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Abstract. This study assessed the therapeutic utility of the autophagy enhancing stable disaccharide trehalose in the Tg2576
transgenic mouse model of Alzheimer’s disease (AD) via an oral gavage of a 2% trehalose solution for 31 days. Furthermore,
as AD is a neurodegenerative condition in which the transition metals, iron, copper, and zinc, are understood to be intricately
involved in the cellular cascades leading to the defining pathologies of the disease, we sought to determine any parallel
impact of trehalose treatment on metal levels. Trehalose treatment significantly improved performance in the Morris water
maze, consistent with enhanced learning and memory. The improvement was not associated with significant modulation of
full length amyloid-� protein precursor or other amyloid-� fragments. Trehalose had no effect on autophagy as assessed by
western blot of the LC3-1 to LC3-2 protein ratio, and no alteration in biometals that might account for the improved cognition
was observed. Biochemical analysis revealed a significant increase in the hippocampus of both synaptophysin, a synaptic
vesicle protein and surrogate marker of synapses, and doublecortin, a reliable marker of neurogenesis. The growth factor
progranulin was also significantly increased in the hippocampus and cortex with trehalose treatment. This study suggests
that trehalose might invoke a suite of neuroprotective mechanisms that can contribute to improved cognitive performance in
AD that are independent of more classical trehalose-mediated pathways, such as A� reduction and activation of autophagy.
Thus, trehalose may have utility as a potential AD therapeutic, with conceivable implications for the treatment of other
neurodegenerative disorders.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative
disorder manifesting as progressive cortical and hip-
pocampal cell loss resulting in cognitive decline. It is
the leading form of dementia in the elderly being both
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sporadic and familial in nature, and to date there is
no effective therapy to arrest the cognitive decline.
The two major hallmarks of AD pathology are
the accumulations of the ∼4 kD amyloid-� peptide
(A�), the cleavage product of the larger amyloid-
� protein precursor (A�PP), and the accumulation
of intracellular neurofibrillary tangles which consist
of hyperphosphorylated microtubule associated pro-
tein tau. Recently, a study in the APP/PS1 (APP
KM670/671NL (Swedish), PSEN1 L166P) trans-
genic mouse model of AD that contains the human
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transgenes for both APP bearing the Swedish muta-
tion and Presenillin1 containing the L166P mutation,
indicated that the stable disaccharide, trehalose dihy-
drate, effectively alleviated cognitive decline as
evidenced by a reduced latency to locate the hid-
den platform in the Morris water maze, concomitant
with reduced A� plaques in the hippocampus of the
trehalose treated mice [1]. While these data were
encouraging, the utility of trehalose as a potential
therapeutic for AD was clouded by the delivery
method, which involved the use of invasive intrac-
erebral injections. Given these data, we elected to
examine the therapeutic utility of trehalose in the
well characterized and widely used Tg2576 (APP
KM670/671L) transgenic mouse model of AD using
a more physiologically relevant and translatable oral
delivery method. The Tg2576 overexpresses a mutant
form of APP (695 isoform) resulting in elevated levels
of A� and an age-associated accumulation of amyloid
plaques concomitant with cognitive deficits.

Trehalose has demonstrated therapeutic utility
in many other neurodegenerative mouse models.
Briefly, trehalose has been shown to suppress
inflammation, oxidative stress, and vasospasm
induced by experimental subarachnoid hemorrhage
in rabbits [2], induce chaperone molecules along
with autophagy in a mouse model of Lewy
body disease [3], ameliorate dopaminergic and
tau pathology in parkin deleted/tau overexpress-
ing mice through autophagy activation [4], delay
the progression of amyotrophic lateral sclerosis by
enhancing autophagy in motorneurons [5], allevi-
ate polyglutamine-mediated pathology in a mouse
model of Huntington disease [6], and upregulate pro-
granulin expression in human and mouse models of
progranulin haploinsufficiency [7]. Given the breadth
of positive data regarding trehalose in animal mod-
els of neurodegeneration, the potential for the use
of trehalose as a human therapeutic for AD has been
hypothesized [8, 9], although this yet to be thoroughly
investigated.

