariate posterior

distributions are Gaussian, and the mixing is linear, the pos-

terior for the function-valued trait has a closed form

representation as a GP (equation (2.6)) that provides a

major analytical and computational advantage for the

approach. We can verify the methods proposed by using a

PGP as a stochastic generative model. This simulates corre-

lated function-valued traits across the taxa of T. Given only

the phylogeny and the function-valued traits of taxa at its

tips, our estimates for f̂ and the ancestral functions are

then compared with the simulation.

Overall, our three methods (in §§2.2, 2.4, 2.5) appropri-

ately combine developments in functional data analysis

with the evolutionary dynamics of quantitative phenotypic

traits, allowing non-parametric Bayesian inference from phy-

logenetically correlated function-valued traits. An outline of

the framework presented in this study can be found in

figure 1.
2. Methods and implementation
2.1. Artificial evolution of function-valued traits
We begin by generating a random phylogenetic tree T with

128 tips, shown in figure 2. This fixes the experimental

design for our simulation and inference, but further simu-

lations given in the electronic supplementary material

confirm that the statistical performance of our methods is

consistent across a range of choices for T. Branch length dis-

tributions are surprisingly consistent across organisms [18];

branch lengths were drawn from the empirical branch

length distribution (see electronic supplementary material,

section S1) extracted from TREEFAM v. 8.0 [2].
Second, we chose a basis f in equation (1.1). We have no

reason a priori to suppose that this basis is orthogonal and, in

general, there is no reason for our inference procedure to be sen-

sitive to the particular shape of the basis functions. The three

simple non-orthogonal, unimodal functions shown in figure 3

were therefore chosen as examples. For computational pur-

poses, each basis function was stored numerically as a vector

of length 1024, so that the basis matrix f was of size 3 � 1024

and its ith row stored the ith basis function.

Third, different mixing coefficients were generated by a

phylogenetic OU process for each basis function and stored

in the respective row of X. Our modelling assumption is

that the mixing coefficients for distinct basis functions f1,

f2, f3 are statistically independent of each other: in equation

(1.1), this means that the rows of X are independent. It is

therefore sufficient to describe the stochastic process generat-

ing Xi, the ith row of X with i [ f1; 2; 3g. We calculated the

mixing matrix at the 128 tip taxa so X is of size 3 � 128.

The ‘true’ ancestral values were established by generating

phylogenetic OU processes over the whole phylogeny. The

values of this process at tip taxa were stored in a row
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Figure 3. (a) original basis signals, f; (b) mixed sample at the tips, d ( four individual function-valued traits are shown; red line and grey band show, respectively,
the mean and 2 s.d. for all 128 function-valued data at the tips); (d) IPCA basis, f̂ ; (c) PCA basis. (Online version in colour.)

Table 1. The fixed values used for the parameters in equation (2.1) to
generate the mixing coefficients Xij. Each row constitutes a value of g i.
6.17 and 2.06 correspond to 0.75 and 0.25 of the tree’s ‘max, respectively.
When i ¼ 2, ‘i is not applicable, because there is no phylogenetic
variation in the sample.

i si
f ‘i si

n

1 2.5 6.17 0.5

2 0 n.a. 1.0

3 1.5 2.06 0.5
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vector Xi (Xi is a simulation of the tip taxa mixing coefficients Xi

excluding the non-phylogenetic variation), and its values at

internal taxa were stored in a row vector Wi for performance

analyses in §2.5. To simulate the additional effect of non-

phylogenetic variation (e.g. due to measurement error or

environmental effects), independent (i.e. non-phylogenetic)

variation was added to each entry of �Xi:

Xi ¼ �Xi þ ei;

where e i is a 1 � 128 vector of independent Gaussian errors

with mean 0 and standard deviation si
n; and, finally, the

matrix multiplication in equation (1.1) was performed to

obtain the simulated data d. The ‘extant’ function-valued trait

at tip taxon j is thus
P3

i¼1 Xijfi (a vector of length 1024), whereas

the ancestral function-valued trait at internal taxon g isP3
i¼1 Wigfi: The ancestral function-valued traits therefore exhi-

bit only the phylogenetic part of simulated variation, whereas

the extant function-valued traits exhibit both phylogenetic

and non-phylogenetic variation. Of course, it is not possible

to reconstruct non-phylogenetic variation using phylogenetic

methods: we simulate non-phylogenetic variation only to

demonstrate that it does not prevent the reconstruction of the

phylogenetic part of variation for ancestral taxa in §§2.2–2.5.

