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Abstract

Background: Squamous cell lung carcinomas account for approximately 25% of new lung carcinoma cases and 40,000
deaths per year in the United States. Although there are multiple genomically targeted therapies for lung adenocarcinoma,
none has yet been reported in squamous cell lung carcinoma.

Methodology/Principal Findings: Using SNP array analysis, we found that a region of chromosome segment 8p11-12
containing three genes–WHSC1L1, LETM2, and FGFR1–is amplified in 3% of lung adenocarcinomas and 21% of squamous cell
lung carcinomas. Furthermore, we demonstrated that a non-small cell lung carcinoma cell line harboring focal amplification
of FGFR1 is dependent on FGFR1 activity for cell growth, as treatment of this cell line either with FGFR1-specific shRNAs or
with FGFR small molecule enzymatic inhibitors leads to cell growth inhibition.

Conclusions/Significance: These studies show that FGFR1 amplification is common in squamous cell lung cancer, and that
FGFR1 may represent a promising therapeutic target in non-small cell lung cancer.
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Introduction

Lung cancer is the leading cause of cancer-related death in

developed countries with deaths in 2009 estimated at approxi-

mately 160,000 in the United States, accounting for about 28% of

all cancer deaths [1]. Non-small cell lung cancer (NSCLC)

accounts for 75% of all lung cancers and includes two

predominant subtypes, adenocarcinoma and squamous cell

carcinoma (SCC), which comprise 40% and 25% of NSCLCs,

respectively [2,3]. Despite clear histologic and biologic distinc-

tions, lung adenocarcinoma and squamous cell carcinoma are

largely treated with the same chemotherapeutic agents with the

exception of the antifolate agent pemetrexed which is approved for

the treatment of non-squamous NSCLC [4].

Significant advances in the treatment of lung adenocarcinoma

have stemmed from detailed genomic analyses and the deploy-

ment of molecularly targeted agents leading which have led to

improvements in patient outcomes. Examples include the use of

epidermal growth factor receptor (EGFR) inhibitors such as

gefitinib and erlotinib [5,6,7] for lung adenocarcinomas bearing

EGFR mutations [8,9,10], and of ALK inhibitors such as crizotinib

[11] for lung adenocarcinomas bearing EML4-ALK translocations

[12,13].

However, little is currently known about the targetable genetic

abnormalities underlying squamous cell lung cancer. In addition to

TP53 mutations [14], squamous cell lung carcinomas have been

shown to harbor amplifications of PIK3CA [15], SOX2 [16], and

EGFR [16] as well as EGFR variant III mutations [17] DDR2

mutations [18] and rare amplifications of PDGFRA/KIT [19,20]

and BRF2 [21]. A recent study has demonstrated focal

amplification of the FGFR1 locus on chromosome 8p associated

with cellular dependency on FGFR1 and sensitivity to FGFR

inhibitors [22]. At this time there are no FDA-approved targeted

therapies for squamous cell lung cancer.

Targeting amplified tyrosine kinases with antibodies or with

small molecule inhibitors has led to dramatic improvements in
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response rates and overall survival of cancer patients whose tumors

harbor specific genomic abnormalities. Amplifications of EGFR

and ERBB2 have been reported in a variety of malignancies,

including head and neck, esophageal, gastric, breast and colon

cancers as well as NSCLC [23]. Targeting of these tyrosine

kinases, such as the use of cetuximab to target EGFR in colorectal

and head and neck cancer [24,25] and the use of trastuzumab to

target ERBB2 in breast cancer [26], has resulted in significant

improvement in patient outcomes in each of these diseases, though

not all patients with these amplifications respond to targeted

agents [27,28], likely due to additional genomic alterations within

the tumor that result in primary resistance to specific agents

[29,30].

The fibroblast growth factor receptor type 1 gene (FGFR1) is

one of the most commonly amplified genes in human cancer [16].

The fibroblast growth factor receptor (FGFR) tyrosine kinase

family is comprised of four kinases, FGFR1, 2, 3, and 4, that play

crucial role in development, and have been shown to be targets

for deregulation by either amplification, point mutation, or

translocation (reviewed in [31]). Translocations involving FGFR3,

as well as activating somatic mutations in FGFR3 have been

identified in multiple myeloma and bladder cancer [32,33,34].

