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1  |  INTRODUC TION

In nature, biofilms are the predominant lifestyle of bacteria and are 
known as surface-associated microbial communities embedded in a 
self-produced matrix (Flemming & Wingender, 2010; Hall-Stoodley 
et al., 2004; López et al., 2010). Biofilms have been widely stud-
ied since they represent a fascinating example of microbial devel-
opment in response to environmental cues (O'Toole et al., 2000). 
Furthermore, studying biofilms is of special interest due to their 
detrimental impact in clinical and industrial settings (Di Pippo et al., 

2018; Stewart, 2002) as well as their promising potential within 
the biotechnology industry (Blake et al., 2021; Singh et al., 2006). 
Regarding the latter, the gram-positive bacterium Bacillus subtilis 
has in the last two decades gained interest due to its promising po-
tential as a biocontrol agent within agriculture (Kiesewalter et al., 
2021; Ongena & Jacques, 2008). In its natural habitat, the soil-
dwelling bacterium colonizes plants by forming a biofilm on the root 
(Bais et al., 2004; Beauregard et al., 2013; Chen et al., 2012). After 
successfully colonizing the root, B.subtilis exerts its plant-beneficial 
properties, including directly promoting plant growth and protecting 
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Abstract
Natural isolates of the soil-dwelling bacterium Bacillus subtilis form robust biofilms 
under laboratory conditions and colonize plant roots. B. subtilis biofilm gene expres-
sion displays phenotypic heterogeneity that is influenced by a family of Rap-Phr 
regulatory systems. Most Rap-Phr systems in B. subtilis have been studied indepen-
dently, in different genetic backgrounds and under distinct conditions, hampering 
true comparison of the Rap-Phr systems’ impact on bacterial cell differentiation. 
Here, we investigated each of the 12 Rap-Phr systems of B.subtilis NCIB 3610 for 
their effect on biofilm formation. By studying single ∆rap-phr mutants, we show that 
despite redundancy between the cell–cell communication systems, deletion of each 
of the 12 Rap-Phr systems influences matrix gene expression. These Rap-Phr systems 
therefore enable fine-tuning of the timing and level of matrix production in response 
to specific conditions. Furthermore, some of the ∆rap-phr mutants demonstrated al-
tered biofilm formation in vitro and colonization of Arabidopsis thaliana roots, but not 
necessarily similarly in both processes, indicating that the pathways regulating matrix 
gene expression and other factors important for biofilm formation may be differently 
regulated under these distinct conditions.
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the plant against diseases (Blake et al., 2021). Furthermore, B. sub-
tilis forms spores that are highly resistant to extreme environments 
(Piggot & Hilbert, 2004) facilitating easy formulation (Ongena & 
Jacques, 2008).

Bacillus subtilis can easily be isolated from the rhizosphere of 
plants (Fall et al., 2004), and a study performed by Chen et al. (2013) 
showed that the majority of natural strains isolated from the rhi-
zosphere formed architecturally complex biofilms under laboratory 
conditions, indicating that biofilm formation is an important trait for 
B. subtilis to thrive in its natural habitat. In the laboratory, B. subtilis 
has long been studied using different kinds of biofilm models includ-
ing colonies at the air-agar interface and floating biofilms formed at 
the air–liquid interface, termed pellicles (Arnaouteli et al., 2021).

A prevalent feature of B. subtilis biofilms is that they display com-
plex phenotypic heterogeneity, where genetically identical cells dif-
ferentiate into distinct cell types in response to external cues (López 
& Kolter, 2010; Lopez et al., 2009). The variation in environmental 
conditions throughout the biofilm (Costerton et al., 1994) thereby 
leads to a heterogeneous population with different cell types per-
forming distinct tasks and occupying different micro-niches. The 
extracellular signals triggering cell differentiation include quorum-
sensing molecules, natural products, and nutrient availability that 
activate a set of sensor kinases (Arnaouteli et al., 2021; Mhatre 
et al., 2014). Once activated, the sensor kinases phosphorylate 
their respective master transcriptional regulators, Spo0A, DegU, 
and ComA, each of which activates different sets of genes (López 
& Kolter, 2010). The Spo0A pathway governs differentiation into 
matrix-producing cells and sporulating cells. In response to exter-
nal cues, one or more of five histidine kinases, KinA-E, are activated 
which results in phosphorylation of Spo0F. Spo0F~P then transfers 
its phosphoryl group to Spo0B, which in turn transfers the phos-
phoryl group to and thereby activates Spo0A (Fujita et al., 2005; 
Jiang, Shao, et al., 2000). At low Spo0A~P levels, the genes involved 
in the synthesis of matrix components, exopolysaccharide (EPS) and 
TasA protein fiber, are expressed (Cairns et al., 2014; Fujita et al., 
2005). These two matrix components are well known to be required 
for biofilm formation in vitro and on the plant root (Beauregard 
et al., 2013; Branda et al., 2006). When high levels of Spo0A~P are 
reached, genes involves in sporulation are expressed (Fujita et al., 
2005). The DegU response regulator is phosphorylated by its cog-
nate histidine kinase DegS. Studies have indicated that inhibition of 
flagellar rotation, as may take place upon contact with a surface, acts 
as a mechanical trigger to activate the DegS-DegU two-component 
signaling pathway (Cairns et al., 2013). At very low levels of DegU~P, 
genes related to swarming motility are expressed, while elevated 
levels of DegU~P induce exoprotease production and at the same 
time represses motility genes (Belas, 2013; Verhamme et al., 2007). 
Finally, the pheromone ComX activates the histidine kinase ComP, 
which phosphorylates ComA, resulting in the expression of genes 
involved in competence development and surfactin production 
(Comella & Grossman, 2005).

