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Neuropathic pain is a chronic pain condition seen in patients with diabetic neuropathy,
cancer chemotherapy-induced neuropathy, idiopathic neuropathy as well as other
diseases affecting the nervous system. Only a small percentage of people with
neuropathic pain benefit from current medications. The complexity of the disease, poor
identification/lack of diagnostic and prognostic markers limit current strategies for the
management of neuropathic pain. Multiple genes and pathways involved in human
diseases can be regulated by microRNA (miRNA) which are small non-coding RNA.
Several miRNAs are found to be dysregulated in neuropathic pain. These miRNAs regulate
expression of various genes associated with neuroinflammation and pain, thus, regulating
neuropathic pain. Some of these key players include adenylate cyclase (Ac9), toll-like
receptor 8 (Tlr8), suppressor of cytokine signaling 3 (Socs3), signal transducer and
activator of transcription 3 (Stat3) and RAS p21 protein activator 1 (Rasa1). With
advancements in high-throughput technology and better computational power
available for research in present-day pharmacology, biomarker discovery has entered a
very exciting phase. We dissect the architecture of miRNA biological networks
encompassing both human and rodent microRNAs involved in the development of
neuropathic pain. We delineate various microRNAs, and their targets, that may likely
serve as potential biomarkers for diagnosis, prognosis, and therapeutic intervention in
neuropathic pain. miRNAs mediate their effects in neuropathic pain by signal transduction
through IRAK/TRAF6, TLR4/NF-κB, TXIP/NLRP3 inflammasome, MAP Kinase, TGFβ and
TLR5 signaling pathways. Taken together, the elucidation of the landscape of signature
miRNA regulatory networks in neuropathic pain will facilitate the discovery of novel miRNA/
target biomarkers for more effective management of neuropathic pain.
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INTRODUCTION

Neuropathic pain is defined as “pain induced by a lesion or
disease of the somatosensory nervous system” by International
Association for the Study of Pain (Bouhassira and Attal, 2019).
The overall prevalence of neuropathy-derived pain in the general
populace is 7–10%. Neuropathic pain is more frequently
diagnosed in women (8%) as compared to men (5.7%)
(Murphy et al., 2020). The prevalence of neuropathic pain in
the United Kingdom and in the United States is 1 and 2%
respectively (Smith and Torrance, 2012). Neuropathic pain
affects 20–26.4% of diabetic patients (Bouhassira et al., 2013)
and 20% of patients with herpes zoster in the United States
(Johnson and Rice, 2014; Saguil et al., 2017). 48–74% patients
with low back-related leg pain (Harrisson et al., 2020) and 40% of
people after surgery suffer from neuropathic pain (Johansen et al.,
2012). Studies have found that about 8.1–17.9% of the Canadian
population is affected by neuropathic pain (VanDenKerkhof
et al., 2016). Another study showed that the East Asian
population has a low incidence of neuropathic pain (3.2%)
(Inoue et al., 2017).

Peripheral neuropathic pain and central neuropathic pain are
two different types of neuropathic pain. Postherpetic neuralgia,
diabetic neuropathy, and causalgia are examples of peripheral
neuropathic pain, caused by an injury or dysfunction in the PNS
(peripheral nervous system) (McCarberg et al., 2017). Central
neuropathic pain, such as thalamic pain, post-stroke pain, and
post-spinal cord injury pain, is caused by an injury or dysfunction
in the CNS (central nervous system) (Colloca et al., 2017).
Neuropathic pain can also be divided into two types: stimulus-
evoked and stimulus-independent. Mechanical, thermal, or
chemical stimulation causes hyperalgesia and allodynia, which
are indications of stimulus-evoked pain and stimulus-
independent pain is typically categorized as shooting, stabbing,
or burning (Kerstman et al., 2013).

Peripheral tissue injury in peripheral neuropathic pain results
in release of inflammatory cytokines/mediators/chemokines [e.g.,
IL-1β, TGF-β, and chemokine (C-C motif) ligand 2 (CCL2)] as
well as neurotrophic factors like nerve growth factor that sensitize
nociceptors (Sun et al., 2021). This leads to dysregulated
expression of ion channels in sensory neurons causing
reduction of thermal and mechanical threshold of nociceptors
which is known as peripheral sensitization. The abnormal
excitation of peripheral neurons results in increased levels of
neurotransmitters like substance P and glutamate in the spinal
cord dorsal horn. This results in activation of neurokinin receptor
and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA)/N-Methyl-D-aspartic acid (NMDA) receptors causing
long-lasting elevated excitability of dorsal horn neurons which is
known as central sensitization (Woolf, 2011). Persistent
stimulation of proinflammatory proteins and constant
peripheral sensitization might induce central sensitization of
spinal cord dorsal horn in diabetic neuropathic pain (Zhu D.
et al., 2019).

Nociceptors are a type of sensory neurons which are triggered
by noxious stimuli like heat, cold, mechanical force, or chemical
stimulation. Based on the molecular mechanisms of nociception,

nociceptors are classified as – thermal nociceptors, mechanical
nociceptors, and chemical nociceptors (Tracey, 2017). Thermal
nociceptors belong to transient receptor potential cation channel
(TRP) receptor family of which the vanilloid variant (TRPV) is
found in thermal nociceptive receptors that is responsible for
thermal stimuli transduction. The TRPV family consists of
TRPV1, TRPV2, TRPV3 and TRPV4 which are stimulated at
various thermal temperatures or thermal stimuli (Frias and
Merighi, 2016). Mechanical receptors or mechanoreceptors are
stimulated by noxious mechanical force. While not much is
known about mechanoreceptors, some inhibitory
mechanoreceptors like (TWIK-related potassium) TREK and
potassium voltage-gated channel subfamily A member 1
(Kv1.1) are known to be involved in nocifensive (defense
against injury) behavior by maintaining the noxious
mechanical force threshold significantly high to prevent
hyperactivity of the mechanoreceptors (Armstrong and
Herr, 2021). Chemical nociceptors are expressed by
nociceptive neurons in response to harmful, noxious, or
irritating chemicals. Apart from thermal stimuli, TRP
receptor family can also detect noxious chemicals. While
TRPV1 binds to prostaglandins, capsaicin, bradykinin, and
other important pro-inflammatory molecules; TRPA1
subfamily is known to detect a wide variety of pungent and
oily isothiocyanate compounds like cinnamaldehyde, mustard
oils, and formaldehyde (Armstrong and Herr, 2021). Another
example of noxious chemical receptors are the acid-sensing
ion channels. They are stimulated by protons resulting in
opening of their cation channels. They are found
throughout the central as well as peripheral nervous system
(St. John Smith, 2018).

In some individuals, there may be a possibility of a genetic
basis for developing neuropathic pain. A study (Armero et al.,
2012) conducted on the Caucasian population concluded that
females with polymorphism in the TRPV1 gene are more
susceptible to develop neuropathic pain. Met315Ile TRPV1
genotype only in females diagnosed with neuropathic pain,
together with other physiological factors such as sex, might
influence susceptibility to neuropathic pain (Armero et al.,
2012). Kalfon et al. (2019) studied the association of single
nucleotide polymorphism in transient receptor potential cation
channel subfamily Vmember 1 (TRPV1) and nerve growth factor
(NGF) and localized provoked vulvodynia and observed a
significant relation between rs222747 of TRPV1 (c.945G>C,
p.Ile315Met) and localized provoked vulvodynia in affected
women. Genotyping analyses showed a critically high
prevalence of polymorphism c.945G>C (rs222747) of TRPV1
and a single nucleotide polymorphism in the promoter region of
NGF (rs11102930) in localized provoked vulvodynia women
compared with controls. Substitution of the amino acid
modifies the channel’s functional properties leading to
increased TRPV1 protein expression because of an elevated
copy number. The study further suggests that rs222747 “C”
allele of TRPV1 to be a common genetic predisposition for
other pain syndromes. Diabetic patients with a polymorphism
in OPRM1 are susceptible to diabetic neuropathic pain (Zorina-
Lichtenwalter et al., 2018). Black South Africans with
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polymorphism in KCNS1 are known to have HIV-associated
sensory neuropathy (Zorina-Lichtenwalter et al., 2018).

One of the causes of neuropathic pain is the demyelination of
peripheral nerve fibers. Demyelination destroys the molecular and
structural features of the nerve fibers, which develops neuropathic
pain (Wei et al., 2019). VitaminK2 is believed to play a role inmyelin
repair and synthesis in the peripheral nervous system. Vitamin K2
activates and carboxylates Gla residues on GAS6 protein that is
structurally related to anticoagulation factor protein S (vitamin
K-dependent protein). GAS6, and protein S bind and activate the
receptor tyrosine kinases of TAM (Tyro3, Axl, and Mer) family
which increase myelin production as well as repair after myelin
injury (Mehta, 2017).We have previously (Mehta et al., 2018) carried
out an open-label observational study to determine the role of
vitamin K2-7 in peripheral neuropathy associated with type-2
diabetic patients. In the 1st week, the visual analog score (VAS)
score was 8–10 for T2DM patients. The VAS score had reduced to
1–2 in T2DMpatients after treatment with vitamin K2-7 by the 12th
week. The symptoms of PN had reduced persistently, which showed
the effectiveness of vitamin K2-7 in management of peripheral
neuropathy caused due to T2DM (Mehta et al., 2018).
Proinflammatory cytokines such as TNFα and IL-1β are involved
in neuropathic pain development through neuroinflammatory
mechanisms (Li QY. et al., 2017). We have also demonstrated
that vitamin K2-7 was able to inhibit TNFα and IL-1β gene
expression in human monocyte-derived macrophages in a dose-
dependent manner (Pan et al., 2016). In bones, primary activation
of the RANKL/RANK (receptor activator for nuclear factor kappa
B) system activates osteoclasts, which triggers the damage of bones
and subsequently damages the peripheral sensory nerves around
bones due to bone fracture. Damage to peripheral nerves can lead to
neuropathic pain development (Zajączkowska et al., 2019).
Activation of the RANKL/RANK system activates the nuclear
factor kappa beta (NF-κB), an important regulator of
inflammation, which leads to the activation of osteoclasts.
Vitamin K2-7 prevents activation of the RANKL/RANK system
by upregulating osteoprotegerin, a decoy receptor for RANKL.
Vitamin K2-7 prevents the binding of RANKL to the RANK
receptor which prevents activation of NF-κB and prevents
activation of osteoclasts (Badmaev et al., 2011). Considering
these properties of vitamin K2-7, it may likely serve as a
potential therapeutic agent in themanagement of neuropathic pain.