Finally, the metal ions, iron (Fe) [10–12], zinc (Zn)
[13, 14], and copper (Cu) [15–17], are considered key
factors in the pathogenic accumulation of A� into
amyloid plaques as well as to the loss of tau function
and neurofibrillary tangle formation. This concept
arose more than two decades ago and has been the
subject of much scientific review [18–21], prompting
discussion around the potential of metal modulat-
ing therapies [22–26], leading to investigation of the
therapeutic efficacy of metal modulating compounds
in transgenic animal models of AD [27–30] and in

human clinical trials [31]. As such, and because the
effect of trehalose in other models suggests a potential
impact on metals (e.g., effects on protein aggregation,
oxidative stress, cognition, etc.), then in this study we
also sought to determine whether trehalose treatment
impacted metal levels, or indeed whether there was
any correlation between metal levels and outcomes
following trehalose treatment.

METHODS

All procedures were carried out in accordance with
protocols approved by the Howard Florey Animal
Ethics Committee and were conducted in accordance
with the Australian Code of Practice for the Care and
Use of Animals for Scientific Purposes as described
by the National Health and Medical Research Council
of Australia.

Compound

Trehalose (Sigma) has a generous safety profile
in rodents and humans [32, 33] and was posted as
“Generally Regarded as Safe” (GRAS) for human
consumption by the U.S. Federal Drug Administra-
tion (FDA) in October 2000. It is used as a food
additive, and is also an excipient in many phar-
maceuticals, making trehalose a safe, natural and
pharmaceutically accepted product.

Animals

Transgenic Tg2576 and wild-type mice were
treated daily with either a 2% trehalose solution
(0.1 ml/10 g bodyweight; Tg2576; n = 15, average
age 16.2 ± 3 months of age, and wild-type; n = 10,
average age 16.4 ± 3 months of age) or stan-
dard suspension vehicle (SSV; 0.9% NaCl, 0.5%
Na-carboxymethylcellulose, 0.5% benzyl alcohol
and 0.4% Tween 80) (Tg2576; n = 12, 16 ± 3 months
of age, and wildtype; n = 10, 16.2 ± 3 months
of age) via oral gavage. Mice were acquired
from Charles River Laboratories, Wilmington, Mas-
sachusetts, USA. All mice used in this study were
re-genotyped after completion of the study to ensure
accuracy of transgenic background.

Behavioral assessment

The Morris water maze was used to assess the
effect of trehalose on spatial learning and memory
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function. The pre-training acclimation day of the
water maze was performed on day 23 of dosing, fol-
lowed by six days of place discrimination training
of four 90 second trials per day, conducted on days
24–29 of dosing. The probe trial was performed 24
hours after training on dosing day 30 to assess reten-
tion of the task. Mice were culled on the following
day one hour after dosing. Data was processed using
the Ethovision automated tracking system prior to
statistical analysis.