This regulatory network governing cell differentiation in B. 
subtilis is further regulated by a family of response regulator 

aspartyl-phosphate (Rap) phosphatases and their associated phos-
phatase regulator (Phr) peptides (Perego, 2013). In the B. subtilis 
group, 80 distinct putative rap-phr alleles have been identified with 
a strain having on average 11 rap genes (Even-Tov et al., 2016). The 
abundance of Rap and Phr peptides is transcriptionally controlled 
in response to different cellular signals (Auchtung et al., 2005; 
Jarmer et al., 2001; Jiang, Grau, et al., 2000; Lazazzera et al., 1999; 
McQuade et al., 2001; Mueller et al., 1992; Ogura et al., 2001; 
Perego et al., 1994). The genes encoding the Rap-Phr pairs are found 
as gene cassettes with the phr gene immediately downstream of the 
rap gene and the expression of these being transcriptionally cou-
pled, with some phr genes also being transcribed independently of 
their cognate rap genes from promoters controlled by σH (McQuade 
et al., 2001; Pottahil & Lazazzera, 2003; Reizer et al., 1997). Some 
exceptions to this exist, for example, the rapB gene is not followed 
by an active peptide encoding gene (Perego et al., 1996). Moreover, 
some Rap proteins are regulated by Phr peptides encoded in other 
cassettes, for example, RapB and J are both controlled by PhrC 
(Parashar, Jeffrey, et al., 2013). When expressed, the Rap phospha-
tases exert their effect within the cell by either dephosphorylating 
Spo0F~P (thus hindering Spo0A phosphorylation) or inhibiting the 
DNA-binding activity of ComA or DegU (Perego, 2013). In contrast, 
the product of the phr gene is secreted out of the cell through the 
Sec-dependent export pathway and processed into mature five to 
six amino acid signaling peptides. At high cell density, the Phr pep-
tides reach threshold concentrations at which they are transported 
back into the cell by the oligopeptide permease (Opp) (Perego, 2013; 
Pottahil & Lazazzera, 2003). Once within the cell, the Phr peptides 
will inhibit their cognate Rap proteins, thereby relieving the inhibi-
tion of the master regulators resulting in altered gene expression 
(Perego, 2013; Pottahil & Lazazzera, 2003). The Rap-Phr systems 
thereby act as cell–cell signaling systems in B.subtilis, allowing the 
bacteria to respond to environmental changes only at sufficient cell 
densities.

As expected by the diversity and abundance of multiple Rap-
Phr systems regulating the activity of these three master regu-
lators, the Rap phosphatases show high redundancy in their 
regulatory function: RapA, B, E, H, I, J, and P have been shown to 
dephosphorylate Spo0F~P, RapC, D, F, H, K, and P regulate ComA, 
while RapG has been shown to regulate the activity of DegU 
(Auchtung et al., 2006; Ogura & Fujita, 2007; Perego, 2013; Omer 
Bendori et al., 2015) (Table A1). Furthermore, RapI is involved in 
the regulation of mobile genetic elements, as it activates the prop-
agation of the mobile genetic element that encodes it (Auchtung 
et al., 2005). The regulation of the master regulators by multiple 
Rap phosphatases allows the integration of diverse signals to 
control cell differentiation in response to different conditions. 
However, this overall overview of the Rap-Phr signaling network 
in B. subtilis is based on studies where most Rap-Phr systems have 
been tested in different genetic backgrounds and under distinct 
cultivation conditions (Perego, 2013). Additionally, previous inves-
tigations in B. subtilis have directed their study toward certain tar-
gets of Rap-Phr regulation, with RapA and B being mostly studied 
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for their impact on sporulation (Perego & Hoch, 1996), while RapC 
and F are involved in competence development (Bongiorni et al., 
2005; Core & Perego, 2003). So far, only RapP has been demon-
strated to impact biofilm formation (Parashar, Konkol, et al., 2013; 
Omer Bendori et al., 2015). We previously studied all 12 Rap-Phr 
systems of the undomesticated strain B. subtilis NCIB 3610 in the 
same genetic background by following the relative abundance 
of all possible single and double ∆rap-phr mutants as well as the 
wild-type WT (79  strains) in populations subjected to different 
selective conditions. This study highlighted that the variability in 
Rap-Phr systems affected the ability to compete in diverse envi-
ronments (Gallegos-Monterrosa et al., 2021).

In this study, we systematically investigated the contribution of 
each of the 12 Rap-Phr systems in B. subtilis 3610 to biofilm for-
mation. We assessed wild type (WT) and the 12  single ∆rap-phr 
mutants for matrix gene expression and biofilm formation under 
different conditions. We found that all 12 mutants showed altered 
matrix gene expression compared with the WT. Furthermore, we 
observed that the Rap-Phr modules affect not only in vitro biofilm 
formation but also the colonization of plant roots that represents an 
ecologically relevant environment.

2  |  MATERIAL S AND METHODS

2.1  |  Bacterial strains and cultivation methods

Strains used in this study are listed in Table 1. The B. subtilis 
DK1042  strain (a natural competent derivative of the undomes-
ticated NCBI 3610) (Konkol et al., 2013) was used as WT. The 
12 single ∆rap-phr mutants were previously created and contain an 
antibiotic resistance cassette in place of the rap-phr gene pair (ex-
cept for the markerless ∆rapB mutant) (Gallegos-Monterrosa et al., 
2021). For flow cytometry, the ∆rap-phr mutants were transformed 
with the plasmid phy_mKATE2 harboring the mKATE gene under 
the control of the hyper-spank promoter (which is constitutive due 
to the absence of lacI) and a chloramphenicol (Chl) resistance gene 
within the flanking regions of the amyE gene (van Gestel et al., 2014). 
Transformants were identified by selecting for Chl resistance, and 
double crossovers were verified by the loss of amylase activity. 
The resulting mKATE-labelled ∆rap-phr mutants were transformed 
with genomic DNA from B. subtilis TB373, which harbors the PtapA-
gfp reporter construct with a kanamycin (Km) resistance gene inte-
grated at the sacI locus. Successful transformants with the reporter 
construct inserted into the sacI locus were identified by select-
ing for Km resistance. The resulting reporter strains were verified 
for reporter activity under the fluorescence stereomicroscope. 
Importantly, due to the presence of a Km resistance cassette in place 
of the corresponding rap-phr gene pair in ∆rapA, C, D, I, J, and K, 
markerless versions of those rap-phr mutants were used to obtain 
the reporter strains for the tapA-sipW-tasA operon for the flow cy-
tometry analysis. For all experiments, strains were grown overnight 
in Lysogeny broth (LB; Lennox, Carl Roth; 10 g·L−1 tryptone, 5 g·L−1 