We and others have identified activating mutations in FGFR2 in

endometrial cancer [35,36]. Amplification or activation of FGFR1

has been reported in oral squamous carcinoma [37], esophageal

squamous cell carcinomas [38], ovarian cancer [39], bladder

cancer [40], prostate cancer [41], rhabodomyosarcoma [42], and

lung cancer [16,43,44,45,46]. Consistent with this, a pan-FGFR

tyrosine kinase inhibitor has been shown to block tumor

proliferation in a subset of NSCLC cell lines with activated

FGFR signaling but has no effect on cells that do not activate the

pathway [47]. FGFR1 has been identified as the driver event in

breast carcinomas and NSCLC, especially squamous cell lung

carcinomas, harboring similar amplifications of the 8p11

chromosomal segment [22,48]

Based on SNP array copy number analysis of 732 samples, we

report that FGFR1 is somatically amplified in 21% of lung

squamous cell carcinomas as compared to 3.4% of lung

adenocarcinomas. We validate FGFR1 as a potential therapeutic

target by showing that at least one FGFR1-amplified NSCLC

tumor cell line is sensitive to FGFR enzymatic inhibition and

dependent on FGFR1 expression for cell viability as evidenced by

shRNA treatment. Together with previous reports reviewed

above, these results suggest that FGFR1 may be an attractive

therapeutic target in NSCLC.

Materials and Methods

NSCLC primary samples and cell lines
NSCLC cell lines, NCI-H1703 (squamous), NCI-H2444

(pulmonary), NCI-H520 (squamous), HCC95 (squamous), NCI-

1581 (large cell carcinoma), Calu3 (not otherwise specified), NCI-

H1734 (not otherwise specified), Colo699 (adenocarcinoma),

NCI-H2170 (squamous), NCI-H226 (squamous), A427 (adeno-

carcinoma), NCI-H1563 (adenocarcinoma), NCI-H1781 (adeno-

carcinoma) and HCC15 (squamous) were obtained from the

collection of A.F. Gazdar, J. Minna, and colleagues [49,50,51],

from ATCC (Manassas, Virginia, United States) and/or DSMZ

(Braunschweig, Germany). Cells were maintained in RPMI 1640

complete media supplemented with 10% calf serum (Gibco/

Invitrogen, Carlsbad, California, United States) and penicillin/

streptomycin (Gibco/Invitrogen). The NSCLC tumor/normal

pairs analyzed in this study have been described earlier

[16,20,45,50,52].

SNP array data analysis
SNP array experiments were performed on 732 NSCLC

tumor and cell line samples and data analyzed as described

previously [16,20,45,50,52]. The boundaries of the 8p11

amplicon defined by GISTIC analysis [53] were identified as

reported [52](http://www.broadinstitute.org/tumorscape/pages/

portalHome.jsf). Data display has been performed using

the Integrative Genomics Viewer (http://www.broadinstitute.org/

igv).

Transfection and infection
Phoenix 293T packaging cell line (Orbigen, San Diego,

California, United States) were transfected with pBabe-Puro-

based gateway vectors using FuGENEH 6 Transfection Reagent

(Roche, Indianapolis, United States) to generate replication

incompetent retroviruses. Target cells were infected with these

retroviruses in the presence of 8 mg/ml polybrene. Two days post

infection, cells were treated with 2 mg/ml puromycin (Sigma, St.

Louis, Missouri, United States) for two days. The resulting stable

cell lines were used for experimental studies.

shRNA mediated FGFR1 knockdown
shRNA vectors were obtained from TRC (The RNAi

Consortium). The target sequences of the shRNA constructs are:

FGFR1#1 (TRCN 0000121307): 59- AGTGGCTTATTAA-

TTCCGATA-39.

FGFR1 #2 (TRCN 0000121308): 59- GCTTGCCAATGGCG-

GACTCAA-39.

FGFR1 #3 (TRCN 0000121309): 59- CTTGTATGTCATC-

GTGGAGTA-39.

FGFR1 #4 (TRCN 0000121310): 59- CAAGATGAAGAG-

TGGTACCAA-39.

FGFR1 #5 (TRCN 0000121311): 59- GAATGAGTACGGCA-

GCATCAA-39.

LETM2 #1 (TRCN 0000040243): 59- CGCACCTTCTACC-

TGATAGAT-39.

LETM2 #2 (TRCN 0000040244): 59- CCCAGCACAAAG-

GAGATAGTT-39.

LETM2 #3 (TRCN 0000040245): 59- CCAGTTACATCAT-

CACCCATA-39.

LETM2 #4 (TRCN 0000040246): 59- CCAGGAACTAGAC-

TAATACAA-39.