Western blotting analysis

The cortex and hippocampus of one hemisphere
was homogenized in 15 volumes of ice-cold PBS con-
taining Complete Protease Inhibitor Cocktail tablets
(Roche Applied Science, Indianapolis, IN, USA) and
subsequently centrifuged (100,000xg) for 30 min at
4◦C. Supernatant was removed to yield the solu-
ble fraction. The remaining pellet underwent further
extraction via vigorous agitation (30 min) in the
above-mentioned homogenization buffer containing
2% (vol/vol) Triton X100. Insoluble material was pel-
leted via centrifugation (20,000 g, 20 min), and the
supernatant retained as the membrane fraction. Pro-
tein concentrations were determined using the Pierce
BCA protein assay (Pierce Biotechnology, Rockford,
IL, USA), and were used to ensure equal protein load-
ing (10 �g) on the gel. Samples were prepared for
PAGE by the addition of 4x protein sample load-
ing buffer (LICOR, Lincoln, Nebraska, USA) and
10x NuPAGE sample reducing agent (to a final 1x
concentration). Samples were heated to 70◦C for
10 min, loaded onto Bolt 4–12% Bis-Tris Plus gels
(Invitrogen-Life Technologies, Grand Island, NY,
USA) along with Odyssey One-Color protein molec-
ular weight markers (LICOR, Lincoln, Nebraska,
USA, Cat LCR928-4000) and run at 125 V for 60 min
in appropriately diluted Bolt MES SDS 20x running
buffer (Invitrogen-Life Technologies, Grand Island,
NY, USA). Gels were transferred to Immobilon–PF,
PVDF membrane (Millipore) using the Invitrogen
Bolt wet-gel Transfer Device (Invitrogen-Life Tech-
nologies, Grand Island, NY, USA) at 15 V for 60 min
in appropriately diluted 20x Bolt transfer buffer
(Invitrogen-Life Technologies, Grand Island, NY,
USA). Membranes were blocked in Tris-buffered
saline with tween 20 (TBST) containing 5% skim
milk powder and then incubated with primary anti-
body overnight at 4◦C (Doublecortin (DCX) antibody
diluted 1 : 1000, Cell Signaling Technology, Dan-
vers, MA, USA Cat # 4604; Synaptophysin antibody

diluted 1 : 1000, Millipore, MA, USA, Cat # AB9272;
GAPDH diluted 1 : 10000 Millipore, MA, USA, Cat
# MAB374; Pro-granulin antibody diluted 1 : 1000
Invitrogen, MA, USA, Cat # PA5-46995; 4G8 diluted
1 : 500 Biolegend CA, USA Cat # SIG-39229;
22C11 (in-house) antibody diluted 1 : 500). Blots
were rinsed in TBST and incubated with appropri-
ate secondary antibody at room temperature for 1 h
(IRDye800 Goat anti-mouse Cat # LCR926-32210;
IRdye800 Goat anti-Rabbit Cat # LCR926-32211;
IRDye680 Goat anti-mouse Cat # LCR926-68070;
IRDye680 Goat anti-Rabbit Cat # LCR926-68071;
IRDye800 Goat anti-rat Cat # 92632219, LI-COR
Biosciences, Lincoln, Nebraska, USA), followed
by further rinsing and imaged using a LI-COR
Odyssey Imaging system (LI-COR Biosciences, Lin-
coln NE, USA), and analyzed with Image Studio
Lite software (LI-COR Biosciences, Lincoln NE,
USA). Sample data were normalized to total protein
loaded and to the GAPDH loading control and then
expressed as arbitrary units based upon densitometric
quantitation.

LA-ICP-MS imaging

Analysis was performed using a New Wave
Research UP213 laser ablation system with a two-
volume large format cell (ablation area 15 × 15 cm).
This system was hyphenated to an Agilent Tech-
nologies 7500ce ICP-MS fitted with ‘cs’ lenses for
enhanced sensitivity. Quantitative data was obtained
by representative ablation of matrix-matched tissue
standards produced according to the protocol previ-
ously reported [34]. Hydrogen was used as a reaction
gas at a flow rate of 3 mL min–1 to remove potential
interferences arising from trace oxygen impurities
in the argon gas used, particularly 40Ar16O+ on
56Fe+ [35]. The specificity of hydrogen for reduc-
ing interference on Fe was the main determinant
of its selection; non-specific collision gases such as
helium reduce signal to noise ratios and do not attenu-
ate interferences effectively in LA-ICP-MS [36]. We
have recently shown that matrix-based interference
formation at biologically-relevant concentrations are
negligible using these experimental conditions [37].
Measured masses included m/z = 56 for Fe, 62 for Cu,
and 66 for Zn with an integration time of 0.08 seconds
per mass. Limits of detection (LOD) and quantifica-
tion (LOQ) were 0.55 �g g–1 and 1.58 �g g–1 for
Fe; 1.20 �g g–1 and 1.89 �g g–1 for Cu; and 0.39 �g
g–1 and 1.08 �g g–1 for Zn. A representative image
(Fig. 1) reconstruction is provided for Fe, Cu, and Zn.
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Fig. 1. Representative LA-ICPMS schematic of SSV (top row)
and trehalose (bottom row) treated Tg2576 brain sections showing
Fe, Cu, and Zn. Scale bar = 1 mm.