TA B L E  1 Strains used in this study

Name Description Reference

DK1042 NCIB 3610 comlQ12I Konkol et al. (2013)

TB499 DK1042 rapA-phrA::KmR Gallegos-
Monterrosa 
et al. (2021)

TB575 DK1042 ∆rapB

TB396 DK1042 ∆rapC-phrC:: KmR

TB315 DK1042 ∆rapD:: KmR

TB339 DK1042 ∆rapE-phrE::SpecR

TB341 DK1042 ∆rapF-phrF::SpecR

TB404 DK1042 ∆rapG-phrG::SpecR

TB405 DK1042 ∆rapH-phrH::SpecR

TB272 DK1042 ∆rapI-phrI::KmR

TB274 DK1042 ∆rapJ::KmR

TB557 DK1042 ∆rapK-phrK::KmR

TB435 DK1042 ∆rapP-phrP::MlsR

TB588 DK1042 ΔrapA-phrA

TB410.1 DK1042 ΔrapC-phrC

TB513 DK1042 ΔrapD

TB444 DK1042 ΔrapI-phrI

TB411.2 DK1042 ΔrapJ

TB587 DK1042 ΔrapK-phrK

DTUB189 DK1042 ΔrapA-phrA, 
amyE::Physpank-mKATE 
ChlR

This study

DTUB165 DK1042 ∆rapB, 
amyE::Physpank-mKATE 
ChlR

This study

DTUB190 DK1042 ΔrapC-phrC, 
amyE::Physpank-mKATE 
ChlR

This study

DTUB191 DK1042 ΔrapD, 
amyE::Physpank-mKATE 
ChlR

This study

DTUB159 DK1042 ΔrapE-phrE::SpecR, 
amyE::Physpank-mKATE 
ChlR

This study

DTUB160 DK1042 ΔrapF-phrF::SpecR, 
amyE::Physpank-mKATE 
ChlR

This study

DTUB166 DK1042 ΔrapG-phrG::SpecR, 
amyE::Physpank-mKATE 
ChlR

This study

DTUB167 DK1042 ΔrapH-phrH::SpecR, 
amyE::Physpank-mKATE 
ChlR

This study

DTUB192 DK1042 ΔrapI-phrI, 
amyE::Physpank-mKATE 
ChlR

This study

DTUB193 DK1042 ΔrapJ, 
amyE::Physpank-mKATE 
ChlR

This study

(Continues)
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yeast extract and 5  g·L−1  NaCl) at 37°C while shaking (220  rpm). 
For transformation and stock preparation, antibiotics were used 
at the following working concentrations: Km: 5 µg ml−1 and Chl: 5 

µg·ml−1. For analyzing biofilm formation and matrix gene expres-
sion, strains were grown in MSgg (5 mmol·l−1 potassium phosphate 
[pH 7], 0.1  mol·L−1 3-(N-morpholino)propanesulfonic acid (MOPS) 
[pH 7], 2 mmol·L−1 MgCl2, 700 μmol·L−1 CaCl2, 100 μmol·L−1 MnCl2, 
50 μmol·L−1 FeCl3, 1 μmol·L−1 ZnCl2, 2 μmol·L−1 thiamine, 0.5 % glyc-
erol, and 0.5 % K-glutamate). For root colonization assay, strains 
were grown in MSNg (5 mmol·L−1 potassium phosphate buffer [pH 
7], 0.1 mol·L−1 MOPS [pH 7], 2 mmol·L−1 MgCl2, 50 μmol·L−1 MnCl2, 
1  µmol·L−1 ZnCl2, 2  μmol·L−1 thiamine, 700  μmol·L−1 CaCl2, 0.2 % 
NH4Cl2, and 0.05 % glycerol).

2.2  |  Microscopy imaging

All images were acquired with an Axio Zoom V16 stereomicroscope 
(Carl Zeiss, Germany) equipped with a Zeiss CL 9000 LED light source 
and an AxioCam MRm monochrome camera (Carl Zeiss, Germany).

2.3  |  Biofilm formation assay

For biofilm formation on a solid surface, 7  µl overnight cultures 
were spotted on MSgg supplemented with 1.5 % agar. For pellicle 
biofilm formation at the air–liquid interface, 15 µl inoculum of over-
night cultures adjusted to OD600 of 5 was added to 1.5  ml MSgg 
medium in 24-well plates, giving a starting OD600 of 0.05. Plates 
were incubated under static conditions at 30°C for 48 h, thereafter 
images of the arisen colonies and pellicles were obtained using the 
stereomicroscope.

2.4  |  Root colonization assay

Arabidopsis thaliana Col-0 plants were used as a host for B. subti-
lis root colonization. A. thaliana seeds were sterilized in 2 % (v/v) 
sodium hypochlorite (NaOCl) for 10  min with an orbital shaker. 
Following this, NaOCl was removed and the seeds were washed 
five times in sterile water. Sterilized seeds were placed in MS agar 
plates (Murashige and Skoog basal salts, Sigma) (2.2  g·L−1) with 
approximately 20  seeds per petri dish. The Petri dishes were 
wrapped in parafilm and left for stratification at 4°C for 3 days to 
break seed dormancy and were then moved to the plant chamber 
(cycles of 16 h light at 24°C and 8 h dark at 20°C). After five to 
seven days, seedlings of 0.5–1.2 cm in size were placed in 48-well 
plates containing 270  µl MSNg medium per well. To each well, 
30  µl of overnight culture adjusted to OD600 of 0.2 was added 
resulting in a final starting OD600 of 0.02. The plates were sealed 
with parafilm and incubated in the plant chamber while shaking 
at 90 rpm for 16 h. Seedlings were then washed in minimal salts 
nitrogen glycerol (MSNg) to remove non-attached cells from the 
root. The washed seedlings were placed in Eppendorf tubes con-
taining 1 ml of NaCl (0.9 %) and subjected to standard sonication 
protocol to disperse the biofilm (Dragoš et al., 2018). The resulting 