We now comment on the specific parameters chosen for

the phylogenetic OU processes mentioned earlier. As in

Hansen [19], we refer to the strength of selection parameter a

and the random genetic drift s: we add superscripts to these

parameters to distinguish between the three different OU

processes. With this notation, the mixing coefficients for the

row Xi have the following covariance function:

Ki
Tðt1; t2Þ ¼ E½XijXig�

¼ ðsi
f Þ

2 expð�2aiDTðtj; tgÞÞ þ ðsi
nÞ

2
de

tj ;tg
;

ð2:1Þ
where si
f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsiÞ2=2ai

q
; DT (tj, tg) denotes the phylogenetic or

patristic distance (i.e. the distance in T) between the jth and

gth tip taxa, sn is defined as earlier, and

de
tj;tg
¼ 1; if tj ¼ tg and tj is a tip taxon;

0; otherwise

�

adds non-phylogenetic variation to extant taxa as discussed

earlier, i.e. de evaluates to 1 only for extant taxa, thus sn quan-

tifies within-species genetic or environmental effects and

measurement error in the ith mixing coefficient. We see

from equation (2.1) that the proportion of variation in the

row Xi attributable to the phylogeny is ðsi
f Þ

2=ðsi
f Þ

2 þ ðsi
nÞ

2:

In the Gaussian process regression (GPR) literature in

machine learning, 1/2a is equivalent to ‘, the characteristic

length-scale [20] of decay in the correlation function and

in the following we work with the latter. For all of the OU

processes, we used characteristic length-scales relative to

8.22, the maximum patristic distance (‘max) between two

extant taxa for our simulated tree (figure 2). The values we

used are given in table 1. In particular, si
f ¼ 0 when i ¼ 2
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and it follows that the characteristic length-scale ‘ plays no

role for this OU process, and equally we do not define the

strength-of-selection parameter ai when i ¼ 2.

2.2. Dimensionality reduction and source separation for
function-valued traits

Given a dataset d of function-valued traits, we would like to

find appropriate estimates X̂ and f̂ of the mixing matrix X
and the basis set f, respectively. The first task is to identify

a good linear subspace S of the space of all continuous func-

tions by choosing basis functions appropriately. The purpose

is to work, not with the function-valued data directly, but

with their projections in S. We may say that the chosen sub-

space S is good, if the projected data approximate the original

data well, whereas the number of basis functions is not

unnecessarily large so that S has the ‘effective’ dimension

of the data.

We then face a linear inverse problem: given the dataset d
of function-valued traits, the task is to generate estimates

X̂ and f̂ (equation (1.1)). This task is also known as source
separation [21], which has a variety of implementations

making different assumptions about the basis f and mixing

coefficients X. One widely used approach is principal com-

ponents analysis (PCA) [22], which returns orthogonal sets

of basis functions to explain the greatest possible variation.

PCA has been extended to take account of phylogenetic

relationships [23], however, if a sample of functions is gener-

ated by mixing non-orthogonal basis functions, the PCs of

the sample (whether or not they account for phylogeny) will

not equal the basis curves, due to the assumption of orthogon-

ality (figure 3). In the independent component analysis (ICA),

the alternative assumption is made that the rows Xi of X are

statistically independent. This assumption fits more naturally

with our modelling assumptions, because we assume that

the rows Xi are mutually independent [21]. ICA has proved

fruitful in other biological applications [24] as has passing

the results of PCA to ICA, which has been termed IPCA [14].

PCA is an appropriate tool for identifying the effective

dimension of a high-dimensional dataset [25]. Therefore, to

achieve both dimension reduction and source separation, we

first applied PCA to the dataset d (the 128 function-valued

traits at the tips of T) to determine the appropriate number of

basis functions. The PCs were then passed to the CubICA imple-

mentation of ICA [26]. CubICA returned a new set of basis

functions (figure 3d) that were taken as the estimated basis f̂ .

2.3. Phylogenetic Gaussian process regression
ICA also returns the estimated mixing coefficients at tip taxa,

X̂: Our next step was to perform PGPR [13] separately

on each row X̂i; assuming knowledge of the phylogeny T,

in order to obtain posterior distributions for all mixing

coefficients throughout the tree T.