Image construction and region of interest
selection

Lines of ablation were spaced apart the same dis-
tance as the laser beam diameter. A beam diameter of
30 �m was used, traversing the section at a speed of
120 �m s–1, laser fluence of 0.3 J cm–2 and repetition
rate of 20 Hz. The ICP-MS was configured to collect
4 data points per second [35] thus the resultant images
had pixel dimensions was equivalent to 30 × 30 �m2

(total pixel area = 900 �m2). Images were produced
by reducing multiple ablation lines into ASCII data
files via a Python script for importing into ENVI 6.0
(Exelis Visual Information Solutions, Boulder, CO,
USA), from which regions of interest (ROIs) were
extracted and statistically analyzed. One brain slice
hemisphere per animal underwent ablation and sub-
sequent analysis. Additionally, the hippocampus was
manually extracted as an individual ROI using the Zn
map [38] for analysis without adjacent cortical tissue,
and hippocampal areas CA1, CA2 and CA3 were also
subsequently manually extracted.

Statistical analysis

Statistical analysis was carried out in Prism 6.0 h
(Graph-Pad, La Jolla, CA, USA). Analysis was

carried out using either a two-tailed t test or a two-
way repeated measures ANOVA as appropriate, with
significance recognized as p < 0.05.

RESULTS

Behavior

A two-way repeated measure analysis with a post-
hoc Bonferroni’s analysis of the water maze revealed
that trehalose treated mice (n = 15) demonstrated
a significantly (p < 0.0081) enhanced task acquisi-
tion (learning) across the trial, as compared to the
vehicle control group (n = 12) (Fig. 2a). In addi-
tion, trehalose-treated mice performed significantly
(p < 0.0003) better in the probe trial (Fig. 2b), indi-
cating an improvement in memory recall. An absence
of any significant difference in swim speed suggests
that overall, there is a robust improvement in cog-
nition for the trehalose treated mice. No significant
differences were observed between wild-type SSV
treated mice and Tg2576 SSV treated mice, most
likely as a result of the advanced age of the animals
and the anticipated confound of normal age-related
cognitive deficits. Further studies in younger mice
would help delineate the potential differential effect
on disease versus aging-related pathways in relation
to cognitive performance. Indeed, it remains possible
that trehalose may impact normal aging, as wild-type
trehalose treated mice showed a trend toward better
performance as compared to wildtype SSV treated
and Tg2576 SSV treated mice, although this did not
reach statistical significance.

Metal analyses

Assessment of Fe concentrations via LA-ICPMS
revealed no significant difference between trehalose
(n = 7) and SSV (n = 7) treated mice, in the cor-
tex (Fig. 3a), hippocampus (Fig. 3b) or in the CA1
(Fig. 3c), CA2 (Fig. 3d) or CA3 (Fig. 3e) regions of
the hippocampus.

Similarly, Zn concentrations also revealed no sig-
nificant difference between trehalose (n = 7) and SSV
(n = 7) treated mice, in the cortex (Fig. 3f), hippocam-
pus (Fig. 3g) or in the CA1 (Fig. 3h), CA2 (Fig. 3i),
or CA3 (Fig. 3j) regions of the hippocampus. Fur-
thermore, Cu concentrations were also unchanged
for trehalose (n = 7) and SSV (n = 7) treated mice,
in the cortex (Fig. 3k), hippocampus (Fig. 3l) or in
the CA1 (Fig. 3m), CA2 (Fig. 3n), or CA3 (Fig. 3o)
regions of the hippocampus. Analysis also confirmed
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Fig. 2. Trehalose treatment improves cognitive performance of Tg2576 mice in the Morris water maze. Two-way repeated measures ANOVA
(++p < 0.0081) revealed a significant decrease in escape latency for Tg2576 trehalose treated mice compared to Tg2576 SSV treated litter
mate controls over the course of the trial (Fig. 1a). A Bonferroni’s post-hoc analysis further revealed a significant decrease in latency for
trehalose treated mice on day six (∗p = 0.0233). Two-tailed t-test revealed a significant (∗∗∗p < 0.0003) increase in time spent in the relevant
quadrant for trehalose treated Tg2576 mice compared to SSV treated Tg2576 control littermates on probe day (Fig. 3b).