MicroRNAs (miRNAs) are small single-stranded non-coding
RNA molecules containing 19–25 nucleotides. miRNAs regulate
almost every cellular process by regulating post-transcriptional gene
expression and mRNA silencing (Bartel, 2018). miRNAs are found
to be dysregulated in several diseases and regulate expression of
various genes that are associated with different diseases. We have
recently elucidated the non-coding RNA interactome including
miRNA networks in cancer chemoprevention (Shah et al., 2021).
We have also previously delineated the architecture of miRNA
networks in mesothelioma (Gandhi and Nair, 2020), prostate
adenocarcinoma (Nair et al., 2014; Nair and Kong, 2015a),
cancer chemoprevention (Neelakandan et al., 2012; Nair and
Kong, 2015b), as well as miRNA-lncRNA interactions (Nair,
2016). The term miRNA interactome includes cellular
biomolecules, e.g., nucleic acids and proteins that interact with

miRNA. In this review, we dissect the architecture of miRNA
biological networks encompassing both human and rodent
microRNAs involved in the development of neuropathic pain.
We delineate various microRNAs, and their targets, that may
likely serve as potential biomarkers for diagnosis, prognosis, and
therapeutic intervention in neuropathic pain.

UPREGULATED MICRORNAS IN
NEUROPATHIC PAIN
Human microRNAs Upregulated in
Neuropathic Pain
Leinders et al. (2016) investigated the role of hsa-miR-132-3p in
white blood cells and sural nerve biopsies of patients with
neuropathic pain. hsa-miR-132-3p was elevated in white blood
cells as well as sural nerve biopsies of patients. In another study,
Leinders et al. (2017) identified that hsa-miR-146a and hsa-miR-
21 were upregulated in white blood cells of patients suffering
from neuropathic pain. It was found that miR-21 was upregulated
by 2.2-fold and hsa-miR-146a was upregulated by 10-fold. Li et al.
(2017b) studied the expression of hsa-miR-199a-3p in patients
with diabetic neuropathy (DN). hsa-miR-199a-3p was
upregulated by ∼2.5-fold in patients with DN. Upregulation of
hsa-miR-199a-3p inhibited extracellular serine protease inhibitor
E2 (SerpinE2) expression. The downregulation of SerpinE2 by
hsa-miR-199a-3p was thought to cause DN by boosting blood
coagulation in the skin peripheral circulation. Tramullas et al.
(2018) studied hsa-miR-30c-5p expression in individuals with
neuropathic pain associated with leg ischemia. It was found that
hsa-miR-30c-5p expression was increased in plasma and
cerebrospinal fluid of neuropathic pain patients. Von Schack
et al. (2011) used TaqMan Low Density Array (TLDA) and
reported upregulation of hsa-miR-133b (10.2 fold). Heyn et al.
(2016) conducted a study with patients suffering from
neuropathic pain to determine the expression of miRNAs in
neuropathic pain. Blood samples from neuropathic pain patients
showed that hsa-miR-124a and hsa-miR-155 were upregulated by
2-fold. hsa-miR-124a and hsa-miR-155 reduced the expression of
Sirtuin 1 (SIRT1) mRNA in patients, which led to the
development of neuropathic pain. Thus, these miRNAs can be
investigated as therapeutic targets in neuropathic pain.

Xu et al. (2014) conducted a study to determine the expressions
of miRNAs in neuropathic pain. Using miRCURY LNA array, hsa-
miR-22, hsa-miR-31-5p, and hsa-miR-133b were found to be
upregulated by more than 2-fold. Hori et al. (2013) found that
hsa-miR-28-3p and hsa-miR-223 were upregulated by more than 2
fold after miRNA expression profiling. Genda et al. (2013) studied
the change in hsa-miR-124 expression neuropathic pain. hsa-miR-
124 was upregulated by 2.26-fold. It was suggested that change in
miRNA expression played a role in the maintenance and
development of and therapy for neuropathic pain. Asahchop
et al. (2018) conducted a study on HIV/AIDS patients diagnosed
with symptomatic distal sensory polyneuropathy (sDSP). hsa-miR-
455-3p was upregulated by 12-fold in HIV patients with sDSP as
compared to non-sDSP HIV patients. Thus, hsa-miR-455-3p can be
a potential biomarker for HIV-related sDSP. Chatterjee et al. (2018)
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conducted a study on individuals suffering from arsenic-induced
peripheral neuropathy. It was found that hsa-miR-29a was
upregulated by 3.63-fold in arsenic-exposed individuals with
peripheral neuropathy. According to the finding, arsenic-induced
peripheral neuropathy could be caused by the mir-29a/beta-catenin/
PMP22 axis. Cao et al. (2019b) used skins of patients suffering from
Postherpetic Neuralgia (PHN) to study the expression of miRNAs in
PHN. hsa-miR-4491, hsa-miR-502-5p, hsa-miR-4528, hsa-miR-
4721, hsa-miR-760, hsa-miR-495-3p, hsa-miR-382-5p, hsa-miR-
4506, hsa-miR-1258, and hsa-miR-330-5p were upregulated by
more than 5-fold in skin of PHN patients as compared to
control. These miRNAs can be potential targets to treat PHN.

We summarize upregulated human microRNAs in
neuropathic pain in Table 1. An in silico method was used to
construct miRNA-miRNA and miRNA-target networks of
upregulated human miRNAs in neuropathic pain as shown in
Figures 1A,B respectively.

Mouse microRNAs Upregulated in
Neuropathic Pain
Gong et al. (2015) found that mmu-miR-98-5p and mmu-miR-
210-3p were overexpressed in the diabetic neuropathic pain

model of mice. Microarray studies showed that mmu-miR-98-
5p regulated the Interleukin-6 (Il-6) gene. Thus, changes in
miRNA level may affect inflammatory network homeostasis
leading to the development of diabetic neuropathic pain. Jia
et al. (2018) found out that overexpression of exosomal
miRNA-28, -31a, and -130a in high glucose-stimulated
Schwann cells of hyperglycemic mice led to the development
of diabetic peripheral neuropathy (DPN). An increase in levels of
exosomal miRNAs decreased the levels of proteins Dnmt3a,
Numb, Snap25, and Gap43, which in turn led to the
development of DPN. Exosomal miRNAs have been
investigated as gene therapy for DPN. Thus, exosomes derived
from mesenchymal stromal cells loaded with miR-146a (exo-
146a) suppressed endothelial cell activation as well as peripheral
blood inflammatory monocytes through inhibition of toll-like
receptor (TLR)-4/NF-kappaB signaling pathway (Fan et al.,
2021). Further, Numb is an endocytic protein that complexes
with non-SUMOylated collapsin response mediator protein 2
(CRMP2) as well as E3 ubiquitin ligase Nedd4-2 and epidermal
growth factor receptor pathway substrate 15 (Eps15). The
complex then promotes clathrin-mediated endocytosis of
voltage-gated sodium channels (NaV1.7) that plays a key role
in neuronal excitability and neuropathic pain. It was observed

TABLE 1 | Upregulated human microRNAs involved in neuropathic pain.

Sr.
No.

miRNA Biological matrix (cell
line/animal model/patient)

Targets References

1 hsa-miR-132-3p White blood cells from 81 patients with neuropathies of different etiologies — Leinders et al.
(2016)

2 hsa-miR-155-5p
hsa-miR-124-3p

CD4+ from neuropathic pain patients SIRT1 Heyn et al. (2016)
3

4 hsa-miR-199a-3p Blood plasma from 60 patients with diabetic neuropathy SERPINE2 Li et al. (2017b)

5 hsa-miR-455-3p 16 patients with symptomatic distal sensory polyneuropathy NGF Asahchop et al.
(2018)

6 hsa-miR-29a-3p Peripheral blood mononuclear cells from patients (n � 32) with arsenic-induced
peripheral neuropathy

PMP22 Chatterjee et al.
(2018)

7 hsa-miR-146a-5p White blood cells from 76 patients with neuropathies of different etiologies — Leinders et al.
(2017)8 hsa-miR-21-5p

9 hsa-miR-4491 Skin from 5 patients with postherpetic neuralgia — Cao et al. (2019b)
10 hsa-miR-502-5p
11 hsa-miR-4528
12 hsa-miR-4721
13 hsa-miR-760
14 hsa-miR-495-3p
15 hsa-miR-382-5p
16 hsa-miR-4506
17 hsa-miR-1258
18 hsa-miR-330-5p

19 hsa-miR-142-5p Human neuronal cell line (SH-SY5Y) Soluble guanylate
cyclase (sGC)

Xu et al. (2019a)

20 hsa-miR-28-3p Chronic constriction injury (Sprague-Dawley rats) of sciatic nerve. Using TLDA
MicroRNA cards v.3 A and B (contains human and rodent miRNAs)

— Hori et al. (2013)
21 hsa-miR-223-3p

22 hsa-miR-31-5p Serum of Sprague-Dawley rats with spinal nerve ligation-induced neuropathic pain
with microarray analysis performed using miRCURY LNA array ready to spot v.7.1
(contains human, mouse and rat miRNAs)

— Xu et al. (2014)
23 hsa-miR-133b
24 hsa-miR-22
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FIGURE 1 | Upregulated human microRNA networks in neuropathic pain: (A) Human microRNA –microRNA network: Human miRNA-miRNA interaction network
with 24 nodes and 276 edges. The networks were constructed using Cytoscape 3.8.2. (B) Human microRNA – gene target network: Architecture of networks of
upregulated miRNAs in humans implicated in neuropathic pain showing interaction network of functionally enriched miRNAs with their targets with 137 nodes and 145
edges. The networks were constructed using Cytoscape 3.8.2. Using Mienturnet, the miRNA-target interactions were identified by TargetScan and the functionally
enriched miRNAs were generated using the KEGG database.
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TABLE 2 | Upregulated mouse microRNAs involved in neuropathic pain.

Sr.
No.

miRNA Biological matrix (cell
line/animal model/patient)

Targets References

1 mmu-miR-687 Spared-nerve injury of dorsal root ganglion of Kunming mice — Lu et al. (2017)
2 mmu-miR-139-3p
3 mmu-miR-337-3p

4 mmu-miR-124-3p Dorsal root ganglion and sciatic nerve of paclitaxel-induced peripheral neuropathic C57BL/6 mice — Peng et al. (2019b)

5 mmu-miR-3965 Lumbar spinal dorsal horn of Balb/c mice with streptozocin-induced diabetic neuropathic pain Il-1β, Tnf-α, Il-13, Il-6, and
Il-10

Gong et al. (2015)
6 mmu-miR-3063-5p
7 mmu-miR-466n-5p
8 mmu-miR-505-5p
9 mmu-miR-196a-2-3p
10 mmu-miR-5710
11 mmu-miR-466a-5p
12 mmu-miR-466b-5p
13 mmu-miR-3473a
14 mmu-miR-3060-5p
15 mmu-miR-466p-5p
16 mmu-miR-187-3p
17 mmu-miR-128-1-5p
18 mmu-miR-3074-2-3p
19 mmu-miR-210-3p
20 mmu-miR-194-1-3p
21 mmu-miR-27a-5p
22 mmu-miR-667-3p
23 mmu-miR-98-5p

24 mmu-miR-28a-5p Exosomes derived from schwann cells of C57L/J mice Dnmt3a, Gap43, Numb, and
Snap25

Jia et al. (2018)
25 mmu-miR-130a-3p

26 mmu-miR-149-5p Dorsal root ganglion of streptozocin-induced diabetic CD1 mice — Cheng et al. (2015)
27 mmu-miR-341-3p