LETM2 #4 (TRCN 0000040247): 59- GCATTGAGTGTAT-

CAGAACTA-39.

WHSC1L1#1 (TRCN 0000015613): 59- CGAGAGTATAA-

AGGTCATAAA-39.

WHSC1L1 #2 (TRCN 0000015614): 59- CCATCATCAAT-

CAGTGTGTAT-39.

WHSC1L1 #3 (TRCN 0000015615): 59- CGAGAATATC-

ATGTCCAGTTT-39.

WHSC1L1 #4 (TRCN 0000015616): 59- GCTTCCATTAC-

GATGCACAAA-39.

WHSC1L1 #5 (TRCN 0000015617): 59- GCAGGGAATT-

GTTTGAGTCTT-39.

The sequence targeted by the GFP shRNA is 59-GCAAGCT-

GACCCTGAAGTTCAT-39. Lentiviruses were made by trans-

fection of 293T packaging cells with these constructs using a

three-plasmid system as previously described [54]. Target

cells were incubated with lentiviruses for 6 hours in the

presence of 8 mg/ml polybrene and left in fresh media. Cells

were grown for two days. Fifty micrograms of total cell lysates

prepared from the infected cell lines was analyzed by Western

blotting.
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Growth and Proliferation assays
For survival assays, 26106 cells for each tumor cell line

expressing shRNAs constructs targeting FGFR1, WHSC1L1,

LETM2 or GFP along with uninfected cells were seeded in 3

replicates on a 6 well plate. Cell viability was determined at

24 hour time points for 4 consecutive days by counting the cells

using Beckman Coulter Vi-Cell Automated Cell Viability

Analyzer following trypan blue dye staining. The percentage of

cell viability was plotted for each cell line of readings obtained on

day 4 relative to day 1.

Soft agar anchorage-independent growth assay
For soft agar assays, 26104 NSCLC cells expressing shFGFR1

and shGFP were suspended in a top layer of RPMI1640 containing

10% calf serum and 0.4% Select agar (Gibco/Invitrogen,

Carlsbad, California, United States) and plated on a bottom layer

of RPMI1640 containing 10% calf serum and 0.5% Select agar on

a 6 well plate. PD173074 or FIIN-1 [55] was added as described to

the top agar. After 3–5 weeks incubation colonies were counted in

triplicate. IC50s were determined by nonlinear regression using

Prism 5 software (GraphPad Software).

Cytotoxicity assays
Depending on the growth curves for each cell line, between 800

and 2000 NSCLC cells were seeded in 6 replicates in 96- well

plate. One day after plating, increasing doses of FGFR inhibitors

PD173074 or FIIN-1 were added and proliferation of cells was

assessed 4 days later using the WST-1 assay (Roche Applied

Science). Each data point represents the median of six replicate

wells for each tumor cell line and inhibitor concentration. IC50s

were determined by nonlinear regression using the Prism

Graphpad software.

Western Blots
Total protein was extracted and separated by gel electrophoresis

by lysing cells in a buffer containing 50 mM Tris-HCl (pH 7.4),

150 mM NaCl, 2.5 mM EDTA, 1% Triton X-100, and 0.25%

IGEPAL. Protease inhibitors (Roche Applied Science) and

phosphatase inhibitors (Calbiochem) were added prior to use.

Before loading to the gel, samples were normalized for total

protein content. Total protein lysates were boiled in sample buffer,

separated by SDS-PAGE on 8% polyacrylamide gels, transferred

to PVDF membrane, and probed overnight using the appropriate

primary antibodies. Antibodies used for immunoblotting were:

anti- FGFR1 antibody (# 3472, Cell Signaling Technologies,

Danvers, MA, United States), anti- phospho FRS2 Y436 (#3861,

Cell Signaling Technologies, Danvers, MA, United States), anti-

phospho-FRS2 Y196 (#3864, Cell Signaling Technologies,

Danvers, MA, United States), anti-FRS2 (# sc-17841, Santa

Cruz Biotechnology, Santa Cruz, CA, United States). anti-

WHSC1L1 monoclonal antibody (# sc-130009, Santa Cruz

Biotechnology), anti-LETM2 monoclonal antibody (# ab84626,

Abcam), and anti-Actin monoclonal antibody (# sc-1615, Santa

Cruz Biotechnology).