no significant elevation or reduction in Fe, Zn, or Cu
between Tg2576 and wild-type mice.

Western blotting

Results indicated a significant increase (+48%)
in DCX (vehicle, 0.15 ± 0.009, n = 8; trehalose
0.24 ± 0.040, n = 8; p = 0.0401; Fig. 4a) and synap-
tophysin (+147%) (vehicle, 0.22 ± 0.122, n = 8;
trehalose 1.46 ± 0.162, n = 8; p = 0.0001; Fig. 4b)
protein expression in the hippocampus only of
trehalose treated mice. Additionally, a significant
increase in progranulin protein expression was
observed in the trehalose treated group in both
the cortex (+43%) (vehicle, 3.81 ± 0.62, n = 8; tre-
halose 5.95 ± 0.13, n = 8; p = 0.0052; Fig. 4c) and
hippocampus (+33%) (vehicle, 4.00 ± 0.53, n = 8;
trehalose, 5.62 ± 0.17, n = 8; p = 0.0126; Fig. 4d),
when compared with the SSV control group. Sol-
uble and membrane fractions of cortex (Soluble;
vehicle, 0.55 ± 0.02, n = 8; trehalose, 0.52 ± 0.02,
n = 8; p = 0.3466; Fig 5a. Membrane; vehicle
1.51 ± 0.16, n = 8, trehalose, 1.49 ± 0.10, n = 8;
p = 0.9377; Fig. 5c) and hippocampus (Soluble; vehi-
cle 0.39 ± 0.04, n = 8; trehalose, 0.42 ± 0.01, n = 8;
p = 0.5767; Fig. 5b. Membrane; vehicle 1.07 ± 0.05,
n = 8; trehalose, 1.12 ± 0.06, n = 8; p = 0.5649;
Fig. 5d) were also assessed for A�PP levels; however,
no significant differences were observed. Similarly,
there were no differences observed in any A�
fragments following trehalose treatment (data not

shown). Autophagy was assessed via LC3 (Fig. 6);
however, there was no significant difference in
the ratio between LC3-1 and LC3-2 for trehalose
treated animals when compared to controls in either
the cortex (vehicle 0.80 ± 0.04, n = 8; trehalose,
0.90 ± 0.04, n = 8; p = 0.15) or the hippocampus
(vehicle, 0.46 ± 0.02, n = 8; trehalose, 0.39 ± 0.02,
n = 8; p = 0.10).

DISCUSSION

The data presented herein demonstrates that tre-
halose treatment enhanced the cognitive performance
of the Tg2576 mouse model of AD in the Morris water
maze. Trehalose treated mice performed significantly
better during the learning phase of the trial, and
importantly, demonstrated enhanced memory reten-
tion on the probe day of the trial when compared
to SSV treated littermate controls. Our data concurs
with previously published work in which an Amyloid
Precursor Protein/Presenilin 1 (APP/PS1) transgenic
mouse model of AD was utilized to assess the thera-
peutic efficacy of intracerebral injections of trehalose
[1]. Importantly, however, this study recapitulates the
data in a different transgenic mouse model of AD
using the more physiologically and therapeutically
relevant route of oral administration. Moreover, this
study also identifies biochemical pathways modu-
lated by trehalose that may play a role in cognition, an
observation that has not previously been reported in
animal studies using a trehalose-treatment paradigm.