28 mmu-miR-21a-5p Dorsal root ganglion of C57BL/6 and ICR mice with spinal nerve ligation-induced neuropathic pain Tlr8 Zhang et al. (2018c)

29 mmu-miR-125a-5p Chronic constriction injury (Sprague-Dawley rats) of sciatic nerve with microarray analysis performed
using TLDA MicroRNA cards v.3 A and B (contains human and rodent miRNAs)

— Hori et al. (2013)
30 mmu-miR-132-3p
31 mmu-miR-151-3p
32 mmu-miR-191-5p
33 mmu-miR-222-3p
34 mmu-miR-31-5p
35 mmu-miR-434-3p
36 mmu-miR-539-5p
37 mmu-miR-133a-3p
38 mmu-miR-150-5p
39 mmu-miR-212-3p
40 mmu-miR-383-5p
41 mmu-miR-186-5p

42 mmu-miR-122-5p Dorsal root ganglion of C57BL/6 mice — Friedman et al. (2019)

43 mmu-miR-142a-5p Spinal cord and sciatic nerve of C57BL/6 mice with chronic constriction injury-induced neuropathic pain — Wilkerson et al. (2020)

44 mmu-miR-431-5p Dorsal root ganglion of C57BL/6 mice with partial sciatic nerve ligation-induced neuropathic pain — Hori et al. (2016)
45 mmu-miR-511-3p
46 mmu-miR-204-3p
47 mmu-miR-92b-5p
48 mmu-miR-409-3p
49 mmu-miR-154-3p
50 mmu-miR-146b-5p
51 mmu-miR-449a-5p
52 mmu-miR-667-5p
53 mmu-miR-434-3p
54 mmu-miR-5111
55 mmu-miR-700-3p
56 mmu-miR-3473c
57 mmu-miR-361-3p
58 mmu-miR-27b-5p
59 mmu-miR-18a-5p
60 mmu-miR-30c-1-3p
61 mmu-miR-376c-3p
62 mmu-miR-192-5p
63 mmu-miR-380-3p
64 mmu-miR-223-3p
65 mmu-miR-466j
66 mmu-miR-130b-3p

67 mmu-miR-1904 Rat lingual nerve tissue of Sprague-Dawley rats. Using TLDA Rodent miRNA Cards v.3 A and B — Tavares-Ferreira et al.
(2019)68 mmu-miR-1951
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that prevention of CRMP2 SUMOylation signaling pathway in
CRMP2K374A/K374A female mice having neuropathic pain
reversed mechanical allodynia (Gomez et al., 2021) likely
through Numb/CRMP2/Nedd4-2/Eps15 axis. Hu et al. (2019)
observed that mmu-miR-34c was significantly upregulated in
trigeminal ganglion tissue of type 1 diabetic mice.
Upregulation of mmu-miR-34c decreased the expression of
proteins Microtubule-associated protein 1A/1B-light chain 3-II
(LC3-II) and Autophagy Related 4B Cysteine Peptidase (Atg4B),
which affected corneal nerve regeneration in diabetes leading to
diabetic corneal neuropathy. Peng et al. (2019b) studied that
mmu-miR-124-3p was overexpressed in the chemotherapy-
induced peripheral neuropathy (CiPN) mice model. The
increase in mmu-miR-124-3p corresponded with cold
allodynia and degeneration of axon in dorsal root ganglion
and sciatic nerve, which contributed to the development of
CiPN. Zhang et al. (2018C) showed that overexpression of
mmu-miR-21 caused neuropathic pain in mice.
Overexpression of mmu-miR-21 led to overexpression of Toll
Like Receptor 8 (Tlr8). An increase in TLR8 expression mediated
ERK activation, production of inflammatory mediators, and
neuronal hyperexcitability leading to neuropathic pain. Cheng
et al. (2015) identified that mmu-miR-341 was upregulated in
mice with diabetic polyneuropathy. Antagonizing the elevated
levels of mmu-miR-341 improved electrophysiological,
structural, and behavioral abnormalities of sensory neurons
caused due to neuropathy. These findings showed that mmu-
miR-341 caused abnormalities in sensory neurons of mice which
led to diabetic polyneuropathy. Hori et al. (2013) reported that
mmu-miR-125a-5p, -132, -191, -222, -212 and -133a were
upregulated by more than 2 fold. Wilkerson et al. (2020)
found that mmu-miR-142-5p was upregulated (∼20 fold) in
sciatic nerves of CCI mice. Hori et al. (2016) determined
expression profiles of miRNAs in neuropathic pain. mmu-
miR-449a, -18a, -130b, and -223 were upregulated by more
than 2-fold in sciatic nerves of mice.

We summarize upregulated mouse microRNAs in
neuropathic pain in Table 2. An in silico method was used to
construct miRNA-miRNA and miRNA-target networks of
upregulated mouse miRNAs in neuropathic pain as shown in
Figures 2A,B respectively.

Rat microRNAs Upregulated in Neuropathic
Pain
Li et al. (2021a) found that overexpression of rno-miR-142-3p
developed neuropathic pain in chronic constriction injury (CCI)
rat model. Adenylate cyclase 9 (Ac9) and cAMP levels were
significantly reduced in CCI rats. A decrease in Ac9 level led
to an increase in expression of inflammatory factors via reduced
expression of cAMP/AMPK pathway-related proteins, thereby,
leading to the development of neuropathic pain. Sakai and Suzuki
(2013) demonstrated that upregulation of rno-miR-21
contributed to neuropathic pain in rats. An increase in rno-
miR-21 in dorsal root ganglion was responsible for pain
development. In addition, intrathecal Il-1β elevated rno-miR-
21 expression in the dorsal root ganglion, resulting in neuropathic

pain. Sun et al. (2020) suggested that rno-miR-9 was
overexpressed in sciatic nerves of rats with diabetes. Increased
expression of ISL LIM homeobox 1 (Isl1) led to activation of sonic
hedgehog (SHH) signaling pathway. rno-miR-9 contributed to
diabetic peripheral neuropathy through the SHH signaling
pathway by binding to ISL1. Wang et al. (2019) observed that
rno-miR-195 expression was decreased in the infraorbital nerve
CCI rat model. On the contrary, expression of Patched1
decreased notably. mmu-miR-195 aggravated neuropathic pain
by activating the SHH signaling pathway by binding Patched1.
Wei et al. (2020) found that rno-miR-24-3p expression was
increased in CCI rats. rno-miR-24-3p activated Wnt5a/β-
Catenin signaling by decreasing the expression of Lpar3 to
promote neuropathic pain development.

Li et al. (2019b) showed that rno-miR-15a and rno-miR-16
expression was remarkably increased in the CCI rat spinal cord.
Thermal hyperalgesia and mechanical allodynia in CCI rats were
reduced significantly when rno-miR-15a and rno-miR-16 were
downregulated. G Protein-Coupled Receptor Kinase 2 (Grk2) was
found to be a potential target of rno-miR-15a and rno-miR-16.
Inhibition of rno-miR-15a and rno-miR-16 remarkably increased
the expression of Grk2 in CCI rats. Notably, the silencing of Grk2
significantly reversed the effects of rno-miR-15a/16
downregulation. In conclusion, increased expression of rno-
miR-15a and rno-miR-16 downregulated the expression of
Grk2 leading to the development of neuropathic pain. Yan
et al. (2018a) studied that rno-miR-32-5p was upregulated in
spinal microglia of rats after spinal nerve ligation. Dual Specificity
Phosphatase 5 (Dusp5) was found to be a target of rno-miR-32-
5p. rno-miR-32-5p promoted neuropathic pain development by
downregulating the expression of Dusp5. Li and Zhao (2016)
studied that expression of rno-miR-218 was upregulated in rats
after CCI. Suppressor Of Cytokine Signaling 3 (Socs3), a critical
inflammatory mediator, was a direct target of rno-miR-218. rno-
miR-218 downregulated the expression of Socs3, thus, activating
JAK/STAT3 inflammatory signaling which led to the
development of neuropathic pain.

We summarize upregulated rat microRNAs in neuropathic pain
in Table 3. An in silico method was used to construct miRNA-
miRNA and miRNA-target networks of upregulated rat miRNAs in
neuropathic pain as shown in Figures 3A,B respectively.

DOWNREGULATED MICRORNAS IN
NEUROPATHIC PAIN
Human microRNAs Downregulated in
Neuropathic Pain
Liu et al. (2019) found that hsa-miR-101 expression was found to
be decreased in plasma and sural nerve biopsies from patients
with neuropathic pain. Reduction in hsa-miR-101 led to Nuclear
Factor Kappa B (NF-κB) activation which contributed to the
development of neuropathic pain. Von Schack et al. (2011)
studied the expressions of miRNAs using TLDA miRNA panel.
hsa-miR-103, hsa-miR-181b, hsa-miR-137, hsa-miR-23b, hsa-
miR-26b, hsa-miR-148a, hsa-miR-181c, hsa-miR-148b, hsa-miR-
125b, hsa-miR-133a, hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-let-7d,
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FIGURE 2 | Upregulated mouse microRNA networks in neuropathic pain: (A)Mouse microRNA –microRNA network: Mouse miRNA-miRNA interaction network
with 68 nodes and 2,278 edges. The networks were constructed using Cytoscape 3.8.2. (B) Mouse microRNA – gene target network: Architecture of networks of
upregulated miRNAs in mouse implicated in neuropathic pain showing interaction network of functionally enriched miRNAs with their targets with 237 nodes and 287
edges. The networks were constructed using Cytoscape 3.8.2. Using Mienturnet, the miRNA-target interactions were identified by TargetScan and the functionally
enriched miRNAs were generated using the KEGG database.
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TABLE 3 | Upregulated rat microRNAs involved in neuropathic pain.