GPR [20] is a flexible Bayesian technique in which prior

distributions are placed on continuous functions. Its range

of priors includes the Brownian motion and OU processes,

which are by far the most commonly used models of charac-

ter evolution [15,27]. Its implementation is particularly

straightforward, because the posterior distributions are also

GPs and have closed forms. We now give a brief exposition

of GPR, using notation standard in the machine learning

literature [20].
A GP may be specified by its mean surface and its covari-

ance function K(g), where g is a vector of parameters. Because

the components of g parametrize the prior distribution, they

are referred to as hyperparameters. The GP prior distribution

is denoted

f � N ð0;KðgÞÞ:

If x* is a set of unobserved coordinates and x is a set of

observed coordinates, then the posterior distribution of the

vector f (x*) given the observations f (x) is

f ðx�Þjf ðxÞ � N ðA;BÞ; ð2:2Þ

where

A ¼ Kðx�; x;gÞKðx; x; gÞ�1f ðxÞ; ð2:3Þ

and

B ¼ Kðx�; x�;gÞ � Kðx�; x;gÞKðx; x; gÞ�1Kðx�; x; gÞT ð2:4Þ

and K(x*, x, g) denotes the jx*j�jxj matrix of the covariance

function K evaluated at all pairs x�i [ X�; xj [ X: Equations

(2.3) and (2.4) convey that the posterior mean estimate will

be a linear combination of the given data and that the pos-

terior variance will be equal to the prior variance minus the

amount that can be explained by the data. Additionally, the

log-likelihood of the sample f (x) is

log pð f ðxÞjgÞ ¼ � 1

2
f ðxÞTKðx; x;gÞ�1f ðxÞ

� 1

2
logðdetðKðx; x; gÞÞÞ � jxj

2
log 2p: ð2:5Þ

It can be seen from equation (2.5) that the MLE is subject both

to the fit it delivers (the first term) and the model complexity

(the second term). Thus, GPR is non-parametric in the sense

that no assumption is made about the structure of the model:

the more data gathered, the longer the vector f(x), and the

more intricate the posterior model for f (x*).

PGPR extends the applicability of GPR to evolved func-

tion-valued traits. A PGP is a GP indexed by a phylogeny

T, where the function-valued traits at each pair of taxa are

conditionally independent given the function-valued traits

of their common ancestors. When the evolutionary process

has the same covariance function along any branch of T

beginning at its root (called the marginal covariance function),

these assumptions are sufficient to uniquely specify the

covariance function of the PGP, KT. As we assume that T is

known in our inverse problem, the only remaining modelling

choice is therefore the marginal covariance function. As can

be seen from equation (2.1), K is a function of patristic dis-

tances on the tree rather than Euclidean distances as

standard in spatial GPR.

In comparative studies, where one has observations at

the tips of T, the covariance function KT may be used to con-

struct a GP prior for the function-valued traits, allowing

functional regression. In the model that we use, this is equiv-

alent to specifying a Gaussian prior distribution for the

mixing coefficients Yij and Xij. This may be carried out by

regarding the row vectors Yi and Xi as observations of a uni-

variate PGP. As noted in Jones & Moriarty [13], if we assume

that the evolutionary process is Markovian and stationary,

then the modelling choice vanishes, and the marginal covari-

ance function is specified uniquely: it is the stationary OU

covariance function. If we also add explicit modelling of

non-phylogenetically related variation at the tip taxa, the



Table 2. The bagging estimates for the hyperparameters in equation (2.1)
(standard deviations of bagging estimates in parentheses). Each row
corresponds to a given estimate of the vector ĝ i: These estimates provide
the maximum-likelihood value for equation (2.5) and are comparable with
the original ones from table 1.

i ŝ i
f ‘̂i ŝ i

n

1 3.41 (0.62) 2.83 (0.47) 0.78 (0.47)

2 0.55 (0.33) 0.05 (0.02) 0.84 (0.34)

3 2.83 (0.33) 2.06 (0.50) 0.73 (0.29)
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univariate prior covariance function has the unique func-

tional form presented in equation (2.1). We do not assume

knowledge of the parameters of equation (2.1), however,

their estimation is the subject of §2.4.

2.4. Hyperparameter estimation
Because the posterior distributions returned by PGPR depend

on the hyperparameter vector g, we must estimate g in

order to reconstruct ancestral function-valued traits, and the

estimation procedure should correct for the dependence

owing to phylogeny. MLE of the phylogenetic variation,

non-phylogenetic variation and characteristic length-scale

hyperparameters si
f ; s

i
n and ‘i, respectively, may be attempted

numerically using the explicit prior likelihood function

(equation (2.5)). Because estimating si
f and ‘i alone is challen-

ging [16] (although the estimation improves significantly with

increased sample size), and we have further increased the chal-

lenge by introducing non-phylogenetic variation, we propose

an improved estimation procedure using the machine learning

technique bagging [17], which a member of the boosting frame-

work [22]. We show that these estimates may be further

improved if one knows the value of the ratio (sf)
2/(sn)2,

which is closely related to Pagel’s l [28].