554 S.D. Portbury et al. / Trehalose Improves Cognition

Fig. 3. Trehalose does not alter metal levels in Tg2576 mice. Fe was unaltered between trehalose and SSV treated animals in all areas
assessed (Fig. 3a-e). Similarly, Zn was unaltered between trehalose and SSV treated animals in all areas assessed (Fig. 3f-j). Cu also revealed
non-significant changes between trehalose and SSV treated animals in all areas assessed (Fig. 3k-o).
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Fig. 4. Trehalose significantly increases synaptophysin, Doublecortin (DCX) and Progranulin. A significant increase in DCX protein levels
was observed in the hippocampus of the trehalose treated mice (∗p = 0.0401) (a). Similarly, a significant increase in synaptophysin levels
was also observed in the hippocampus (∗∗∗∗p = 0.0001) (b). Progranulin protein expression was also shown to be significantly elevated in
both the cortex (∗∗p = 0.0052) (c) and the hippocampus (∗p = 0.0126) (d).

These findings both support the use of trehalose in
the treatment of AD, and also present the potential
for trehalose to be utilized in other neurodegenerative
disorders.

Due to the key role played by metals in both the
pathogenesis of AD and in learning and memory
[29, 39], we initially performed an analysis of the spa-
tial distribution and concentration of Fe, Zn, and Cu
in the brains of both trehalose treated and untreated
mice. Many other studies have shown metal mod-
ulation to have beneficial pathological and physical
outcomes [27–30, 40], and so this would allow us
to assess whether there was any correlation between
these metals and the observed behavioral improve-
ment in the trehalose-treated mice. To assess metal
concentrations, we utilized LA-ICPMS imaging of

brain slices, which has previously been used to effec-
tively discriminate brain metal differences in both
human AD [41] and aged mouse tissue [40].

The Tg2576 mice have previously been shown to
have an age-dependent reduction in brain Cu and Zn
levels, with males showing an age-related reduction
in Fe while aged females showed an increase in Fe
[42]; observations which were accredited to the over-
expression of A�PP and A�. Our results indicated no
significant change for Fe, Cu, or Zn concentrations, in
any region assessed between the trehalose treated and
non-treated groups (Fig. 3a-o). A possible explana-
tion as to the discrepancy between these results could
be that the abovementioned study utilized a bulk
tissue lysate analysis, whereas our study is region-
ally defined. Our data also revealed no significant
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Fig. 5. Trehalose does not alter A�PP expression. Trehalose did not significantly alter the expression of A�PP in the soluble fraction of
cortex (a) or hippocampus (b), nor in the membrane fraction of cortex (c) or hippocampus (d).

differences in metal concentrations between wild-
type and Tg2576 mice, which may reflect the age
of the wild-type mice used in this study, as metal
accumulation in the aging mouse brain has been pre-
viously noted in the literature [42].

Nevertheless, we found the lack of metal mod-
ulation to be perplexing as trehalose has been
demonstrated to induce autophagy and reduce
pathological metal associated protein aggregates in
many cell models [43–47] and affect behavioral
improvements in mouse models of neurodegenera-
tive disease presumably via the same mechanism
[4–6]. We therefore assessed autophagy by eval-
uating LC3-2 protein expression via western
blotting, whereby upon autophagic induction, LC3

is converted from a cytosolic form (LC3-1) to
a phosphatidylethanolamine-conjugated form (LC3-
2), and thereby subsequently recruited to membranes
of autophagasomes [48]. We revealed no significant
difference between the LC3-1 to LC3-2 ratio between
trehalose treated and non-treated groups (Fig. 6),
indicating that the beneficial behavioral effect we
observed with trehalose was unlikely to be due to
an autophagy-mediated effect on protein aggregates.
Given this, it is possible that the lack of any reduc-
tion in metal may be due to the absence of autophagy
mediated degradation of protein aggregates that are
implicated in the dyshomeostasis of metals observed
in AD. Zinc, for example, has been shown to accumu-
late in the pathological extracellular plaques of AD
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Fig. 6. Trehalose does not alter LC3-1. Ratio of LC3-1 to LC3-2 revealed no significant difference between the trehalose treated group when
compared to their SSV treated littermates.