Sr.
No.

miRNA Biological matrix (cell
line/animal model/patient)

Targets References

1 rno-miR-195-5p Caudal brain stem of Wistar rats with infraorbital nerve chronic
constriction injury-induced neuropathic pain

Patched1 Wang et al. (2019)

2 rno-miR-21-5p Dorsal root ganglion of Sprague-Dawley rats with chronic constriction
injury (CCI)-induced neuropathic pain

— Sakai and Suzuki
(2013)

3 rno-miR-140-5p Dorsal root ganglion of Sprague-Dawley rats with CCI-induced
neuropathic pain

— Li et al. (2013)
4 rno-miR-341
5 rno-miR-3559-5p
6 rno-miR-760-5p
7 rno-miR-200c-3p

8 rno-miR-351-5p Chronic constriction injury (Sprague-Dawley rats) of sciatic nerve — Hori et al. (2013)
9 rno-miR-345-3p
10 rno-miR-339-3p

11 rno-miR-19a-3p Sciatic nerve of Sprague-Dawley rats with CCI-induced neuropathic pain Socs1 Wang et al. (2015)

12 rno-miR-218a-5p Spinal cord and microglial cells of Sprague-Dawley rats with CCI-
induced neuropathic pain

Socs3 Li and Zhao (2016)

13 rno-miR-331-3p Spinal dorsal horn of Sprague-Dawley rats with paclitaxel-induced
neuropathic pain

— Huang et al. (2016)
14 rno-miR-188-5p

15 rno-miR-132-3p Dorsal root ganglion and spinal cord of Holtzman rats with spared nerve
injury-induced neuropathic pain

Glua1, Glua2 Leinders et al. (2016)

16 rno-miR-380-5p Sciatic nerve of Sprague-Dawley rats with CCI-induced neuropathic pain — Ding et al. (2017)
17 rno-miR-205
18 rno-miR-493-3p

19 rno-miR-92a-3p Dorsal root ganglion neurons of Sprague-Dawley rats with spinal nerve
ligation-induced neuropathic pain

Kcna1, Kcna4, Kcnc4, Kcnd3,
Kcnq5, Dpp10, Scn1b

Sakai et al. (2017)
20 rno-miR-17-5p
21 rno-miR-19b-3p
22 rno-miR-20a-5p
23 rno-miR-18a-5p

24 rno-miR-32-5p Spinal microglial cells of Sprague-Dawley rats with spinal nerve ligation-
induced neuropathic pain

Dusp5 Yan et al. (2018a)

25 rno-miR-30c-1-3p Thalamus and anterior cingulate of Sprague-Dawley rats with complete
brachial plexus avulsion-induced neuropathic pain

Camk2b and Prkcg Liu et al. (2017b)
26 rno-miR-106b-3p
27 rno-miR-93-3p
28 rno-miR-873-5p

29 rno-miR-451-5p Dorsal root ganglion of Sprague-Dawley rats with streptozocin-induced
diabetic neuropathy

— Guo et al. (2018)
30 rno-miR-743b-3p
31 rno-miR-881-3p

32 rno-miR-330-3p Dorsal spinal horn of Sprague-Dawley rats with CCI-induced
neuropathic pain

— Peng et al. (2019a)

33 rno-miR-16-5p Lumbar spinal cord of Sprague-Dawley rats with CCI-induced
neuropathic pain

Grk2 Li et al. (2019b)

34 rno-miR-667-3p Rat lingual nerve tissue of Sprague-Dawley rats — Tavares-Ferreira et al.
(2019)

35 rno-miR-1-3p Dorsal spinal cord of Sprague-Dawley rats with CCI-induced
neuropathic pain

— Cao et al. (2019a)
36 rno-miR-376b-5p
37 rno-miR-31a-3p
38 rno-miR-1b

39 rno-miR-448-3p Spinal cord of Sprague-Dawley rats with CCI-induced Sirt1 Chu et al. (2019)

40 rno-miR-34c-5p Sciatic nerve of Sprague-Dawley rats with CCI-induced neuropathic pain Sirt1 Mo et al. (2020)

41 rno-miR-155-3p Schwann cells of Sprague-Dawley rats with streptozocin-induced
diabetic peripheral neuropathy

— Wang et al. (2020a)
42 rno-miR-224-5p
43 rno-miR-99a-3p

44 rno-miR-142-3p Sciatic nerve of Sprague-Dawley rats with CCI-induced neuropathic pain Ac9 Li et al. (2021a)

(Continued on following page)
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hsa-let-7e, hsa-let-7g, hsa-miR-10a, hsa-miR-497, hsa-miR-93,
hsa-miR-10b, hsa-miR-21 and hsa-miR-34a were downregulated
more than 2 fold. Cao et al. (2019b) collected skin samples of
patients suffering from Postherpetic Neuralgia (PHN) to study the
miRNA expression profile. More than 10-fold downregulation of
following miRNAs was observed: hsa-miR-4772-5p, hsa-miR-
2682-5p, hsa-miR-3678-3p, hsa-miR-3678-5p, hsa-miR-5579-3p,
hsa-miR-3664-3p, hsa-miR-4692, hsa-miR-4680-3p, hsa-miR-
3187-3p, and hsa-miR-518e-3p. These miRNAs could be
potential targets for treating PHN.

We summarize downregulated human microRNAs in
neuropathic pain in Table 4. An in silico method was used to
construct miRNA-miRNA and miRNA-target networks of
downregulated human miRNAs in neuropathic pain as shown
in Figures 4A,B respectively.

Mouse microRNAs Downregulated in
Neuropathic Pain
Zhu et al. (2019a) observed that mmu-miR-138 was decreased in
mice after sciatic nerve injury. Decreased levels of mmu-miR-138
activated NF-κB pathway and inflammatory responses during
nerve injury. Nerve injury resulted in neuropathic pain and

subsequent pain hypersensitivity. Using the CCI model of
neuropathic pain, Zhang et al. (2020b) found that mmu-miR-
144 was downregulated after inducing CCI. Proinflammatory
mediators like Il-6, Il-1β and Tnfαwere significantly elevated after
CCI induction. RAS P21 Protein Activator 1 (Rasa1), the target
gene of mmu-miR-144, increased the levels of proinflammatory
mediators after CCI. These results showed successful
establishment of neuropathic pain in CCI-induced mice.
Zhang et al. (2018a) observed that mmu-miR-25 was
decreased in mice with diabetic peripheral neuropathy.
Inhibition of mmu-miR-25 increased the levels of reactive
oxygen species and overexpression of NADPH Oxidase 4
(Nox4). This imbalance was sufficient to aggravate the
Schwann cells damage in sciatic nerves of diabetic mice,
leading to diabetic peripheral neuropathy. Wang et al. (2020b)
reported that a decrease in mmu-miR-27a in the exosomes
derived from Schwann cells led to peripheral neuropathy in
diabetic mice. A decrease in mmu-miR-27a led to the
dysfunction of interaction between the axons and blood vessels
that regulate peripheral nerve function, thus, contributing to
diabetic peripheral neuropathy development. Wu et al. (2019)
observed that expression of mmu-miR-193a was decreased in
diabetic neuropathic pain. Downregulation of mmu-miR-193a

TABLE 3 | (Continued) Upregulated rat microRNAs involved in neuropathic pain.

Sr.
No.

miRNA Biological matrix (cell
line/animal model/patient)

Targets References

45 rno-miR-30d-5p Sciatic nerve of Sprague-Dawley rats with streptozocin-induced diabetic
neuropathy

Isl1 Sun et al. (2020)
46 rno-miR-29a-3p
47 rno-miR-375-3p
48 rno-miR-9a-5p

49 rno-miR-133b-3p Sciatic nerve tissue of Sprague-Dawley rats with streptozocin-induced
diabetic neuropathy

— Chang et al. (2020)

50 rno-miR-103-2-5p Sciatic nerve of Sprague-Dawley rats with streptozocin-induced diabetic
neuropathy

— Li et al. (2020c)
51 rno-miR-138-2-3p
52 rno-miR-148b-5p
53 rno-miR-187-5p
54 rno-miR-196c-5p
55 rno-miR-293-3p
56 rno-miR-295-3p
57 rno-miR-298-5p
58 rno-miR-323-3p
59 rno-miR-328a-5p
60 rno-miR-344b-5p
61 rno-miR-3556a
62 rno-miR-3557-3p
63 rno-miR-3557-5p
64 rno-miR-370-5p
65 rno-miR-487b-5p
66 rno-miR-551b-3p
67 rno-miR-6215
68 rno-miR-664-2-5p
69 rno-miR-665
70 rno-miR-708-3p
71 rno-miR-878

72 rno-miR-24-3p Chronic constriction injury in Sprague-Dawley rats Lpar3 Wei et al. (2020)

73 rno-miR-130a-3p Spinal cord of rats with spinal cord injury-induced neuropathic pain Igf-1 Yao et al. (2021)
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FIGURE 3 | Upregulated rat microRNA networks in neuropathic pain: (A) Rat microRNA – microRNA network: Rat miRNA-miRNA interaction network with 73
nodes and 2,628 edges. The networks were constructed using Cytoscape 3.8.2. (B) Rat microRNA – gene target network: Architecture of networks of upregulated
miRNAs in rat implicated in neuropathic pain showing interaction network of functionally enriched miRNAs with their targets with 205 nodes and 280 edges. The
networks were constructed using Cytoscape 3.8.2. Using Mienturnet, the miRNA-target interactions were identified by TargetScan, and the functionally enriched
miRNAs were generated using the KEGG database.
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increased the activity of inflammatory mediator protein High
Mobility Group Box 1 (Hmgb1) which led to the progression of
diabetic neuropathic pain.

Pan et al. (2018) observed that mmu-miR-23a was decreased in
the pSNL model of neuropathic pain in mice. CXC chemokine
receptor type 4 (Cxcr4) activity was increased and it targeted TXNIP/
NLRP3 inflammasome axis to induce neuropathic pain inmice. Imai
et al. (2011) observed that mmu-miR-200b and mmu-miR-429
expressions were decreased in nucleus accumbens neurons after
sciatic nerve ligation inmice. Since Dnmt3a is a target of mmu-miR-
200b and mmu-miR-429, the expression of DNA methyltransferase
3 alpha (Dnmt3a) was increased in nucleus accumbens. Double-
immunolabeling with antibodies specific to Dnmt3a showed that
increased Dnmt3a proteins were dominantly expressed in
postsynaptic neurons in the nucleus accumbens area under a

neuropathic pain-like state. Xu et al. (2019b) studied that mmu-
miR-34c was downregulated in the CCI model of neuropathic pain.
This led to an increase in inflammatory mediator Nlrp3 expression,
which led to the development of neuropathic pain. Wilkerson et al.
(2020) conducted a study on CNS tissues of a mouse model of
neuropathic pain to elucidate microRNAs expressed in neuropathic
pain. mmu-miR-182-5p, mmu-miR-96-5p and mmu-miR-183-5p
were downregulated in CCI mice with mechanical allodynia. It was
found that this microRNA cluster regulates more than 80% of genes
related to neuropathic pain. Wu et al. (2017) determined that
expression of mmu-miR-106a was decreased in mice with
diabetic peripheral neuropathy. Increased 12/15-LOX expression
induced mechanical allodynia and thermal hyperalgesia in mice. 12/
15-LOX was observed to be a target of mmu-miR-106a. Hence,
downregulation of mmu-miR-106a led to the progression of

TABLE 4 | Downregulated human microRNAs involved in neuropathic pain.