Name Description Reference

DTUB194 DK1042 ΔrapK-phrK, 
amyE::Physpank-mKATE 
ChlR

This study

DTUB173 DK1042 ΔrapP-phrP::MlsR, 
amyE::Physpank-mKATE 
ChlR

This study

TB34 DK1042 amyE::Physpank-gfp 
ChlR

Mhatre et al. (2017)

TB35 DK1042 amyE::Physpank-
mKATE ChlR

Hölscher et al. 
(2016)

TB865 DK1042 amyE::Physpank-
mKATE ChlR, sacA::PtapA-
gfp KmR

Dragoš et al. (2018)

DTUB284 DK1042 ∆rapA-phrA 
amyE::Physpank-mKATE 
ChlR, sacA::PtapA-gfp KmR

This study

DTUB285 DK1042 ∆rapB, 
amyE::Physpank-mKATE 
ChlR, sacA::PtapA-gfp KmR

This study

DTUB286 DK1042 ∆rapC-phrC, 
amyE::Physpank-mKATE 
ChlR, sacA::PtapA-gfp KmR

This study

DTUB287 DK1042 ∆rapD, 
amyE::Physpank-mKATE 
ChlR, sacA::PtapA-gfp KmR

This study

DTUB288 DK1042 ∆rapE-phrE::SpecR, 
amyE::Physpank-mKATE 
ChlR, sacA::PtapA-gfp KmR

This study

DTUB289 DK1042 ∆rapF-phrF::SpecR, 
amyE::Physpank-mKATE 
ChlR, sacA::PtapA-gfp KmR

This study

DTUB290 DK1042 ∆rapG-phrG::SpecR, 
amyE::Physpank-mKATE 
ChlR, sacA::PtapA-gfp KmR

This study

DTUB291 DK1042 ∆rapH-phrH::SpecR, 
amyE::Physpank-mKATE 
ChlR, sacA::PtapA-gfp KmR

This study

DTUB292 DK1042 ∆rapI-phrI, 
amyE::Physpank-mKATE 
ChlR, sacA::PtapA-gfp KmR

This study

DTUB293 DK1042 ∆rapJ, 
amyE::Physpank-mKATE 
ChlR, sacA::PtapA-gfp KmR

This study

DTUB294 DK1042 ∆rapK-phrK, 
amyE::Physpank-mKATE 
ChlR, sacA::PtapA-gfp KmR

This study

DTUB295 DK1042 ∆rapP-phrP::MlsR, 
amyE::Physpank-mKATE 
ChlR, sacA::PtapA-gfp KmR

This study

TB373 DK1042 sacA::PtapA-gfp KmR Gallegos-
Monterrosa 
et al. (2016)

TA B L E  1 (Continued)
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bacterial cell suspension was diluted and plated on LB agar plates 
for CFU counting. To acquire the CFU per mm root, the obtained 
CFU was divided by the length of the corresponding root.

2.5  |  Growth profiling

To follow the growth of WT and mutants, two overnight cultures of 
each strain were independently inoculated into a 96-well plate con-
taining MSgg or LB broth, at a starting OD600 of 0.05. Growth was 
monitored in a plate reader (Infinite F200 PRO, TECAN, and BioTek 
Synergy HTX Multi-Mode Microplate Reader) every 10 min for 48 h 
at 30°C under linear shaking conditions.

2.6  |  Matrix gene expression assays by 
flow cytometry

To measure expression from the matrix operon tapA-sipW-tasA, 
mKate-labelled WT and ∆rap-phr mutants harboring the reporter 
construct PtapA-gfp were incubated in 10 ml MSgg in 100 ml bot-
tles with a starting OD600 of 0.02. Lids were loosely on, so oxygen 
would not be depleted. Bottles were incubated at 37°C at 220 rpm 
for 6 h. After incubation, 1 ml of each sample was transferred to a 
2 ml Eppendorf tube, and samples were run on the flow cytometer 
(MACSQuant® VYB, Miltenyibiotec). mKate-positive cells were de-
tected by yellow laser (561 nm) and filter Y3 (661/20 nm). Green 
fluorescent cells, representing the cells expressing the tapA-sipW-
tasA operon, were detected by the blue laser (488 nm) and filter 
B1 (525/50 nm). Strain TB35 with constitutive mKate expression 
was used as a negative control for GFP expression, while strain 
TB34 with constitutive GFP expression was used as a positive con-
trol for GFP expression. In addition, TB34 and a medium control 
were used to identify the red background fluorescence noise due 
to autofluorescence, and cells above this background fluorescence 
were identified as the mKate-positive cells representing B. sub-
tilis cells producing the mKate protein. For each WT and mutant 
sample, single events were identified on the SSC-H vs SSC-A plot 
and gated into the mKate-A vs SSC-A plot, where mKate-positive 
cells were identified. These gated cells were exported and read 
into Excel where the green fluorescence (GFP-A) values were used 
for analysis. To get rid of negative values, 300 AU was added to all 
events in the samples. To obtain the distribution of GFP expres-
sion, data obtained from each replicate were subjected to binning 
with an identical bin size (of 50). Events with GFP expression from 
0 to 10,000 were included as the majority of events were within 
this interval (>98%). Next, the number of events in each bin was 
divided by the total number of events in the given replicate, result-
ing in the normalized frequency. To obtain the mean distribution, a 
mean frequency for each bin was obtained by averaging the indi-
vidual frequencies within this bin across the replicates, resulting in 
the mean distribution of single-cell-level expression. For statistics, 
the relative OFF (GFP values between 0 and 500) and ON (GFP 

values between 500–10,000) populations were calculated for each 
replicate, as was the mean fluorescence of the ON population.

2.7  |  Statistical analysis

Statistical analyses were performed in R Studio. For each root 
colonization assay, a one-way analysis of variance (ANOVA) was 
performed on the log10-transformed data. P-values were adjusted 
using the Benjamini & Hochberg procedure. When adjusted P-values 
were significant (p < 0.05), a Dunnett's multiple comparison test was 
performed. When data failed to meet parametric assumptions (nor-
mality and equal variance), a non-parametric analysis (Kruskal–Wallis 
test) was used. If adjusted P-values were significant (p < 0.05), treat-
ment means were compared via a Dunn test. To test for significant 
differences in relative OFF/ON population and mean fluorescence 
of ON population between mutants and WT, an ANOVA followed by 
Dunnett's multiple comparison test was performed. The significance 
level for all tests was set at 5 %.