[49–52], and can bind A� causing rapid aggregation
and precipitation of the A� peptide [53]. Trehalose
has been shown to inhibit aggregation and neurotoxi-
city of A� in cell culture [46], and significantly reduce
the number of amyloid deposits in APP/PS1 mice [1].
Had autophagy been induced and affected a change
in A� aggregation in this study, it is likely that we
would have detected a change in the localized zinc
concentrations.

A recent publication by Tien et al. [54], for exam-
ple, revealed that trehalose altered the subcellular
trafficking and metabolism of A�PP. We therefore
assessed the protein expression levels of A�PP due to
its contribution to A� formation in the Tg2576 mouse
and human AD. Our results indicated no significant
differences in A�PP protein expression levels in solu-
ble and membrane extracted fractions from the cortex
or hippocampus of trehalose treated and non-treated
mice using the anti-A�PP antibody 22C11 (Fig. 5a-
d). Further analysis of the membrane fractions with
the A� antibodies, WO2 and 4G8, also revealed no
significant alteration in any A� species (data not
shown). It should be noted, however, that the results
of Tien et al. [53] coincided with robust LC3-II pro-
tein accumulation, indicating enhanced autophagy,
which was not observed in this current study.

We therefore hypothesized that trehalose may be
indirectly increasing synaptic activity. Accordingly,
we assessed the pre-synaptic vesicle protein synapto-
physin, which is a surrogate marker for the number of
synapses, via western blot and revealed a significant

increase in synaptophysin expression in the hip-
pocampus, but not the cortex, of trehalose treated
mice (Fig. 4b). Many murine studies have linked
increased synaptophysin expression with enhanced
spatial memory [55–57]. Moreover, loss of this pre-
synaptic protein in the hippocampus correlates with
the cognitive decline in AD [58].

We also probed for doublecortin, the endogenous
early neuronal marker and surrogate indicator of neu-
rogenesis [59], and revealed a significant increase
in DCX expression in the hippocampus of the tre-
halose treated mice (Fig. 4a) that was not observed in
the cortex, nor in the vehicle treated tissue. The hip-
pocampus is the most susceptible brain region in AD,
whereby cell death and associated degeneration of the
tissue is likely to be the underlying cause of memory
deficits [60, 61]. However, the role of neurogenesis
in AD and in the hippocampus of transgenic murine
models of AD has previously resulted in controversial
and contraindicative results [62–65]. Nevertheless,
decreased neurogenesis correlating with an increase
in A� burden has been shown in a transgenic mouse
model of AD [62], and the potential of modulating
hippocampal neurogenesis as a therapeutic approach
for AD has been proposed [66].

We also assessed the secreted growth factor Pro-
granulin, a known regulator of neuronal growth and
survival [67, 68]. We hypothesized that trehalose
may upregulate progranulin expression as it has been
demonstrated to do so in human and mouse models
of progranulin haploinsufficiency [7]. Western blot
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analysis revealed a significant increase in progranulin
in both the hippocampus (Fig. 4c) and cortex (Fig. 4d)
of trehalose treated mice. Interestingly, progranulin
has previously been shown to be protective against
A� toxicity [69], and progranulin missense muta-
tions contribute to the risk for clinically diagnosed
AD [70]. The observation that trehalose can elevate
progranulin protein expression in an AD transgenic
mouse model, therefore, suggests another possible
mechanism of action of this compound.

Conclusion

Our results demonstrate that trehalose administra-
tion can improve cognitive outcomes in the Tg2576
transgenic mouse model of AD. Given that trehalose
is FDA “GRAS”, has a generous safety profile, and
is currently used as an excipient in many pharma-
ceutical formulations for human use, we believe that
trehalose could be a viable candidate for further phar-
macological investigation as a potential therapeutic
option for patients with AD, either as a monotherapy
or in conjunction with other treatment alternatives.
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