Statistical Analysis
Comparisons between SNP array copy number data for lung

adenocarcinoma (AC) and squamous cell carcinoma (SCC) tumors

were performed using Fisher’s exact T test to calculate two-tailed

p-values among samples harboring high level amplification,

defined as log2 ratio .0.7 or 3.25 normalized DNA copies. P

values,0.05 were considered significant.

To determine the IC50 for FGFR inhibitors, the cell viability

measurements of six replicates at varying concentrations of

inhibitors were normalized to untreated control cells. Sigmoidal

dose response curves were fitted to the data by non linear

regression using GraphPad Prism software. Standard deviations

were determined for the mean of each value using an inbuilt

module of the software.

For shRNA experiments, performed in three replicates, the cell

number was counted and the mean and standard deviation were

determined using functions in Microsoft Excel.

Results

FGFR1 is amplified in non-small cell lung cancer
We examined the 8p11-12 genomic region using Affymetrix

250K SNP array copy number data in a previously reported data

set of 732 NSCLC samples, (628 primary tumors and 104 cell

lines) (Table S1) [16,20,45,50,52]. We observed high level

amplification, defined as log2 ratio .0.7 or 3.25 normalized

DNA copies, of the 8p11-12 chromosomal segment encompassing

the FGFR1 locus in 44 (6%) of NSCLC samples (Figure 1a; Table

S2). The majority (93%; 41/44) of these amplifications were

relatively focal events (,50% of the length of chromosome 8p)

indicating preferential selection of the specific target genes within

the region of amplification [52]. The inferred copy number of the

amplifications, normalized to a copy number of 2 for each sample,

ranged from 3.25 to 25 copies (median = 2.8 copies). The

estimated extent of the region of focal amplifications ranged from

0.47 to 112.7 Mb (median = 2.74 Mb).

To identify regions of significant copy-number alteration, we

applied GISTIC (Genomic Identification of Significant Targets In

Cancer) [53], and identified a 170 Kb region on 8p11 (38.28 to

38.45 Mb) as significantly amplified. While the overall pattern of

8p11 amplification was consistent with the literature on lung

cancer as reported, our sample size and resolution provided more

power to accurately identify and localize both large-scale and focal

chromosomal alterations as compared to earlier reports [45,52].

The sole genes within the region of amplification identified in our

analysis across all samples were FGFR1 and LETM2. In our copy

number data, WHSC1L1 was generally amplified with FGFR1 and

LETM2 (41/44 samples) but the whole WHSC1L1 gene did not fall

Figure 1. Amplifications of FGFR1 locus in NSCLC. (A) Copy number estimates at chromosome arm 8p11-12q for 44 NSCLC samples (columns;
ordered by amplification of 8p11) having amplification greater than 3.25 copies (log2 ratio of 0.7) from a collection of 732 NSCLC primary samples
and cell lines. The horizontal line indicates the region containing FGFR1, LETM2 and WHSC1L1 genes. The color scale ranges from blue (deletion) to red
(amplification) with estimated copy numbers shown. Grey regions represent the absence of SNP copy number data. (B) Bar graph depicting
percentages of samples harboring 8p11-12 amplification in lung adenocarcinomas (AC) and squamous cell carcinoma (SCC) demonstrates that FGFR1
amplification is observed in SCC at much higher frequency than AC. (C) FGFR1 expression (upper panel) shown in ten NSCLC cells; eight cell lines
harboring FGFR1 amplification—HCC1734, HCC95, NCI-H2444, Calu3, NCI-H2077, NCI-H1703, NCI-H1581 and NCI-H520 (indicated by red horizontal
bar below)—one NSCLC cell line harboring deletion of the region HCC15 (indicated by blue horizontal bar below)– and three NSCLC cells with no
amplification—A427, NCI-H226, NCI-H2170 (indicated by black horizontal bar below)– using actin as a loading control (shown in lower panel). FGFR1
copy number status and 8p11-12 amplicon length determined by SNP array is indicated below cells harboring amplification. Of note, NCI-H2077 and
NCI-1581 were found to be genotypically identical by fingerprinting analysis.
doi:10.1371/journal.pone.0020351.g001
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within the GISTIC peak (chr8:38,284,229–38,451,475). Specifi-

cally, three primary tumor samples with amplified FGFR1 and

LETM2 genes had amplicon breakpoints within WHSC1L1,

explaining the exclusion of WHSC1L1 from the GISTIC

amplification peak (Figure S1; Figure S2). The amplicon break-

points within WHSC1L1 are consistent with a lack of amplification

of the functional SET domain (chr8:38,265,630–38,255,125)

associated with histone methyltransferase enzymatic activity of

the gene product [56]. These results do not exclude WHSC1L1 as

the target of amplification on 8p11 along with FGFR1 but suggest

that its histone methyltransferase activity is not likely to be

specifically targeted for amplification.