3  |  RESULTS

3.1  |  Single ∆rap-phr mutants show altered matrix 
gene expression compared with the WT

To study the role of Rap-Phr systems of B.subtilis in biofilm forma-
tion, we used the B.subtilis DK1042 strain (a natural competent de-
rivative of the undomesticated NCBI 3610) (Konkol et al., 2013) as 
WT. In contrast to domesticated strains which may have acquired 
mutations to the Rap-Phr systems or even lost some of them, NCIB 
3610 and the derived DK1042 (hereafter referred to as 3610) con-
tain all 12 rap-phr modules (McLoon et al., 2011). Rap-Phr systems 
of B. subtilis have been studied using both overexpression and dele-
tion mutants of the Rap-Phr systems as reviewed by Perego (2013). 
Interestingly, the absence of Rap modules in a natural isolate of B. 
subtilis was shown to influence sporulation timing (Serra et al., 2014). 
In this study, we employed single ∆rap-phr mutants of B. subtilis 
created in our previous work (Gallegos-Monterrosa et al., 2021) to 
study the impact of the Rap-Phr modules on biofilm formation.

The diversity in Rap-Phr regulatory systems and the reported role 
of several of the Rap phosphatases in regulating the activity of Spo0A 
(Perego, 2013; Omer Bendori et al., 2015), which controls matrix gene 
expression, prompted us to test WT and the 12 single ∆rap-phr mutants 
for matrix gene expression. To quantify matrix gene expression during 
biofilm formation, we used a previously established approach (Kearns 
et al., 2005). This method utilizes the observation that expression from 
the promoter of the tapA-sipW-tasA operon, responsible for the pro-
duction of the protein component of the extracellular matrix (Branda 
et al., 2006), is highly induced during the late exponential growth phase 
under shaking conditions in MSgg, a medium known to induce biofilm 
formation. After 6 h of growth in MSgg under shaking conditions, 
the fluorescence intensities of WT and mutants harboring a PtapA-gfp 
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reporter construct were measured using flow cytometry. Importantly, 
the side scatter (SSC-A) vs forward scatter (FSC-A) plots revealed no 
big changes in cell granularity or size of the mutants compared with the 
WT (Figure A1). Since RapA, B, E, H, I, J, and P have been reported to 
dephosphorylate Spo0F~P (Perego, 2013; Omer Bendori et al., 2015), 
we hypothesized that the mutants lacking one of these Rap phospha-
tases would have a larger relative ON population (i.e., cells in the high 
expression state), due to more cells committing to matrix production, 
and/or display a higher mean expression from PtapA in the ON popu-
lation due to earlier matrix gene expression, as compared to the WT. 
Alternatively, if redundancy operates between some of the Rap-Phr 

systems, the absence of one Rap-Phr system may have only minor or 
insignificant effects due to the expression and function of another re-
dundant system. However, ∆rapA showed a significantly smaller rela-
tive ON population (p = 0.022, n = 3–8) than the WT (Figure 1), while 
all other mutants showed a significantly higher mean expression of the 
ON population compared with the WT. The increased mean expres-
sion by the mutants could potentially be caused by enhanced growth in 
MSgg, as strains growing faster would reach the threshold density for 
biofilm formation earlier, and thus show increased matrix gene expres-
sion. However, when the optical density (OD) at 600 nm was measured 
after 6 h in minimal medium (MSgg) prior to flow cytometry analysis, 

F I G U R E  1 Expression of the tapA-sipW-tasA operon in Bacillus subtilis WT and ∆rap-phr mutants after growth in MSgg under shaking 
conditions. Flow cytometry analysis showing the average distributions of GFP expression of ∆rap-phr mutants and WT harboring the PtapA-
gfp construct (n = 3–8). The average WT distribution is shown in each graph for comparison. Orange = WT, green = mutant, blue = non-
labelled control strain. Letters denote the corresponding ∆rap-phr mutants, that is, a = ∆rapA, b = ∆rapB and so forth. AU indicates arbitrary 
units. The significant difference in the mean fluorescence intensity of the ON population (GFP values between 500 and 10,000) between 
mutants and WT were tested by an ANOVA followed by Dunnett's multiple comparison test. *p < 0.05, **p < 0.01, ***p < 0.001
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the mutants showed either similar or reduced OD600 compared with 
WT, thus excluding this explanation. Interestingly, the increased matrix 
gene expression was not limited to the mutants lacking one of the Rap 
phosphatases reported to dephosphorylate Spo0F~P activity. These 
results show that all 12 Rap-Phr regulatory systems influence matrix 
gene expression under these conditions.

3.2  |  Absence of certain Rap-Phr modules alters 
biofilm formation in vitro

Since matrix production is required for proper biofilm development 
(Branda et al., 2006; Dragoš et al., 2018), and most ∆rap-phr mutants 
showed increased matrix gene expression under shaking conditions 
in MSgg, we hypothesized that this would manifest in more complex 
and robust biofilm formation. To investigate this, WT and mutants 
were tested for their ability to form biofilm on a solid surface (MSgg 
agar) and robust pellicle biofilms at the MSgg air-liquid interface. A 
pellicle forms when oxygen in the medium is exhausted and B. sub-
tilis moves toward higher oxygen concentrations, the air–liquid sur-
face, where cells create a biofilm (Hölscher et al., 2015).