Sr. No. miRNA Biological matrix (cell
line/animal model/patient)

Targets References

1 hsa-miR-4772-5p Skin from 5 patients with postherpetic neuralgia — Cao et al. (2019b)
2 hsa-miR-2682-5p
3 hsa-miR-3678-3p
4 hsa-miR-3678-5p
5 hsa-miR-5579-3p
6 hsa-miR-3664-3p
7 hsa-miR-4692
8 hsa-miR-4680-3p
9 hsa-miR-3187-3p
10 hsa-miR-518e-3p

11 hsa-miR-34a-5p Dorsal root ganglia of Sprague-Dawley rats with spinal nerve
ligation induced neuropathic pain using TLDA Human miRNA Panel

— von Schack et al. (2011)
12 hsa-let-7e-5p
13 hsa-let-7a-5p
14 hsa-miR-21-5p
15 hsa-miR-10b-5p
16 hsa-let-7d-5p
17 hsa-miR-93-5p
18 hsa-miR-497-5p
19 hsa-let-7b-5p
20 hsa-miR-10a-5p
21 hsa-let-7c-5p
22 hsa-let-7g-5p
23 hsa-miR-324-5p
24 hsa-miR-133a
25 hsa-miR-125b-5p
26 hsa-miR-27a-3p
27 hsa-miR-148b-3p
28 hsa-miR-369-5p
29 hsa-miR-181c-5p
30 hsa-miR-100-5p
31 hsa-miR-148a-3p
32 hsa-miR-383
33 hsa-miR-9-5p
34 hsa-miR-26b-5p
35 hsa-miR-190a-5p
36 hsa-miR-23b-3p
37 hsa-miR-137
38 hsa-miR-181b-5p
39 hsa-miR-335-5p
40 hsa-miR-103a-3p
41 hsa-miR-572
42 hsa-miR-338-3p
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FIGURE 4 | Downregulated human microRNA networks in neuropathic pain: (A) Human microRNA – microRNA network: Human miRNA-miRNA interaction
network with 42 nodes and 861 edges. The networks were constructed using Cytoscape 3.8.2. (B)HumanmicroRNA – gene target network: Architecture of networks of
upregulated miRNAs in humans implicated in neuropathic pain showing interaction network of functionally enriched miRNAs with their targets with 380 nodes and 759
edges. The networks were constructed using Cytoscape 3.8.2. Using Mienturnet, the miRNA-target interactions were identified by TargetScan and the functionally
enriched miRNAs were generated using the KEGG database.
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neuropathic pain. Lu et al. (2017) studied miRNA expression profile
using microarray analysis and found that mmu-miR-101a and
mmu-miR-365-3p were downregulated in mice.

We summarize downregulated mouse microRNAs in
neuropathic pain in Table 5. An in silico method was used to
construct miRNA-miRNA and miRNA-target networks of

TABLE 5 | Downregulated mouse microRNAs involved in neuropathic pain.

Sr.
No.

miRNA Biological matrix (cell
line/animal model/patient)

Targets References

1 mmu-miR-200b-3p Nucleus accumbens of C57BL/6J mice with sciatic nerve ligation-induced
neuropathic pain

Dnmt3a Imai et al. (2011)
2 mmu-miR-429-3p

3 mmu-miR-879-5p Spinal dorsal horn of Sprague-Dawley rats with CCI-induced neuropathic pain with
microarray analysis performed using Affymetrix 3.0 GeneChip miRNA Array (contains
human and rodent miRNAs)

— Genda et al. (2013)
4 mmu-miR-129-5p

5 mmu-miR-23b-3p Spinal cord injury-induced neuropathic pain in ICR mice Nox4 Im et al. (2012)

6 mmu-miR-146a-5p Sciatic nerve tissue of BKS.Cg-m+/+Leprdb/J (db/db) mice with diabetic peripheral
neuropathy

Traf6 Liu et al. (2017a)

7 mmu-miR-1981-5p Dorsal root ganglion of C57BL/6 mice with partial sciatic nerve ligation-induced
neuropathic pain

— Hori et al. (2016)
8 mmu-miR-214-5p

9 mmu-miR-668-3p Dorsal root ganglion of Sprague-Dawley rats with spinal nerve ligation-induced
neuropathic pain with analysis performed using OneArray

®
Mouse & Rat miRNA

Microarray v4 chip

Mapk1 and Tead1 Chang et al. (2017)
10 mmu-miR-672-5p

11 mmu-miR-106a-5p Dorsal root ganglion of mice with Streptozocin-induced diabetic peripheral
neuropathy

Alox15 Wu et al. (2017)

12 mmu-miR-449a-5p Spared-nerve injury of dorsal root ganglion of Kunming mice Trpa1, Kcnma1 and
Tpte

Lu et al. (2017)
13 mmu-miR-365-3p
14 mmu-miR-101a-3p
15 mmu-miR-339-5p
16 mmu-miR-185-5p

17 mmu-miR-190a-5p Lumbar spinal dorsal horn of Balb/c mice with Streptozocin-induced diabetic
neuropathic pain

Slc17a6 Yang et al. (2017a)

18 mmu-miR-142a-3p Dorsal root ganglion of ICR mice with spinal nerve ligation-induced neuropathic pain Hmgb1 Zhang et al. (2017)

19 mmu-miR-23a-3p Spinal glial cells of C57BL/6J mice with spinal nerve ligation-induced neuropathic
pain

Cxcr4 Pan et al. (2018)

20 mmu-miR-34a-5p Blood of complete Freund’s adjuvant-induced inflammatory pain model of C57BL/6
mice

Xist Shenoda et al. (2018)

21 mmu-miR-25-3p Schwann cells of Balb/c mice with diabetic neuropathy Nox4 Zhang et al. (2018a)

22 mmu-miR-34c-5p Spinal cord of C57BL/6 mice with chronic constriction injury-induced neuropathic
pain

Nlrp3 Xu et al. (2019b)

23 mmu-miR-381-3p Sciatic nerves of C22 mice with Charcot-Marie tooth disease type 1A Pmp22 Lee et al. (2019)

24 mmu-miR-1957a Rat lingual nerve tissue of Sprague-Dawley rats using TLDA Rodent miRNA Cards
v.3 A and B

— Tavares-Ferreira et al.
(2019)

25 mmu-miR-193a-3p Lumbar spinal dorsal horn of Balb/c mice with Streptozocin-induced diabetic
neuropathic pain

Hmgb1 Wu et al. (2019)

26 mmu-miR-144-3p Dorsal root ganglion of C57BL/6 mice with chronic constriction injury-induced
neuropathic pain

Rasa1 Zhang et al. (2020b)

27 mmu-miR-138-5p Spinal cord of C57BL/6 mice with sciatic nerve injury-induced neuropathic pain NF-κB Zhu et al. (2019a)

28 mmu-miR-27a-3p Schwann cell exosomes of BKS.Cg-m1/1Leprdb/J (db/db) mice with diabetic
peripheral neuropathy

— Wang et al. (2020b)

29 mmu-miR-154-5p Dorsal root ganglion of C57BL/6 mice with spinal nerve ligation-induced neuropathic
pain

Cxcl13 Chen et al. (2020)

30 mmu-miR-676-3p Spinal cord and sciatic nerve of C57BL/6 mice with chronic constriction injury-
induced neuropathic pain

— Wilkerson et al. (2020)
31 mmu-miR-182-5p
32 mmu-miR-183-5p
33 mmu-miR-96-5p

34 mmu-miR-590-3p Dorsal root ganglion tissue of db/db mice with diabetic peripheral neuropathy Rap1a Wu et al. (2020b)
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FIGURE 5 | Downregulated mouse microRNA networks in neuropathic pain: (A) Mouse microRNA – microRNA network: Mouse miRNA-miRNA interaction
network with 34 nodes and 561 edges. The networks were constructed using Cytoscape 3.8.2. (B)Mouse microRNA – gene target network: Architecture of networks of
upregulated miRNAs in mouse implicated in neuropathic pain showing interaction network of functionally enriched miRNAs with their targets with 275 nodes and 413
edges. The networks were constructed using Cytoscape 3.8.2. Using Mienturnet, the miRNA-target interactions were identified by TargetScan and the functionally
enriched miRNAs were generated using the KEGG database.
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downregulated mouse miRNAs in neuropathic pain as shown in
Figures 5A,B respectively.

Rat microRNAs Downregulated in
Neuropathic Pain
Zhong et al. (2019) found out that rno-miR-98 was
downregulated in the CCI rat model. The study indicated that
Signal Transducer and Activator of Transcription 3 (Stat3) was
overexpressed, and it was found to be a probable target of rno-
miR-98. Overexpression of Stat3 led to an increase in Il-6, Il-1β,

and Tnfα expression, which contributed to development of
neuropathic pain. Zhang et al. (2019b) observed that rno-miR-
124-3p was remarkably downregulated in rats after CCI. The
expression of Il-6, Il-1β, and Tnfα proteins increased greatly after
CCI, which contributed to neuroinflammation. Downregulation
of rno-miR-124-3p led to an increase in expression of Enhancer
of zeste homolog 2 (Ezh2), a direct target of rno-miR-124-3p.
Overexpression of Ezh2 and other inflammatory mediators led to
the development of neuropathic pain. Li et al. (2020b) studied the
effect of rno-miR-22-3p downregulation on the development of
neuropathic pain. Downregulation of rno-miR-22-3p promoted

FIGURE 6 | Downregulated rat microRNA networks in neuropathic pain: (A) Rat microRNA –microRNA network: Rat miRNA-miRNA interaction network with 140
nodes and 9,730 edges. The networks were constructed using Cytoscape 3.8.2. (B) Rat microRNA – gene target network: Architecture of networks of upregulated
miRNAs in rats implicated in neuropathic pain showing interaction network of functionally enriched miRNAs with their targets with 239 nodes and 330 edges. The
networks were constructed using Cytoscape 3.8.2. Using Mienturnet, the miRNA-target interactions were identified by TargetScan and the functionally enriched
miRNAs were generated using the KEGG database.

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 12 | Article 77801416

Gada et al. miRNA Architecture in Neuropathic Pain

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


the progression of neuropathic pain by regulating inflammation
factors expression by directly targeting Enolase 1 (Eno1). Xie et al.
(2020) found that rno-miR-101 was downregulated in lumbar
spinal dorsal horns after CCI. mTOR (mRNA) was upregulated
after CCI and was found to be a direct target of rno-miR-101.
Activation of the mTOR signaling pathway was responsible for
the onset, progression, andmaintenance of neuropathic pain. Yan
et al. (2017) observed that rno-miR-93 was downregulated in the
spinal cord of CCI rats. Stat3 expression was upregulated. It was
found that Stat3 was a direct target of rno-miR-93.
Overexpression of rno-miR-93 remarkably reduced the
expression of Stat3 in vitro and in vivo. Further,
overexpression of Stat3 markedly reversed the rno-miR-
93 overexpression-induced repressive effects on neuropathic
pain development and neuroinflammation. In conclusion, the
downregulation of rno-miR-93 and upregulation of Stat3 led to
the development of neuropathic pain.

Zhang et al. (2018b) observed a significant decrease of rno-
miR-26a-5p expression in the spinal cord tissues from CCI rats.
Mitogen-Activated Protein Kinase 6 (Mapk6) was upregulated in
CCI rats and was found to be a downstream target of rno-miR-
26a-5p. Mapk6 upregulation led to the progression of
neuropathic pain. Zhang et al. (2020c) found that rno-miR-
128-3p was significantly downregulated in the spinal cord of
CCI rats. Zinc Finger E-Box Binding Homeobox 1 (Zeb1), an
inflammation mediator, was upregulated in CCI rats and was
found to be a target of rno-miR-128-3p. Upregulated Zeb1
contributed to the development of neuropathic pain by
promoting neuroinflammation. Miao et al. (2020) observed
that rno-miR-183 was downregulated in the spinal dorsal horn
of the CCI rat. Hdac2 reduced the expression of rno-miR-183 by
deacetylating histone H4. By upregulating Hdac2 and activating
the TXNIP-NLRP3 inflammasome axis, NF-κB p65 suppressed
rno-miR-183 expression and generated an inflammatory

FIGURE 6 | (Continued).
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TABLE 6 | Downregulated rat microRNAs involved in neuropathic pain.