Bagging (bootstrap aggregating) seeks to reduce the var-

iance of an estimator by generating multiple estimates and

averaging. It is simple to implement given an existing esti-

mation procedure: one adds a loop front end that selects a

bootstrap sample and sends it to the estimation procedure

and a back end that aggregates the resulting estimates [17].

We generated 100 (sub)trees of 100 taxa by sampling without

replacement our original 128 taxa tree, obtained the MLE for

g on each subtree, and averaged these estimates to obtain the

aggregated estimate ĝ : Our results are shown in table 2: for

i ¼ 1 and i ¼ 3, given our moderate sample size (128 taxa),

the accuracy of these results is at least in line with the state

of the art [16] despite the additional challenge posed by

non-phylogenetic variation. For i ¼ 2, where phylogenetic

variation is absent from the generative model (si
f ¼ 0), our

estimation procedure indicates its absence by returning esti-

mates for ‘i whose magnitude is unrealistically small for the

examined tree (less than the first percentile of the tree’s
patristic distances). Commenting further on this matter,

exceptionally small characteristic length-scales relative to the

tree patristic distances, as seen here, practically suggest

taxa-specific phylogenetic variation, i.e. non-phylogenetic

variation. This holds also in its reverse: exceptionally large
characteristic length-scales suggest a stable, non-decaying

variation across the examined taxa that is indifferent to

their patristic distances, again suggesting the absence of

phylogenetic variance among the nodes.

To assess the robustness of this hyperparameter esti-

mation method, we performed 1024 simulations, randomly

regenerating the tree and parameter vector g each time (see

electronic supplementary material, section S2). The accuracy

of these estimates is shown in figure 4. Improved results

when the ratio (sf )
2/(sn)2 is known a priori (e.g. through

knowledge of Pagel’s l) are also given in the electronic

supplementary material, sections S2 and S3. Our ultimate

aim is ancestor reconstruction rather than hyperparameter

estimation per se, and this is the subject of §2.5.

2.5. Ancestor reconstruction
Having generated function-valued data (§2.1), extracted

mixing coefficients X̂ (§2.2) and performed hyperparameter

estimation (§2.4), we may now perform PGPR (§2.3) on

each row X̂i; to obtain the univariate Gaussian posterior dis-

tribution for the mixing coefficient Wit� at any internal taxon

t*. As discussed in §2.3, the GP prior distribution has covari-

ance function (equation (2.1)). We have assessed the accuracy
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of our bagging estimate ĝ in §2.4 and we now substitute

ĝ i into equation (2.1). Taking a simple and direct approach,

our estimate f̂ obtained in §2.2 may then be substituted

into equation (1.1) to obtain the function-valued posterior

distribution ft� for the function-valued trait at taxon t*.

Because our estimated basis functions are stored numerically

as vectors of length 1024, this gives the same discretion for

the ancestral traits.

Conditioning on our estimated mixing coefficients X̂i for

the tip taxa, the posterior distribution of Wit� is

Wit�� N ðÂi; B̂iÞ;

where the vector Âi and matrix B̂i are obtained from

equations (2.3) and (2.4), taking x ¼ X̂i; x� ¼Wit� and ĝ i,

respectively, for our observation coordinates, estimation coor-

dinates and hyperparameter vector. Because our prior

assumption is that the rows of X are statistically independent

of each other, it follows from equation (1.1) that

ft� � N
Xk

i¼1

Âif̂i;S
k
i¼1f̂

T
i B̂if̂i

 !
: ð2:6Þ

The marginal distributions of this representation (mean

and standard deviation) are shown in figure 5.

Figure 5 compares the function-valued estimates f̂t� to the

simulated function-valued traits at the root (figure 5a),

an internal node (figure 5b), and at a tip (figure 5c). In

figure 5a,b, the simulated function-valued data are shown

in black, and can be seen typically to lie within two posterior

standard deviations. In figure 5c, the black line is the

observed function-valued trait at that tip: the red line and

dark grey band represent the posterior distribution of its phy-

logenetic component, and the light grey band represents the

estimated magnitude of the additional non-phylogenetic

variation. Uncertainty over the phylogenetic part of variation

(dark grey band) decreases from root to tip, as all obser-

vations are at the extant tip taxa. We note that the posterior

distributions, even at the root, put clear statistical constraints

on the phylogenetic part of ancestral function-valued data: in
this (admittedly simulated and highly controlled) setting, we

can reason effectively about ancestral function-valued traits.
3. Discussion
In §2.1, we have appealed to equation (1.1) in the setting of

mathematical inverse problems where, given data d, the chal-

lenge is to infer a forward operator G and model f such that

d ¼ GðfÞ; ð3:1Þ

and such problems are typically under-determined and

require additional modelling assumptions [29]. Given a phy-

logeny T and function-valued data d at its tips, we wish to

infer the forward operator GT and model f such that

d ¼ GTðfÞ: ð3:2Þ

When the data d are a small number of correlated factors

per tip taxon, a variety of statistical approaches are available

[30,31]. When the data are functions, the PGPs [13,32] have

been proposed as the forward operator and this is the

approach we have taken in this work.