In accordance with previous work, B. subtilis WT produced 
a wrinkled colony biofilm, as well as a robust, wrinkled pellicle 
(Branda et al., 2001; Gallegos-Monterrosa et al., 2016) (Figure 2). 
While ∆rapA, B, J, and K formed more wrinkled colonies, ∆rapI and 
P formed complex but very small colonies on MSgg agar compared 
with the WT. In contrast, ∆rapC formed a large, transparent colony 
with fewer wrinkles than WT. When testing for the development 
of pellicle biofilms, the ∆rapA, C, I, and P mutants formed thin and/
or non-homogenous pellicles, while the qualitative assessment re-
vealed no mutants with more complex or robust pellicles than WT 
(Figure 2). Lastly, the ∆rapD, E, F, G, and H mutants formed com-
parable colony and pellicle biofilms to the WT. These results show 
that despite most ∆rap-phr mutants showed increased matrix gene 
expression under shaking conditions compared with the WT, this did 
not necessarily manifest in the development of more complex bio-
films on agar or at the air–liquid interface.

3.3  |  Certain ∆rap-phr mutants are affected in the 
colonization of Arabidopsis thaliana roots

To reveal how the Rap-Phr modules affect biofilm formation in a 
more ecologically relevant environment, WT and mutants were 

F I G U R E  2 Biofilm formation of Bacillus subtilis WT and single 
∆rap-phr mutants. Overnight cultures of B. subtilis WT and ∆rap-phr 
mutants were spotted on MSgg medium solidified with 1.5 % agar 
(left) or inoculated in MSgg with a starting OD600 = 0.05 (right). 
Images were taken from above after 48 h of incubation at 30°C 
using a stereomicroscope. Letters denote the corresponding ∆rap 
mutant, that is, a = ∆rapA, b = ∆rapB, and so forth, but l = ΔrapP. 
Bar denotes 5 mm for the biofilm colony images
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tested for biofilm formation on the roots of the model plant organ-
ism A. thaliana. Similar to biofilm formation in vitro (Branda et al., 
2006), previous studies have shown that matrix production is re-
quired for biofilm formation on A. thaliana roots (Beauregard et al., 
2013; Dragoš et al., 2018). We, therefore, speculated that the in-
creased matrix gene expression observed in most strains would en-
able enhanced biofilm formation on plant roots.

For this purpose, sterile A. thaliana seedlings with a root length 
of 0.5–1.2 cm were inoculated with one of the 12 ∆rap-phr mutants 
or WT and incubated in a plant chamber at 24°C (90 rpm) for 16 h, 
after which root colonization was quantified as a colony-forming 
unit (CFU) per mm root length. Of the 12 mutants tested, only the 
∆rapD, J, and P mutants showed significantly increased root coloni-
zation compared with the WT (Figure 3). In contrast, the ∆rapI mu-
tant was significantly reduced in root colonization. The observation 
that ∆rapI and P showed similar biofilm formation in vitro (Figure 2) 
but performed oppositely during root colonization (Figure 3) might 
indicate that the effect of each Rap phosphatase on biofilm forma-
tion depends on the environment. Furthermore, similarly to biofilm 
formation in vitro, these results show that increased matrix gene 
expression under shaking conditions did not necessarily manifest in 
increased root colonization.

3.4  |  Certain ∆rap-phr mutants show altered 
growth compared with WT

The timing of biofilm initiation in vitro and on the root depends 
on the cell density, as only at sufficiently high cell density the Phr 
peptides will reach threshold concentrations allowing them to be 
imported into the cell, where they will inhibit their cognate Rap 

phosphatases. Consequently, a subset of the Rap phosphatases 
influences phosphorylation of Spo0A and the expression of bio-
film genes. Biofilm formation is, therefore, affected by the growth 
rate, as strains growing faster will reach the threshold density for 
biofilm formation earlier. To test whether the observed changes 
in biofilm formation in vitro and on the root could be (partly) at-
tributed to altered growth, WT and the 12 ∆rap-phr mutants were 
tested for growth in MSgg under shaking conditions. For clear 
visualization, the growth curves of the 12 mutants were sepa-
rated into four plots (Figure 4). Of the 12 mutants tested, only 
the ∆rapA, I, and P showed an altered growth profile compared 
with WT. ∆rapA and I showed a reduced growth rate, a delayed 
entry into the stationary phase, and reduced max OD590. In addi-
tion, ∆rapI had a prolonged stationary phase and a slower decline 
during the late stationary phase (possibly death phase). ∆rapP 
showed slower growth during the exponential phase, which con-
tinued for about 10 h longer than the WT, but displayed a higher 
max OD590 at the stationary phase. In LB medium, the same mu-
tants were similarly or less affected in growth compared with WT 
(Figure A2). The impaired growth of ∆rapA and I is in accordance 
with these two mutants forming thin and/or non-homogeneous 
pellicles (Figure 2), and ∆rapI displaying reduced root colonization 
(Figure 3). In contrast, the prolonged exponential growth of ∆rapP 
is inconsistent with the thin pellicle formed by this mutant, but 
correlating with the increased root colonization observed for this 
mutant. Finally, ∆rapC and ∆rapJ showed similar growth profiles 
as the WT but ∆rapC formed a thin pellicle, while ∆rapJ was in-
creased in root colonization. The differential biofilm-forming ca-
pacity in vitro and on the root observed for some of the mutants, 
interestingly, cannot be directly correlated with the growth rates 
and profiles of the mutants.

F I G U R E  3 Arabidopsis thaliana root colonization by Bacillus subtilis WT and single ∆rap-phr mutants. To estimate the impact of each of the 
Rap-Phr modules on root colonization, WT and single ∆rap-phr mutants were inoculated onto five-day-old seedlings of A. thaliana (n = 7–
10). After 16 h, CFU per mm root length was quantified. The log10-transformed value of CFU/mm root for each technical replicate was 
normalized to the mean of the WT from the same experiment. Each dot represents a root, while the mean value for each mutant is displayed 
as a red horizontal line. The black horizontal line represents the mean of the WT and the SD of the WT from each respective experiment is 
shown in shaded gray. For each assay, an ANOVA was performed on the log10-transformed values of CFU/mm root length. When significant 
(p < 0.05), means were compared via Dunnett's multiple comparison test with WT as the control. When data failed to meet parametric 
assumptions, a Kruskal–Wallis test was performed followed by a Dunn's test.  **p < 0.005, ***p < 0.001
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4  |  DISCUSSION

For decades, the Rap-Phr regulatory systems which control the ac-
tivity of the three master regulators governing cell differentiation 
in B. subtilis have been extensively studied (Perego, 2013; Pottahil 
& Lazazzera, 2003). However, since most studies have investigated 
the Rap-Phr networks of B. subtilis independently from each other, 
in different genetic backgrounds, and under distinct conditions, it is 
difficult to compare the results from these studies. Here, we investi-
gated all 12 Rap-Phr systems found in B. subtilis 3610 for their effect 
on matrix gene expression and biofilm development in vitro. In addi-
tion, we examined the impact of Rap-Phr systems in the colonization 
of plant roots for the first time.