In comparing subtypes of NSCLC primary tumors and cell

lines, 3.4% (20/588) of adenocarcinomas and 21% (12/57) of

squamous cell carcinomas harbored 8p11 amplifications, indicat-

ing that while 8p11 is amplified at appreciable frequencies across

both major NSCLC subtypes, it is preferentially amplified in SCCs

(p,0.001, Fisher exact test) (Figure 1b). No statistically significant

correlations were observed between the presence of 8p11

amplifications and available clinical parameters including histol-

ogy, degree of histological differentiation, stage at surgical

resection of the tumors and the age, gender, or reported ethnicity

of the patients (Table S3). Additionally, targeted sequencing of the

kinase domain of FGFR1 in 52 NSCLC cell lines and of the entire

FGFR1 coding sequence in three cell lines (NCI-H1581, NCI-

H1703, NCI-H2170) did not reveal any evidence of kinase domain

mutations (data not shown).

The SNP array data revealed an elevated FGFR1 gene copy

number in 11 NSCLC cell lines out of 104 NSCLC cell lines

analyzed (Figure S3) with amplifications observed in 36% (4/11) of

squamous NSCLC cell lines assayed. We examined FGFR1

protein expression by immunoblot analysis in 8 primary NSCLC

cell lines that harbor focal or broad 8p11 amplification above a

log2 ratio of 1.6 or 6.0 normalized DNA copies (NCI-H1703,

NCI-H2444, NCI-H520, NCI-1581, NCH-H2077, Calu3, NCI-

H1734, and HCC 95), 3 that have approximately neutral FGFR1

copy number (NCI-2170, NCI-H226 and A427) and 3 that harbor

FGFR1 deletion (NCI-H1781, NCI-H1563 and HCC15) by

immunoblot analysis. We found 6 out of 8 FGFR1 amplified

NSCLC cell lines overexpress FGFR1 as compared to cell lines

that do not harbor amplification, with the exceptions of the NCI-

H1703 and Calu3 cells (Figure S4; Figure 1c). Consistent with this

finding, NCI-H1703, which harbors a 8p11 amplification, has

been shown not to be dependent on FGFR1 [44] but on amplified

PDGFRA [19,20]. Furthermore, an elevated level of phosphory-

lation of the FGFR1 substrate FRS2 was observed in NCI-H1581

large cell carcinoma cells carrying focal amplification of FGFR1,

but not in cells harboring relatively broader levels of FGFR1

amplification (Figure S4).

FGFR1 is required for survival of an NSCLC cell line
harboring focal amplification

Based on our copy number analysis, FGFR1 and LETM2 fell

within the GISTIC-defined region of statistically significant

amplification with WHSC11 immediately adjacent. To determine

the cellular requirement for genes in the region targeted by the

amplification, we assessed the requirement of WHSC1L1, LETM2

and FGFR1 expression for tumor maintenance by depleting them

individually using shRNA. Transfection with five shRNA

constructs targeting either WHSC1L1 or LETM2 had no

differential effect on the survival of cells harboring focal or broad

8p11-12 amplification as compared to control cells without the

amplification (data not shown).

In contrast, three out of five shRNA constructs targeting FGFR1,

all of which led to a 3- to 5-fold decrease in FGFR1 protein levels

relative to shRNA controls (Figure 2a), significantly inhibited cell

survival in an NSCLC cell line carrying a focal FGFR1 amplification

(NCI-H1581; Figure 2b). shRNA constructs #3 and #4, which did

not lead to significant knockdown of FGFR1 protein levels, did not

affect the survival of cells harboring 8p11 amplification (Figure 2b).

There were no observed survival effects of FGFR1 shRNA on cell

lines harboring relatively broader FGFR1 amplification (NCI-

H1703, HCC95, HCC1734, Calu3; not shown) or without FGFR1

amplification (NCI-H2170; Figure 2c. HCC15, NCI-H1563 and

NCI-H1781; not shown). Overall, these results argue that FGFR1

expression is required for the viability of at least one NSCLC cell

line carrying an FGFR1 amplification.