Sr.
No.

miRNA Biological matrix (cell
line/animal model/patient)

Targets References

1 rno-miR-183-5p Dorsal root ganglion of Sprague-Dawley rats with spinal nerve ligation-induced
neuropathic pain

Tia1 Aldrich et al. (2009)
2 rno-miR-96-5p

3 rno-miR-103-3p Spinal nerve of Wistar rats with spinal nerve ligation-induced neuropathic pain Cacna1c, Cacna2d1 and
Cacnb1

Favereaux et al. (2011)

4 rno-miR-421-5p Spinal dorsal horn of Sprague-Dawley rats with CCI-induced neuropathic pain — Genda et al. (2013)
5 rno-miR-207

6 rno-miR-410-5p Dorsal root ganglion of Sprague-Dawley rats with CCI-induced neuropathic pain — Li et al. (2013)
7 rno-miR-3583-5p
8 rno-miR-146a-3p
9 rno-miR-3597-3p
10 rno-miR-598-3p
11 rno-miR-541-3p
12 rno-let-7a-5p
13 rno-miR-196b-5p
14 rno-miR-872-5p
15 rno-miR-181a-1-3p
16 rno-miR-218a-2-3p
17 rno-miR-3584-3p
18 rno-miR-434-5p
19 rno-miR-485-5p
20 rno-miR-466c-5p
21 rno-miR-425-3p
22 rno-miR-187-3p
23 rno-miR-34b-5p
24 rno-miR-28-5p
25 rno-miR-221-3p
26 rno-miR-448-5p
27 rno-miR-324-3p

28 rno-miR-7a-5p Dorsal root ganglion of Sprague-Dawley rats with spinal nerve ligation-induced
neuropathic pain

Nefl Yang et al. (2019)

29 rno-miR-203a-3p Spinal dorsal horn of Sprague-Dawley rats with bilateral CCI-induced
neuropathic pain

Rap1a Li et al. (2015)

30 rno-miR-141-3p Dorsal root ganglion of Sprague-Dawley rats with CCI-induced neuropathic pain Hmgb1 Zhang et al. (2015)

31 rno-miR-30b-5p Dorsal root ganglion of Sprague-Dawley rats with nerve injury-induced
neuropathic pain

Scn9a Shao et al. (2016)

32 rno-miR-145-5p Dorsal root ganglion of Sprague-Dawley rats with CCI-induced neuropathic pain Akt3 Shi et al. (2018)

33 rno-miR-128-3p Microglial cells of Sprague-Dawley rats with spinal cord injury-induced
neuropathic pain

Cd86, Cd32, Arg1, and
Cd206

Yang et al. (2017b)

34 rno-miR-206-3p Microglial cells of Sprague-Dawley rats with CCI-induced neuropathic pain Zeb2 Chen et al. (2019)

35 rno-miR-93-5p Spinal cord of Sprague-Dawley rats with CCI-induced neuropathic pain Stat3 Yan et al. (2017)

36 rno-miR-494-3p Spinal cord of Sprague-Dawley rats with spinal cord injury-induced neuropathic
pain

Pten Gu et al. (2017)

37 rno-miR-192-5p Sciatic nerve of Sprague-Dawley rats with CCI-induced neuropathic pain — Ding et al. (2017)
38 rno-miR-144-3p
39 rno-miR-327
40 rno-miR-296-3p
41 rno-miR-539-5p
42 rno-miR-505-3p
43 rno-miR-214-3p

44 rno-miR-184 Spared nerve injury-induced neuropathic pain in Sprague-Dawley rats — Zhou et al. (2017)

45 rno-miR-150-5p Microglial cells of Sprague-Dawley rats with CCI-induced neuropathic pain Tlr5 Ji et al. (2018)

46 rno-miR-137-3p Microglial cells of Sprague-Dawley rats with CCI-induced neuropathic pain Tnfaip1 Zhao et al. (2018)

47 rno-miR-200b-3p Spinal cord and microglial cells of Sprague-Dawley rats with CCI-induced
neuropathic pain

Zeb1 Yan et al. (2018b)
48 rno-miR-429

(Continued on following page)
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TABLE 6 | (Continued) Downregulated rat microRNAs involved in neuropathic pain.

Sr.
No.

miRNA Biological matrix (cell
line/animal model/patient)

Targets References

49 rno-miR-544-3p Microglial cells of Sprague-Dawley rats with CCI-induced neuropathic pain Stat3 Jin et al. (2018)

50 rno-miR-455-3p Thalamus and anterior cingulate of Sprague-Dawley rats with complete brachial
plexus avulsion-induced neuropathic pain

Camk2b and Prkcg Liu et al. (2017b)
51 rno-miR-208a-3p
52 rno-miR-32-3p

53 rno-miR-146a-5p Macrophages of Sprague-Dawley rats with streptozocin-induced diabetic
peripheral neuropathy

Traf6 Ren et al. (2021)

54 rno-miR-28-5p Spinal cord of Sprague-Dawley rats with CCI-induced neuropathic pain Zeb1 Bao et al. (2018)

55 rno-miR-26a-5p Spinal cord tissue of Sprague-Dawley rats with CCI-induced neuropathic pain Mapk6 Zhang et al. (2018b)

56 rno-miR-381-3p Dorsal spinal cord of Sprague-Dawley rats with CCI-induced neuropathic pain Hmgb1, Cxcr4 Zhan et al. (2018)

57 rno-miR-134-5p Sciatic nerve of Sprague-Dawley rats with CCI-induced neuropathic pain Twist1 Ji et al. (2019)

58 rno-miR-136-5p Dorsal spinal cord of rats with CCI-induced neuropathic pain Il6r Zhang et al. (2019a)

59 rno-miR-182 Dorsal root ganglion of Sprague-Dawley rats with spared nerve injury-induced
neuropathic pain

Scn9a Cai et al. (2018)

60 rno-miR-202-5p Spinal dorsal horn of Sprague-Dawley rats with bilateral CCI-induced
neuropathic pain

Rap1a Fang et al. (2019)

61 rno-miR-98-5p Dorsal spinal cord of Sprague-Dawley rats with CCI-induced neuropathic pain Stat3 Zhong et al. (2019)

62 rno-miR-146b-5p Sciatic nerve of rats with diabetic peripheral neuropathy — Luo et al. (2019)

63 rno-miR-340-5p Spinal cord tissue and microglial cells of Sprague-Dawley rats with CCI-induced
neuropathic pain

Rap1a Gao et al. (2019)

64 rno-miR-30b-5p Dorsal root ganglion of Sprague-Dawley rats with Oxaliplatin-induced peripheral
neuropathic pain

Scn8a Li et al. (2019a)

65 rno-miR-362-3p Spinal cord of Sprague-Dawley rats with spinal cord injury-induced neuropathic
pain

Pax2 Hu Y et al. (2019)

66 rno-miR-34a-5p Dorsal root ganglion of Sprague-Dawley rats with CCI-induced neuropathic pain Scn2b and Vamp2 Brandenburger et al.
(2019)

67 rno-miR-20b-5p Spinal dorsal horn and isolated microglia of Sprague-Dawley rats with CCI-
induced neuropathic pain

Akt3 You et al. (2019)

68 rno-miR-129-5p Lumbar spinal dorsal horn of Sprague-Dawley rats with bilateral CCI-induced
neuropathic pain

Tian et al. (2020)

69 rno-miR-101a-3p Lumbar spinal dorsal horn of Sprague-Dawley rats with CCI-induced
neuropathic pain

Mtor Xie et al. (2020)

70 rno-miR-1224 Dorsal root ganglion of Sprague-Dawley rats with spinal nerve injury-induced
neuropathic pain

— Dai et al. (2019)
71 rno-miR-488-3p
72 rno-miR-1249

73 rno-miR-212-3p CCI-induced neuropathic pain in rats Scn3a Li et al. (2019c)

74 rno-miR-15a Spinal cord tissue of Sprague-Dawley rats with peripheral nerve injury-induced
neuropathic pain

Akt3 Cai et al. (2020b)

75 rno-miR-154-5p Spinal cord tissue and microglia of Sprague-Dawley rats with CCI-induced
neuropathic pain

Aqp9 Wu et al. (2020a)

76 rno-miR-672-5p Dorsal spinal cord of Sprague-Dawley rats with CCI-induced neuropathic pain — Cao et al. (2019a)
77 rno-miR-542-5p
78 rno-let-7d-5p
79 rno-miR-342-5p
80 rno-miR-675-5p
81 rno-miR-329-5p

82 rno-miR-194-5p Sciatic nerve of Sprague-Dawley rats with CCI-induced neuropathic pain Foxa1 Zhang et al. (2020a)

83 rno-miR-384-5p Spinal cord tissue and dorsal root ganglion of Sprague-Dawley rats with CCI-
induced neuropathic pain

Scn3a Ye et al. (2020)

84 rno-miR-423-5p Dorsal spinal cord of Sprague-Dawley rats with spinal nerve ligation-induced
neuropathic pain

— Pan et al. (2020)

(Continued on following page)
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TABLE 6 | (Continued) Downregulated rat microRNAs involved in neuropathic pain.

Sr.
No.

miRNA Biological matrix (cell
line/animal model/patient)

Targets References

85 rno-miR-547-5p Spinal dorsal horn and dorsal root ganglion of Sprague-Dawley rats with CCI-
induced neuropathic pain

Il33, St2 Zhou et al. (2020)

86 rno-miR-503-5p Schwann cells of Sprague-Dawley rats with streptozocin-induced diabetic
peripheral neuropathy

— Wang et al. (2020a)
87 rno-miR-223-5p
88 rno-miR-483-3p
89 rno-miR-483-5p
90 rno-miR-673-3p

91 rno-miR-125b-5p Sciatic nerve of Sprague-Dawley rats with streptozocin-induced diabetic
neuropathy

— Sun et al. (2020)

92 rno-miR-24-1-5p Prelimbic cortex of Sprague-Dawley rats with spared nerve injury-induced
neuropathic pain

— Cai et al. (2020a)

93 rno-let-7i-3p Sciatic nerve of Sprague-Dawley rats with streptozocin-induced diabetic
neuropathy

— Li et al. (2020c)
94 rno-miR-106b-5p
95 rno-miR-107-3p
96 rno-miR-1188-3p
97 rno-miR-1193-3p
98 rno-miR-140-3p
99 rno-miR-181a-5p
100 rno-miR-181b-2-3p
101 rno-miR-1949
102 rno-miR-211-3p
103 rno-miR-214-5p
104 rno-miR-219b
105 rno-miR-23a-3p
106 rno-miR-24-2-5p
107 rno-miR-25-5p
108 rno-miR-299a-5p
109 rno-miR-3074
110 rno-miR-324-5p
111 rno-miR-325-5p
112 rno-miR-326-5p
113 rno-miR-329-3p
114 rno-miR-335
115 rno-miR-345-5p
116 rno-miR-3551-5p
117 rno-miR-3573-3p
118 rno-miR-3594-3p
119 rno-miR-369-3p
120 rno-miR-379-5p
121 rno-miR-497-5p
122 rno-miR-500-3p
123 rno-miR-500-5p
124 rno-miR-532-5p
125 rno-miR-551b-5p
126 rno-miR-6216
127 rno-miR-674-3p
128 rno-miR-702-3p
129 rno-miR-770-5p
130 rno-miR-7b
131 rno-miR-802-5p