Several of the Rap phosphatases have been reported to de-
phosphorylate Spo0F~P (Perego, 2013; Omer Bendori et al., 2015) 
which is expected to influence matrix production, but only RapP 
has previously been demonstrated to affect matrix gene expres-
sion (Parashar, Konkol, et al., 2013; Omer Bendori et al., 2015). We 

were, therefore, interested in testing the effect of each of the 12 
Rap-Phr systems on matrix gene expression. Inspired by a previously 
established method (Kearns et al., 2005), expression from the pro-
moter of the tapA-sipW-tasA operon was measured for WT and the 
12 ∆rap-phr mutants in MSgg under shaking conditions. Only ∆rapA 
showed a significantly reduced relative ON population compared 
with the WT. Such reduced relative proportion of ∆rapA cells in the 
ON state may be due to more cells committing to activation of the 
sporulation pathway, and therefore, attenuating induction of matrix 
genes (Bischofs et al., 2009). Although only some of the Rap phos-
phatases have been reported to dephosphorylate Spo0F~P (Perego, 
2013; Omer Bendori et al., 2015), we observed that all mutants ex-
cept ∆rapA showed increased matrix gene expression. This indicates 
that despite the diversity of targets among Rap-Phr systems, and 
the seeming redundancy of several Rap phosphatases regulating 
the same master regulator (Perego, 2013), each of the 12 Rap-Phr 
systems has a regulatory role that affects matrix gene expression 
under the tested conditions. The involvement of 12 Rap-Phr systems 

F I G U R E  4 Growth of Bacillus subtilis WT and single ∆rap-phr mutants in MSgg. WT and mutants were inoculated into 96-well plates with 
a starting OD590 of 0.05. OD590 was measured every 10 min for 48 h at 30°C; each time point represents the mean of six technical replicates 
from two overnight cultures (N = 6). Error bars represent standard error (SE).
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in influencing matrix gene expression suggests that the production 
of these costly public goods is under complex control, and allows the 
integration of multiple signals to fine-tune the timing of matrix pro-
duction in response to different conditions (Auchtung et al., 2006; 
Dragoš et al., 2018).

Matrix production is well known to be required for the forma-
tion of architecturally complex biofilms under laboratory conditions 
(Arnaouteli et al., 2021; Branda et al., 2006). Moreover, matrix pro-
duction and localized cell death are responsible for the formation 
of wrinkles during biofilm development (Asally et al., 2012; Branda 
et al., 2006; Gallegos-Monterrosa et al., 2017). We, therefore, spec-
ulated that the increased matrix gene expression observed for all 
mutants, except ∆rapA, would manifest in these 11 mutants forming 
more wrinkled colonies and more complex, robust pellicles compared 
with the WT. However, only some of the mutants were affected in 
biofilm formation. In accordance with increased matrix gene expres-
sion, the ∆rapB, J, and K mutants formed more wrinkled colonies, 
and ∆rapI and P formed complex, though very small colonies com-
pared with the WT. Moreover, ∆rapC formed a larger, smoother, and 
more transparent colony. Furthermore, ∆rapA, with the similar mean 
expression of the tapA-sipW-tasA operon and a smaller relative ON 
population compared with WT, also formed a more wrinkled colony. 
Surprisingly, none of the mutants displayed increased pellicle ro-
bustness or complexity compared with the WT. In contrast, ∆rapA, 
C, I, and P formed thinner and/or non-homogenous pellicles.

Next, we were interested in studying how Rap-Phr systems af-
fect biofilm formation of B. subtilis in a more ecologically relevant 
environment, that is, the plant root. Similar to biofilm formation in 
vitro, biofilm formation on the plant root by B. subtilis depends on 
matrix gene expression regulated by Spo0A (Beauregard et al., 2013; 
Chen et al., 2013). We, therefore, hypothesized that the increased 
matrix gene expression observed for most mutants would allow 
more bacterial cells to attach to and colonize the root. However, only 
∆rapD, J, and P showed increased root colonization, while ∆rapI was 
reduced in root colonization. The biofilm and root colonization ex-
periments of the ∆rap-phr mutants thus show that the magnitude of 
matrix gene expression under shaking conditions does not directly 
correlate with the ability to develop complex biofilms in vitro (on agar 
and at the air–liquid interface) or to colonize the plant root (Table A1). 
A lack of positive correlation between matrix gene expression and 
biofilm formation was observed in a previous study which showed 
that the magnitude of expression of epsA-O and tasA-sipW-tasA in B. 
subtilis 168 variants did not directly correlate with the formation of 
wrinkled biofilms (Gallegos-Monterrosa et al., 2016). These exper-
iments could thus support that biofilm formation in in vitro and on 
plant roots is influenced by additional factors than just matrix gene 
expression. For example, surfactin production, which is regulated by 
ComA—a target of several Rap phosphatases (Perego, 2013)—was 
shown to influence the colony structure of B. subtilis NCIB 3610 on 
MSgg, though this secondary metabolite was not essential for pelli-
cle formation and root colonization (Thérien et al., 2020). However, 
it has to be noted that matrix gene expression was measured under 
heavily shaking conditions (220  rpm), while colonies and pellicles 

were developed under static conditions, and root colonization was 
assayed under mildly shaking conditions (90 rpm). An alternative ex-
planation for the lack of correlation between matrix gene expression 
under shaking conditions and biofilm formation in vitro and on the 
root could be that the effect of the rap-phr deletions on tapA operon 
expression may vary between these different conditions. Further 
work is needed to fully explain the discrepancies observed in this 
study between tapA operon expression and biofilm formation.