To further validate the specificity of cell viability changes

associated with shRNA-induced FGFR1-depletion, we examined

the ability of ectopic expression of FGFR1 cDNA to rescue the

effects of FGFR1 knock down. Wild-type FGFR1 cDNA, lacking

the 39-untranslated region (UTR) of the endogenous FGFR1

mRNA targeted by FGFR1 shRNA #1, was over-expressed in

NCI-H1581 cells transfected with this shRNA construct. Recon-

stituted levels of wild type FGFR1 protein resulted in significant

rescue of the survival inhibition phenotype (Figure 3a, c) but had

no impact on the FGFR1-independent NCI-H2170 cells

(Figure 3b). Collectively, these experiments implicate FGFR1 as

a critical oncogenic target of 8p11-12 amplification.

Interestingly, one NSCLC cell line carrying a focal FGFR1

amplification, NCI-H2444 (Figure S3), was not sensitive to

knockdown of FGFR1 (data not shown). This cell line also

harbors an activating KRAS G12V mutation [57,58], which is

associated with resistance of colorectal cancers to the EGFR-

directed therapy cetuximab [25]. NCI-H2444 does not show

FRS2 phosphorylation (Figure S4). This observation suggests that

co-occurrence of other activating oncogenes may relieve FGFR1

dependence and specifically that primary resistance to FGFR1

inhibition may be governed by KRAS mutation status.

FGFR kinase Inhibitors inhibits growth of FGFR1 amplified
NSCLC cells

To evaluate the possibility that targeting FGFR1 in 8p11

amplified SCCs could represent a new therapeutic strategy in

SCCs, we studied the effects of the pan-FGFR inhibitor PD173074

on NSCLC cell lines. The FGFR1-amplified NCI-H1581 cells

were sensitive to treatment with PD173074 as assayed by colony

formation in soft agar with IC50s in the range of 10–20 nM

(Figure 4a and Figure S5). In contrast, NCI-H2170 cells with wild

type FGFR1 copy number were insensitive to PD173074

(Figure 4a). We also performed PD173074 dose response curves

on cell survival in liquid culture to compare the sensitivity of cells

harboring FGFR1 amplification and those without and again

found that NCI-H1581 cells were killed at IC50 values of 14 nM,

while those without amplification required more than 100-fold

higher doses of PD173074 to inhibit proliferation (Figure 4b). In

agreement with these results, we also observed that a second

FGFR irreversible inhibitor, FIIN-1, inhibits proliferation of NCI-

H1581 cells with focal FGFR1 amplification as compared to NCI-

H2170 without FGFR1 amplification, with IC50 values of 2.5 nM

versus greater than 10 micromolar, respectively (Figure S6).

Discussion

Here we have shown that FGFR1 is frequently amplified in lung

carcinomas and that this amplification is enriched in lung SCCs.

At least one NSCLC cell line with focally amplified FGFR1

FGFR1 Amplification in Squamous Cell Lung Cancer
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requires the gene as demonstrated by shRNA depletion, and is also

sensitive to inhibition with FGFR kinase inhibitors.

Genes other than FGFR1 have been proposed to be the functional

target of amplification on chromosome segment 8p11-8p12, most

notably WHSC1L1 [44] and BRF2 [21]. However, we believe that

the evidence presented here as well as in a recent report [22] argues

for FGFR1 as the functional target of amplification in at least one

NSCLC cell line. Additionally, in our data set WHSC1L1 is not

amplified in all the FGFR1 amplified samples, arguing that it is

unlikely to be the only relevant amplified gene in the 8p11-12

amplicon. The cell line that was shown to require WHSC1L1 for its

survival, NCI-H1703 [44], does not over-express FGFR1

(Figure 1c), does not show FRS2 phosphorylation (Figure S4) and

is dependent on another amplified tyrosine kinase oncogene,

PDGFRA [19,20]. In contrast, knockdown of WHSC1L1 had no

impact on FGFR1-amplified, FGFR1-expressing NCI-H1581 cells,

suggesting that amplification of either gene may contribute to

cellular transformation in the appropriate cellular context.

A recent study characterizing DNA amplification in NSCLC

suggested that BRF2, encoding a transcription initiation complex

subunit of RNA polymerase III, is the target of amplification in the

8p11 amplicon [21]. We compared FGFR1 amplification to BRF2

amplification in light of this report and found that of 12 samples

with the highest amplification of FGFR1 in our dataset (log2 ratio

.2.5), only 4 samples include BRF2 in the amplified region,

suggesting that BRF2 is not the predominant target of 8p11

amplification in SCC (Figure S7a). We also found that of the 12

samples with highest amplification of BRF2 (log 2 ratio .1.8), all

have FGFR1 amplification (in one case, with what appears to be a

translocation within FGFR1) (Figure S7b). We believe that these

data argue in favor of FGFR1 instead of BRF2 as the more

commonly amplified gene in this region.