132 rno-miR-22-3p Dorsal spinal cord tissues of Sprague-Dawley rats with CCI-induced neuropathic
pain

Eno1 Li et al. (2020b)

133 rno-miR-216a-5p Dorsal root ganglion of Sprague-Dawley rats with CCI-induced neuropathic pain Kdm3a Wang and Li (2020)

134 rno-miR-124-3p Spinal dorsal horn of Sprague-Dawley rats with CCI-induced neuropathic pain Jag1 Li et al. (2020a)

135 rno-miR-30a-3p Microglial cells of Sprague-Dawley rats with CCI-induced neuropathic pain Ep300 Tan et al. (2020)

136 rno-miR-133a-3p Microglial cells of Sprague-Dawley rats with CCI-induced neuropathic pain Srpk1 Li et al. (2020d)

137 rno-miR-186-5p Spinal cord and astrocytes of rats with spinal cord injury-induced neuropathic
pain

Cxcl13 Zhang et al. (2021b)

(Continued on following page)
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response in rats, worsening neuropathic pain. Zhang et al. (2015)
observed that rno-miR-141 expression wasmarkedly decreased in
CCI rats. Downregulation of rno-miR-141 led to an increase in
the expression of Hmgb1. In CCI rats, Hmgb1 overexpression
exacerbated mechanical allodynia and thermal hyperalgesia, as
well as increased proinflammatory cytokines. This led to the
development of neuropathic pain in rats. Yan et al. (2018b) found
out that rno-miR-200b and rno-miR-429 were notably
downregulated in CCI rat spinal cords. Zeb1 was predicted as
the target of rno-miR-200b and rno-miR-429. Zeb1 expression
was significantly increased in CCI rats, and overexpression of
rno-miR-200b and rno-miR-429 significantly inhibited Zeb1
mRNA expression in rats. Knockdown of Zeb1 reduced
neuropathic pain development. The findings suggested that
rno-miR-200b/rno-miR-429, through targeting Zeb1, could be
an essential regulator of neuropathic pain development. Sakai
et al. (2013) observed that rno-miR-7a expression decreased in
rats with neuropathic pain. β2 subunit of the voltage-gated
sodium channel was found to be a target of rno-miR-7a. β2
subunit protein expression was increased in the dorsal root
ganglion of rats, which led to the development of
neuropathic pain.

We summarize downregulated rat microRNAs in neuropathic
pain in Table 6. An in silico method was used to construct
miRNA-miRNA and miRNA-target networks of downregulated
rat miRNAs in neuropathic pain as shown in Figures 6A,B
respectively.

MICRORNAS AS DIAGNOSTIC AND
PROGNOSTIC MARKERS IN
NEUROPATHIC PAIN
Huang et al. (2017) compared the levels of miRNA in the blood of
postherpetic neuralgia (PHN) and acute herpes zoster (AHZ)
patients. 157 serum miRNAs were differentially expressed in
PHN patients than in AHZ patients. In comparison to AHZ
patients, 17 serum miRNAs from PHN patients were
overexpressed and 139 were underexpressed. According to the
results of qRT-PCR, the levels of miR-892b, miR-127-5p, miR-
107, miR-486-3p, and miR-34c-5p were all considerably greater
in PHN patients than in AHZ patients. These miRNAs can be
used as diagnostic markers to detect the progression of
postherpetic neuralgia. Dayer et al. (2019) evaluated the
expression changes of 184 circulating miRNAs in plasma
samples from individuals with various origins of persistent

pain. Following statistical analysis, 7 circulating miRNAs
were discovered that were differentially expressed depending
on whether the pain was nociceptive or neuropathic. Two
circulating miRNA signatures (hsa-miR-320a and hsa-miR-
98-5p) accurately classified the pain type of 70% of patients
in the validation set. To summarize, circulating miRNAs are
promising biomarkers for identifying and characterizing
chronic pain types, as well as for improving the treatment of
chronic pain. Peng et al. (2019b) explored miR-124, miR-183,
and miR-338 as diagnostic biomarkers in a CiPN mice model.
Among the three miRNAs that were analyzed, only miR-124
was statistically significantly increased. Cold allodynia and
axonal degeneration were caused by high levels of circulating
miR-124 in both the DRG and the sciatic nerve. Hence, plasma
levels of miR-124 may be a good diagnostic biomarker for CiPN.
Chu et al. (2019) investigated the role of miR-448 as a
prognostic biomarker in neuropathic pain. miR-448 was
consistently increased in CCI rats, while miR-448
downregulation reduced thermal hyperalgesia and mechanical
allodynia in CCI rats. In CCI rats, the expression levels of IL1,
IL6, and TNF were substantially higher, but these effects were
reversed after treatment with a miR-448 inhibitor. miR-448
increased neuropathic pain in CCI rats via controlling
neuroinflammation. Hence, upregulated miR-448 could be
used for the prognosis of neuropathic pain.

REGULATORY EFFECTS OF MIRNAS IN
INFLAMMATION- AND
DIABETES-ASSOCIATED NEUROPATHIC
PAIN

Regulatory Effects of miRNAs in
Inflammation-Associated Neuropathic Pain
We discuss herein a few examples of specific miRNAs that play key
regulatory roles in inflammation-associated neuropathic pain.

hsa-miR-101
Liu et al. (2019) studied the expression of miRNAs in plasma
samples of patients with neuropathic pain and reported a
significant downregulation of miR-101. KPNB1, an
important regulator for NF-κB/p65 nuclear importing,
was identified as a direct target of miR-101 in human
embryonic kidney HEK293T cells. Thus, miR-101 inhibits
NF-κB signaling via targeting KPNB1 resulting in

TABLE 6 | (Continued) Downregulated rat microRNAs involved in neuropathic pain.

Sr.
No.

miRNA Biological matrix (cell
line/animal model/patient)

Targets References

138 rno-miR-181b-5p Microglial cells of rats with spinal nerve ligation-induced neuropathic pain — Liu et al. (2021)

139 rno-miR-138-5p Rat lingual nerve tissue of Sprague-Dawley rats — Tavares-Ferreira et al.
(2019)

140 rno-miR-141-5p Dorsal root ganglion of rats with oxaliplatin-induced neuropathic pain Trpa1 Zhang and Chen (2021)
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downregulation of inflammatory cytokines IL-1β and
TNF-α.

mmu-miR-128
Yang et al. (2017b) reported that miR-128 was downregulated in
murine microglial BV2 cells (treated with spinal cord
segment-derived conditioned medium of male Sprague-Dawley
rats following spinal cord injury) and that overexpression of
miR-128 altered the M1/M2 microglial gene expression. M1
phenotypic markers like CD32 and CD86 were significantly
downregulated while M2 phenotypic markers like CD206 and
Arg1 were upregulated. Moreover, inflammatory cytokines like
IL-6, TNFβ and TNFα were markedly suppressed following
upregulation of miR-128. Further, it was reported that
phosphorylated p38 (phospho-p38) was downregulated after
overexpression of miR-128 suggesting a key role for miR-28 in
the pathogenesis of neuropathic pain.

mmu-miR-23a
In pathogen-free adult male C57BL/6J wild-type mice, Pan et al.
(2018) studied the functional regulatory role of miR-23a in pain
and its association with chemokine CXC receptor 4 (CXCR4)
which has been implicated in neuropathic pain. It was observed
that expression of CXCR4 was increased in murine spinal glial
cells induced with neuropathic pain via partial sciatic nerve
ligation (pSNL). miR-23a was observed to bind directly to
CXCR4-3′UTR resulting in downregulation of spinal CXCR4.
Finally, downregulation of miR-23a increased thioredoxin-
interacting protein (TXNIP) which is linked with induction of
NOD-like receptor protein 3 (NLRP3) inflammasome resulting
in elevated pain behavior.

rno-miR-146a-5p
miR-146a-5p plays an important role in downregulation of IL-1
receptor (toll/interleukin-1 receptor; TIR) and toll-like receptor
(TLR4) signaling pathways. TLR4 is activated in neuropathic pain
as a key innate immune receptor (Li et al., 2014). TLR4 activation
leads to production of proinflammatory cytokines like TNF-α and
IL-6 due to nuclear translocation of NF-κB via activation of
TRAF6 and IRAK1 (Allette et al., 2017). In a chronic constriction
injury model using Sprague-Dawley rats, Wang et al. (2018)
demonstrated that NF-κB-dependent miR-146a-5p suppressed
IRAK1/TRAF6 which plays a major role in TIR signaling
pathway. Further, miR-146a-5p alleviated neuropathic pain by
suppressing IRAK1 and TRAF6 via inhibition of TLR4/NF-κB
signaling pathway.

rno-miR-34c-5p
miR-34c-5p was found to be involved in neuropathic pain via
SIRT1 and STAT3 signaling pathway. In a chronic constriction
injury model using male Sprague-Dawley rats, it was reported
(Mo et al., 2020) that SIRT1 is suppressed by miR-34c-5p
resulting in activation of STAT3 signaling pathway. This
promoted the release of inflammatory factors like TNF-α, IL-6
and IL-1β eventually inducing neuropathic pain.

We summarize in Table 7 the role of different miRNAs in
neuropathic pain-associated inflammation.

Regulatory Effects of miRNAs in
Diabetes-Associated Neuropathic Pain
We discuss herein a few examples of specific miRNAs that play
key regulatory roles in diabetes-associated neuropathic pain.

hsa-miR-199a-3p
In a study conducted by Li et al. (2017b), 2), miR-199a-3p was
reported to be downregulated in plasma samples of diabetic
patients as compared to healthy controls. miR-199a targeted
SERPINE2 by binding to the 3′UTR of SERPINE2 and
promoted coagulation resulting in the development of
diabetic neuropathy. miR-199a-3p was also found to
suppress tissue plasminogen activator (tPA) pathway via
regulation of SERPINE2 expression which lies upstream of
the tPA pathway.

mmu-miR-193a
Wu et al. (2019) reported downregulation of miR-193a to
alleviate neuropathic pain in male Balb/c mice induced with
diabetes by streptozotocin. miR-193a targeted high mobility
group box protein 1 (HMGB1) by binding to the HMGB1 3′-
UTR region. HMGB1 proteins are key proinflammatory
mediators resulting in abnormal inflammation response.
Upregulation of miR-193a showed a downregulation of
inflammatory cytokines like IL-6, IL-1β, and TNF-α in the lumbar
spinal dorsal horn of diabetic mice.

rno-miR-9
miR-9 was reported (Sun et al., 2020) to be highly upregulated in
STZ-induced Sprague-Dawley rats. Insulin gene enhancer binding
protein-1 (ISL1) was identified as a target of miR-9 which bound to
3′UTR of ISL1. ISL1 plays a key role in activation of insulin gene
transcription of pancreatic beta-cells. Further, ISL1 modulated the
sonic hedgehog (SHH) signaling pathway to improve diabetic
peripheral neuropathy. miR-9 inhibited the expression of ISL1 as
well as SHH signaling pathway resulting in development of diabetic
peripheral neuropathy.