Our dimensionality-reduction methodology in §2.2

can be easily varied or extended. For example, any suitable

implementation of PCA may be used to perform the initial

dimension reduction step: in particular, if the data have an

irregular design (as happens frequently with function-

valued data), the method of Yao et al. [33] may be applied

to account for this; the ICA step then proceeds unchanged.

We also note that while we find the CubICA implementation

of ICA to be the most successful in our signal separation task,

other implementations such as FastICA [21] or JADE [34] can

also be used. In general, ICA gives rows X̂i of the estimated

mixing matrix that are maximally independent under a par-

ticular measure of independence involving, for example,

higher sample moments or mutual information, in order to

approximate the solution of the inverse problem in equation

(1.1) under our assumption of independence between the

rows of X. PCA and ICA have different purposes (respect-

ively, orthogonal decomposition of variation and separation
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of independently mixed signals) and we use them sequen-

tially in IPCA. IPCA is non-parametric and, in particular,

both distributionally and phylogenetically agnostic. This

means that unlike PCA, IPCA is robust to non-Gaussianity

in the data and, unlike phylogenetically corrected PCA,

IPCA is robust to mis-specification of the phylogeny and to

mixed phylogenetic and non-phylogenetic variation in the

data: any of these can be features of biological data.

It can be seen in figure 4 that the estimation of ‘ is more

challenging than the estimation of sn or sf, having greater

bias and variance. This corresponds to the documented diffi-

culty of estimating the parameter a in the OU model,

particularly for smaller sample sizes. Our work on hyper-

parameter estimation in §2.4 mitigates these difficulties due

to small sample size [16,35] by using bagging in order to

bootstrap our sample. Somewhat unintuively, bagging

‘works’ exactly because the subsample ĝ estimates are vari-

able and thus we avoid overfitted final estimates (see

electronic supplementary material, section S2). Conceptually,

our work on hyperparameter estimation, when taken

together with §2.2, relates to the character process models

of Pletcher & Geyer [8] and orthogonal polynomial methods

of Kirkpatrick & Heckman [5], which give estimates for

the autocovariance of function-valued traits. Writing out

equation (1.1) for a single function-valued trait (at the jth
tip taxon, say), our model may be viewed as

f ðxÞ ¼
X3

i¼1

gijfiðxÞ þ
X3

i¼1

eijfiðxÞ; ð3:3Þ

where the mixing coefficient Xij has been expressed as the

sum of gij, the genetic (i.e. phylogenetic) part of variation,

plus eij, the non-phylogenetic (e.g. environmental) part of

variation, just as in these references. Then, the autocorrelation
of the function-valued trait is

E½ f ðx1Þf ðx2Þ� ¼
X3

i¼1

ððsf
i Þ

2 þ ðsn
i Þ

2Þfiðx1Þfiðx2Þ: ð3:4Þ

The estimates of s
f
i and sn

i obtained in §2.4 may be

substituted into equation (3.4) to obtain an estimate of the

autocovariance of the function-valued traits under study.

This estimate has the attractions both of being positive defi-

nite (by construction) and of taking phylogeny into account.

Various frameworks exist that could be used to generalize

the method presented in §2.4, to model heterogeneity of evol-

utionary rates along the branches of a phylogeny [36] or for

multiple fixed [15] or randomly evolving [16,37] local

optima of the mixing coefficients. For the stationary OU pro-

cess, the optimum trait value appears only in the mean, and

not in the covariance function, and so does not play a role as

a parameter in GPR [20]. We have not implemented such

extensions here, effectively assuming that a single fixed opti-

mum is adequate for each mixing coefficient. Nonetheless,

our framework is readily extensible to include such effects,

either implicitly through branch-length transformations [38],

or explicitly by replacing the OU model with the more

general Hansen model [37].

R code for the IPCA, ancestral reconstruction and hyper-

parameter estimation is available from https://github.

com/fpgpr/.
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