Our study and a recent report [22] identify FGFR1 as a

potential therapeutic target in NSCLC, where 8p11-12 amplifi-

cation is common, suggesting that high levels of expression of

FGFR1 may contribute to tumorigenesis or progression in

NSCLC. Interestingly, we did not find evidence of FGFR1

mutation in 52 samples which argues in favor of amplification

rather than mutation being the preferred mechanism of FGFR1

activation in a subset of NSCLCs. As FGFR1 amplification has

been reported in other tumor types, it may be the case that

FGFR1 inhibition will be a successful therapeutic strategy in a

variety of settings. As several FGFR kinase inhibitors are now in

clinical trials, including brivanib [59], dovitinib [60], BIBF 1120

[61], and SU-6668 [62], it could be useful to test these inhibitors

on NSCLC patients bearing focal FGFR1 amplifications. Given

Figure 2. NCI-H1581 cells are sensitive to knock-down of FGFR1 expression. (A) Effects of five FGFR1 shRNA constructs on FGFR1 protein
expression in NCI-H1581 cells as assayed by immunoblotting. shRNAs #1, #2 and #5 efficiently knock down endogenous FGFR1 expression in NCI-
H1581 cells infected with shRNA-expressing lentiviruses while shRNAs #3 and #4 do not. Actin is shown as a loading control (lower panel). (B and C),
infection with three independent FGFR1-suppressing hairpins (#1, #2 and #5) inhibits survival of NCI-H1581 cells over expressing FGFR1 (B) but did
not inhibit survival of cells not harboring FGFR1 amplification, NCI-H2170 (C) as assessed by WST assay. NI, no infection. shGFP, control hairpin specific
for green fluorescent protein used as a negative control. All results normalized to survival of cells infected with shGFP.
doi:10.1371/journal.pone.0020351.g002
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Figure 3. Ectopic expression of FGFR1 coding region rescues lethality of an shRNA targeting the FGFR1 39 UTR. (A) Bar graph for rescue
assay. Lethality due to depleted levels on endogenous FGFR1 level in NCI-H1581 is rescued by over expression of wild type (Wt) full length FGFR1
coding sequence . (B) No effect on the survival of NCI-H2170 cells was observed due to over expression of wild type form of FGFR1. NCI-H2170 is not
dependent on FGFR1 activity. NI, no infection. shGFP, control hairpin specific for green fluorescent protein used as a negative control. All results are
normalized to survival of cells infected with shGFP. Data shown is as mean of three replicates. (C) Validation of FGFR1 rescue by immunoblotting.
Depleted levels of endogenous FGFR1 level in NCI-H1581 cells infected with FGFR1 shRNA-expressing lentiviruses targeting the FGFR1 39UTR (lane 1)
is rescued by overexpression of wild type form of FGFR1 cDNA lacking the 39UTR (lane 2) with concomitant modest rescue in the levels tyrosine
residue phosphorylation of the FGFR1 substrate FRS2 (middle panel). Actin is shown as a loading control (lower panel).
doi:10.1371/journal.pone.0020351.g003

Figure 4. FGFR1 tyrosine kinase activity is essential in NCI-H1581 cells. (A) Treatment with the indicated concentrations of pan FGFR
inhibitor PD173074 inhibited soft agar colony formation by the NCI-H1581 NSCLC cell lines harboring FGFR1 amplification, as compared with the NCI-
H2170 line, which does not harbor FGFR1 amplification. Colonies were photographed and quantitated after 4 weeks. (B) Treatment with the indicated
concentrations of PD173074 inhibited survival of NCI-H1581 cells, but not of NCI-H2170 cells, as determined by WST assay performed after 4 days
treatment. IC50s are indicated.
doi:10.1371/journal.pone.0020351.g004
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that our results suggest that amplification alone will not always

predict sensitivity to FGFR1 inhibition, additional work is needed

to fully characterize the genetic alterations involved in NSCLC

carcinogenesis and dependency on FGFR1.