Since diabetes plays an important role in the etiopathogenesis
of neuropathic pain, we summarize key microRNA changes in
neuropathic pain in Table 8 including miRNAs of human, mouse
and rat origin. Further, we summarize various signaling pathways
modulated by miRNAs in neuropathic pain in Figure 7 for the
benefit of the reader.

MIRNAS AND EPIGENETIC MECHANISMS
OF NEUROPATHIC PAIN

Epigenetic events such as covalent histone modifications and DNA
methylation regulate gene expression (Liang et al., 2015). Enzymes
involved in these processes are histone acetyltransferase (HAT) and
histone deacetylases (HDACs) for histone modification; and DNA
methyltransferases (DNMTs) and demethylation enzymes
(translocation dioxygenases) for DNA methylation. A study
reported that CpG islands present in promoter region of miR-
129 were hypermethylated by complete Freund’s adjuvant (CFA).
This process of methylation modulated chronic inflammatory pain
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by targeting Ca2+/calmodulin-dependent protein kinase γ
(CaMKIIγ) (Liang et al., 2015) and (Pan et al., 2014). Given the
epigenetic mechanisms involved in neuropathic pain, there is
potential for therapeutic intervention by targeting miRNAs and/
or their targets. The epigenetic alterations mediated by miRNAs
result in either degradation of target mRNAs or translational
repression. Epigenetic mutations are not reversed when they are
persistent for a long period without any intervention, this is termed
as “metabolic memory” of the target cell wherein the epigenetic
alterations occurred (Yamunadevi et al., 2021). Further, Liu et al.
(2020) reported an isoform of DNA methyltransferase (DNMT3a)

that hypermethylates the promoter region of miR-214-3p. This led
to the inhibition of expression of miR-214-3p in rats with spinal
nerve ligation. Zebularine, a DNMT inhibitor, abrogated the
suppression of miR-214-3p expression, resulting in the reduction
of cytosine methylation in the promoter region; therefore, decrease
in colony-stimulating factor-1 (CSF1) was observed as miR-214-3p
negatively regulated expression of CSF1. As CSF1 decreased,
neuropathic pain decreased subsequently. Thus,
neuroinflammation and neuropathic pain were induced by
increased production of CSF1 as miR-214-3p was epigenetically
suppressed by DNMT3a (Liu et al., 2020). Furthermore, Tan et al.

TABLE 7 | Role of different miRNAs in neuropathic pain-associated inflammation.

miRNA Role of different miRNAs in neuropathic pain-associated inflammation References

hsa-miR-103 Neuropathic chronic pain is alleviated by miR-103. Targets voltage-gated calcium channels (Cav2.1 and Cav2.2) Favereaux et al. (2011)

hsa-miR-19b-3p Higher levels observed in neuroinflammation and severe neuropathy. Positive association with pain seen when use of opioid
is adjusted.

Ye et al. (2021)

hsa-miR-21 An anti-inflammatory miRNA that effectively modulates neuroinflammation by targeting Smad7 (TGF-β signaling repressed)
and Spry1 (MAPK signaling boosted)

Gaudet et al. (2018)

hsa-miR-146a miR-146 negatively regulates inflammation and is induced by activation of NFκB. Also, inhibits mRNAs that translate IRAK1
and TRAF6

Gaudet et al. (2018)

mmu-miR-23a Increases chemokine CXC receptor 4 (Cxcr4) activity by targeting TXNIP/NLRP3 inflammasome axis Pan et al. (2018)

mmu-miR-142-3p Targets high mobility group box 1 (Hmgb1) to relieve neuropathic pain Zhang et al. (2017)

rno-miR-146a-5p Suppresses IRAK1/TRAF6 signaling pathway and reduces neuropathic pain Wang et al. (2018)

rno-miR-32-5p Downregulates dual-specificity phosphatase 5 (Dusp5) Yan et al. (2018a)

rno-miR-150 Reduces neuropathic pain by toll-like receptor 5 (TLR5) inhibition Ji et al. (2018)

rno-miR-26a-5p Suppresses neuroinflammation and neuropathic pain. MAPK6 is the direct target and its upregulation reverses effect of
miRNA

Zhang et al. (2018b)

rno-miR-128-3p An inflammation mediator, zinc finger E-box binding homeobox 1 (Zeb1), is the target whose upregulation leads to
neuropathic pain promoting neuroinflammation

Zhang et al. (2020c)

TABLE 8 | microRNA changes in neuropathic pain based on diabetes.

miRNA Biological matrix (cell
line/animal model/patient)

Modulation References

hsa-miR-199a-3p Blood plasma Upregulated Li et al. (2017b)
hsa-miR-499a Peripheral blood Upregulated Ciccacci et al. (2018)
hsa-miR-216a Blood Upregulated Li et al. (2021b)
hsa-miR-377 Blood Upregulated Li et al. (2021b)
hsa-miR-34a Hippocampal postmortem tissue Upregulated Santos-Bezerra et al. (2021)
hsa-miR-34b Hippocampal postmortem tissue Upregulated Santos-Bezerra et al. (2021)
hsa-miR-34c Hippocampal postmortem tissue Upregulated Santos-Bezerra et al. (2021)
hsa-miR-29a Serum Upregulated Sun et al. (2020)
hsa-miR-9 Serum Upregulated Sun et al. (2020)
hsa-miR-23a Peripheral blood mononuclear cells Upregulated Amin et al. (2020)
hsa-miR-23b Peripheral blood mononuclear cells Upregulated Amin et al. (2020)
hsa-miR-23c Peripheral blood mononuclear cells Upregulated Amin et al. (2020)
mmu-miR-210-3p Lumbar spinal dorsal horn Upregulated Gong et al. (2015)
mmu-miR-98-5p Lumbar spinal dorsal horn Upregulated Gong et al. (2015)
mmu-miR-34c Trigeminal ganglion tissue Upregulated Hu J et al. (2019)
mmu-miR-341 Dorsal root ganglion Upregulated Cheng et al. (2015)
rno-miR-9 Sciatic nerves Upregulated Sun et al. (2020)
mmu-miR-27a Schwann cell exosomes Downregulated Wang et al. (2020b)
mmu-miR-193a Lumbar spinal dorsal horn Downregulated Wu et al. (2019)
mmu-miR-106a Dorsal root ganglion Downregulated Wu et al. (2017)
rno-miR-146b-5p Sciatic nerves Downregulated Luo et al. (2019)
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FIGURE 7 | Signaling pathways modulated by miRNAs in neuropathic pain: (A) Activation of TLR4 and downstream IRAK/TRAF6 signaling leads to upregulation of
NFĸB and ZEB1 leading to neuropathic pain. miR-146a-5p inhibits IRAK1 and TRAF6 which are upstream of NFĸB. Further, miR-32-5p inhibits DUSP5 resulting in
suppression of NFkB signaling. miR-128-3p interacts with ZEB1, however, the nature of the interaction remains to be explored; (B) Inducing miR-103 suppresses the
expression of subunits Cav1.2-α1, Cav1.2-α2δ1 and Cav1.2-β1 of Cav1.2-comprising L-type calcium channel thus relieving neuropathic pain; (C) Suppression of
miR-23a results in upregulation of CXCR4 which mediates neuropathic pain via the TXNIP/NLRP3 inflammasome axis; (D) The p38 MAP Kinase pathway is implicated in
neuropathic pain and miR-26a-5p downregulates MKK3/6 upstream of p38, whereas miR-21 inhibits Spry1 leading to RAS inhibition in the MAP Kinase signaling
pathway.
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(2020) studied the role of miR-30a-3p in sciatic nerve CCI Sprague
Dawley rats. rno-miR-30a-3p targeted E-cadherin transcriptional
activator (EP300) which further upregulated brain-derived
neurotrophic factor (BDNF); this resulted in increased
neuropathic pain as EP300 and BDNF both were directly
involved in neuropathic pain (Tan et al., 2020).

Kcna2, a voltage-dependent potassium channelmRNA, is inhibited
by a conserved lncRNA, Kcna2 antisense RNA. This results in the
decreased expression of Kcna2 channel. The decrease in voltage-
dependent potassium channel resulted in alleviation of neuropathic
pain and increase in excitability (Zhao et al., 2013). Further, methyl-
CpG-binding domain protein (MBD1) is an epigenetic repressor that
modulates gene transcription. Using MBD1-deficient (Mbd1−/−) mice
with spinal nerve ligation, it was demonstrated that MBD1 recruited
DNMT into the gene promoters of Kcna2 and Oprm1 gene and
repressed their expression. Hence, regulation of DNMT-controlled
expression of Kcna2 gene in dorsal root ganglion neurons led to
neuropathic pain (Mo et al., 2018). Interestingly, Zhang et al. (2021a)
reported the key role of voltage-gated potassium channels (Kv) in
regulation of neuropathic pain induced by nerve injury. In dorsal root
ganglion and spinal cord of naïve and CCI Sprague Dawley rats,
neuron excitability and Kv currents were examined which showed
that the downregulation of Kv1.2 induced hypersensitivity in naïve
rats. As Kv1.2 was downregulated, the expression of miR-137 was
increased which targeted Kcna2 and regulated it. Hence, by
inhibiting miR-137, the Kv1.2 expression was upregulated
restoring excitability and abnormal currents. As a result, when
voltage-gated potassium channels (Kv1.2) was restored, it
contributed to alleviation of neuropathic pain proving to be a
novel therapeutic target (Zhang J. et al., 2021).

CONCLUSION AND FUTURE
PERSPECTIVES

Complexity, progressive nature, and improper identification of
neuropathic pain make it difficult to manage. Several clinical

studies have been carried out in recent years in order to
alleviate the poor quality of life associated with neuropathic
pain using tricyclic antidepressants, opioid analgesics, physical
and psychological therapies. However, these treatments are
not sufficient for the management of neuropathic pain. Given
the improper diagnosis of neuropathic pain, efforts have been
made to identify miRNAs that can serve as biomarkers of
neuropathic pain. Indeed, several miRNAs are modulated in
the etiopathogenesis of neuropathic pain. It is, hence,
important to study miRNA-miRNA and miRNA-gene target
networks and evaluate the miRNA interactome in the
preventative or therapeutic management of neuropathic
pain. Moreover, it is clear that neuropathic pain is driven by
neuroinflammation and nerve damage. Various miRNAs
regulated in neuroinflammation and nerve damage may be
especially useful as biomarkers for diagnosis and as
therapeutic targets for the management of neuropathic pain.
Taken together, experimental research aimed at deepening our
knowledge of the miRNA interactome will be necessary in the
near future to evaluate these exciting candidate biomarkers in
the management of neuropathic pain.
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