Interestingly, several studies have reported a correlation be-
tween the ability of strains to form robust biofilms in vitro and to 
colonize the root—both within and among strains (Chen et al., 2013; 
Gallegos-Monterrosa et al., 2016). However, the ability of the ∆rap-
phr mutants to form biofilm in vitro did not necessarily reflect the 
ability to colonize the root (compare Figures 2 and 3 and the sum-
mary in Table A1). For example, ∆rapA and C formed thin and non-
homogenous pellicles but were able to colonize the root to similar 
levels as the WT. ∆rapD displayed comparable biofilm in vitro to the 
WT but was significantly better in root colonization. In addition, 
∆rapJ formed a highly wrinkled colony, but a pellicle similar to the 
WT, and was increased in root colonization. Finally, both ∆rapI and P 
showed reduced colony size and thin and/or non-homogenous pel-
licle formation, but while ∆rapI showed reduced root colonization, 
∆rapP was increased in root colonization compared with the WT. 
These results indicate that the effect of the rap-phr deletions on bio-
film formation varies between in vitro and root conditions. This was 
similarly shown for a ∆tagE mutant (deficient in glycosylating wall 
teichoic acid), which was affected in root colonization but displayed 
similar biofilm formation on agar and at the air–liquid interface as the 
WT (Tzipilevich & Benfey, 2021).

In the study by Gallegos-Monterrosa et al. (2016), showing that 
strains forming complex colonies and robust pellicles also efficiently 
colonize the root, the B. subtilis 168 stocks displayed genetic vari-
ation in distinct loci (e.g., epsC that encodes an enzyme that is di-
rectly involved in matrix production), resulting in large differences 
among the strains in their ability to form biofilm and colonize the 
root. In contrast, the ∆rap-phr mutations studied here might only 
slightly modulate the regulatory pathways of B. subtilis; therefore, 
the ability of the mutants to form biofilm and colonize the root is 
less altered compared with WT. Nonetheless, the same study also 
demonstrated that biofilm development is influenced by medium 
composition (Gallegos-Monterrosa et al., 2016). Besides static vs 
mild agitation and a temperature difference (30 vs. 24°C), the media 
used for testing colony and pellicle formation, and for testing root 
colonization also slightly differ. First, the MSgg medium used for 
colony and pellicle formation contains a 10 times higher concentra-
tion of glycerol (0.5 %) compared with the MSNg medium used for 
plant root colonization (0.05%). During plant root colonization, the 
bacteria thus depend on plant polysaccharides and root exudates 
as carbon sources. In addition, in vitro biofilm development depends 
on the availability of iron and manganese (Kolodkin-Gal et al., 2013; 
Mhatre et al., 2016; Shemesh & Chai, 2013), while during plant root 
colonization in MSNg, biofilm formation is induced by plant poly-
saccharides and root exudates (Beauregard et al., 2013; Chen et al., 
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2013). The presence of plant polysaccharides may, therefore, allow 
∆rap-phr mutants that form weak pellicle biofilms in vitro to effi-
ciently colonize the root (∆rapA, C and P, Figures 2 and 3). Thereby, 
the pathways regulating matrix gene expression and other factors 
important for biofilm formation may be differently regulated under 
distinct conditions.

Finally, the disparate results obtained in this study may be under-
stood in light of the full set of 12 Rap-Phr systems with redundant 
functions: the influence of a single rap-phr deletion might be masked 
by the function of another redundant Rap-Phr system. Furthermore, 
if such potential redundancy varies between the different conditions 
employed in this study (e.g., if the rap-phr genes are differentially 
expressed under the distinct conditions tested), this could (partly) 
explain the observed discrepancy, for example, between biofilm for-
mation in vitro and on the root.

To conclude, we here show that all 12 Rap-Phr systems have an 
impact on matrix gene expression in liquid culture. Thereby, the di-
versity in Rap-Phr systems in B. subtilis 3610 could function to inte-
grate multiple signals to fine-tune the timing and level of matrix gene 
expression in response to new ecological niches, such as those it 
will encounter in soil. Furthermore, we show that the ability to form 
biofilm in vitro not necessarily reflects the ability to colonize the root 
under the tested conditions. These findings thus support that the 
pathways involved in matrix gene expression and other components 
important for biofilm establishment could be differently influenced 
under distinct conditions.
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APPENDIX 1

FIGURE A1 Single ∆rap-phr mutants are not majorly affected in cell granularity or size. Flow cytometry analysis showing the side scatter 
(SSC-A) vs forward scatter (FSC-A) plots of ungated WT and ∆rap-phr mutant cells harboring the PtapA-gfp construct
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FIGURE A2 Growth of Bacillus subtilis WT and single ∆rap-phr mutants in LB medium. WT and mutants were inoculated into 96-well plates 
with a starting OD600 of 0.05. OD590 was measured every 10 min for 48 h at 30°C, and each time point represents the mean of six technical 
replicates from two overnight cultures (n = 6). Error bars represent standard error (SE)

TABLE A1 Overview of phenotypes of the 12 single ∆rap-phr mutants compared with WT

Mutant Known target(s) of respective Rap proteins Matrix expr. Colony Pellicle Root Growth

rapA-phrA Spo0F ↓ ↑ ↓ – ↓

rapB Spo0F ↑ ↑ – – –

rapC-phrC ComA ↑ ↓ ↓ – –

rapD ComA ↑ – – ↑ –

rapE-phrE Spo0F ↑ – – – –

rapF-phrF ComA ↑ – – – –

rapG-phrG DegU ↑ – – – –

rapH-phrH Spo0F, ComA ↑ – – – –

rapI-phrI Spo0F, regulation of mobile genetic elements ↑ ↑ (but small) ↓ ↓ ↓

rapJ Spo0F ↑ ↑ – ↑ –

rapK-phrK ComA ↑ ↑ – – –

rapP-phrP Spo0F, ComA ↑ ↑ (but small) ↓ ↑ ↑

Note: Up arrows indicate increased while down arrows indicate decreased features compared with WT. For colony and pellicle formation, the 
direction of the arrow is related to wrinkles and complexity.