Supporting Information

Figure S1 WHSC1L1 histone methyltransferase activity
domain is not likely to be specifically targeted for
amplification at 8p11-12q. Heat map representation of SNP

array based segmented copy number on chromosome arm 8p11-

12q for 34 NSCLC samples (rows; ordered by amplification of a

170 kb chromosomal segment spanning WHSC1L1, LETM2 and

FGFR1) having amplification greater than 3.25 copies (log2 ratio of

0.7) from a collection of 732 NSCLC primary samples and cell

lines. Three primary tumor samples marked * harbor amplicon

with breakpoints within WHSC1L1 and only amplify FGFR1 and

LETM2 genes. The sample marked # appears to be a

translocation within FGFR1 removing its first exon. The locations

of WHSC1L1 SET domain and FGFR1 kinase domain are

indicated. The color scale ranges from blue (deletion) to red

(amplification) with estimated copy numbers as shown. Grey

denotes a region for which no SNPs are present on the array and

therefore represents indeterminate copy number.

(TIF)

Figure S2 Exclusion of WHSC1L1 functional domain
among primary tumors harboring amplified FGFR1 and
LETM2. Bar graph representation of unsegmented probe-level

copy number values for amplicons in 3 primary tumor samples

harboring break points within WHSC1L1. Estimated copy number

values (y axis) are plotted for individual SNPs at 8p11-12 locus (x

axis). Copy number of SNPs defining boundary of breakpoint are

indicated. Genomic positions of genes in region are shown along

the x axis.

(TIF)

Figure S3 Elevated FGFR1 gene copy number in NSCLC
cell lines. SNP array based segmented copy number on

chromosome arm 8p11-12q for 18 NSCLC cell lines (rows;

ordered by amplification) from telomere (left) to centromere

(right). The color scale ranges from blue (deletion) to red

(amplification) with estimated copy numbers shown.

(TIF)

Figure S4 Activation of FGFR1 substrate FRS2 in NCI-
H1581 cells. Western blot analysis of FGFR1 in five different

8p11-12 amplified cells (Colo699, Calu3, NCI-H2077,

NCIH1581, NCI-H520 and NCIH1703) indicated by red

horizontal bar below and in three NSCLC cell lines harboring

deletion of the region (NCI-H1781, NCI-H1563 and HCC15)

indicated by blue horizontal bar below. NCI-H1581 cells show

increased tyrosine residue phosphorylation of FGFR1 substrate

FRS2 as compared to other NSCLC cell lines using actin as a

loading control (shown in lower panel).

(TIF)

Figure S5 FGFR1 tyrosine kinase activity is essential for
NCI-H1581 anchorage independent growth. Inhibition of

soft agar colony formation by the NCI-H1581 NSCLC cell line

harboring FGFR1 amplification, in the presence of increasing

concentrations of FGFR inhibitor PD173074, compared with

HCC15 and NCI-H2170 cells without FGFR1 amplification, and

NCI-H1703 cells that harbor FGFR1 amplification but do not

over-express FGFR1. Cells were seeded in soft agar and treated

with different concentrations of PD173074. Representative plates

from two independent experiments are presented. Colonies were

photographed and quantitated after 4 weeks.

(TIF)

Figure S6 FGFR1 tyrosine kinase activity is essential in
proliferation of NCI-H1581 cells. Treatment with the

indicated concentrations of irreversible FGFR inhibitor FIIN-1

inhibited survival of NCI-H1581 cells, but not of NCI-H2170

cells, as determined by WST assay performed after 4 days

treatment. IC50s are indicated.

(TIF)

Figure S7 FGFR1 instead of BRF2 is the more commonly
amplified gene at 8p11. Copy-number data from chromosome

8p11-12 in 12 samples sorted by highest copy number on the top.

The view is sorted by FGFR1 amplification (A) and BRF2

amplification (B). (A) Of the 12 samples with highest amplification

at FGFR1 of log2 ratio above 2.5, only 4 samples amplify BRF2 at

similar levels. (B) Out of 12 samples with log2 ratio above 1.8 at

BRF2, all samples include FGFR1 amplification. Each sample is

represented as a horizontal row from telomere (left) to telomere

(right). Areas of red indicate gain; blue indicates loss. The positions

of FGFR1 and BRF2 are indicated with vertical lines.

(TIF)

Table S1 List of NSCLC Samples Analyzed by SNP
Array.

(XLS)

Table S2 Amplicons at 8p11-12 overlapping WHSC1L1,
LETM2 and FGFR1.

(XLS)

Table S3 Categorization of 628 Primary Samples by
8p11 Amplification Status and Clinical Features.

(XLS)
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