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Abstract: Stress exposure is considered to be the main environmental cause associated with the
development of depression. Due to the limitations of currently available antidepressants, a search for
new pharmacological targets for treatment of depression is required. Recent studies suggest that
adenosine triphosphate (ATP)-mediated signaling through the P2X7 receptor (P2X7R) might play
a prominent role in regulating depression-related pathology, such as synaptic plasticity, neuronal
degeneration, as well as changes in cognitive and behavioral functions. P2X7R is an ATP-gated cation
channel localized in different cell types in the central nervous system (CNS), playing a crucial role
in neuron-glia signaling. P2X7R may modulate the release of several neurotransmitters, including
monoamines, nitric oxide (NO) and glutamate. Moreover, P2X7R stimulation in microglia modulates
the innate immune response by activating the NLR family pyrin domain containing 3 (NLRP3)
inflammasome, consistent with the neuroimmune hypothesis of MDD. Importantly, blockade of
P2X7R leads to antidepressant-like effects in different animal models, which corroborates the findings
that the gene encoding for the P2X7R is located in a susceptibility locus of relevance to depression
in humans. This review will discuss recent findings linked to the P2X7R involvement in stress
and MDD neuropathophysiology, with special emphasis on neurochemical, neuroimmune, and
neuroplastic mechanisms.
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1. Introduction

Stress exposure is considered to be the main environmental cause of mental health disorders,
such as major depressive disorder (MDD) [1–3]. MDD is a chronic condition estimated to affect more
than 350 million people worldwide [4], especially individuals between 25 and 54 years old, i.e., the
most productive age group [5]. Moreover, the World Health Organization (WHO) expects depression
to become the leading cause of disability worldwide in 2030 [6], being associated with an increased
risk of all-cause mortality and a reduced life expectancy [7,8], thus representing a major contributor
to the overall global burden of disease. Importantly, a recent global return on investment analysis
estimated that appropriate treatment of depressive disorders could significantly improve health quality
and decrease the growing economic burden attributed with the disease [9]. Therefore, depression
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has a high social and economic impact, as shown by previous studies [10,11], which highlights the
importance of developing appropriate diagnostic tools and new treatments.

Clinical diagnoses of MDD is based on symptom identification, with no biological marker currently
available. Patients present variable symptomatology, such as weight loss or gain, inability to sleep or
oversleeping, psychomotor agitation or retardation [12], making a proper diagnosis difficult. Moreover,
most antidepressants induce therapeutic effects only after 3 or 4 weeks of continuous treatment [13,14],
while also inducing several side effects [15]. Considering that the antidepressants clinically available so
far primarily affect monoaminergic signaling, especially through inhibition of the reuptake of serotonin
(5-hydroxytryptamine, 5-HT) and noradrenalin (NA), research on alternative molecular targets beyond
monoamines may help to identify biological markers for the disease, as well as pointing to novel
mechanisms for the development of drugs with better therapeutic profiles.

Evidence from recent decades has revealed that the neurobiology of depression is significantly more
complex than initially proposed when the ‘catecholamine hypothesis of depression’ was proposed [16].
Current hypotheses propose that MDD results from the interplay and interaction between genetic and
environmental factors, leading to neuroendocrine imbalance, neurochemical alterations (including
impaired monoaminergic neurotransmission, enhanced glutamate release and neuroimmune response),
as well as decreased neuroplasticity (e.g., synaptogenesis and neurogenesis) [1,17] (Figure 1).
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Figure 1. Interaction between the components involved in the neurobiology of MDD. Vulnerability
factors can lead to development of MDD due to induction of changes in the central nervous system
including the neuroendocrine homeostasis, neurochemical alterations, and neuroplasticity impairment.
The core response to stress is the HPA axis activation resulting in high circulating levels of glucocorticoids.
This endocrine response leads to neuroimmune activation, inhibition of monoaminergic and facilitation
of glutamatergic neurotransmissions. These systems interact, and the overall result is impairment of the
neuroplasticity in cortical and limbic structures. Neuroplasticity alterations include decreased levels of
neurotrophic factors (e.g., BDNF), dendritic atrophy, diminished neurogenesis and synaptogenesis
and glial cells dysfunction. Impaired neuroplasticity further contributes to neurochemical imbalances.
Green arrows indicate stimulation while red arrows represent inhibition. White arrow with green
border means that a stimulating action was blocked. HPA: hypothalamic-pituitary-adrenal; BDNF:
brain-derived neurotrophic factor.

The P2X7 receptor (P2X7R) is an ion channel activated by high concentrations of ATP, which for
example can be observed following stress exposure [18]. The P2X7R has been involved in several
process observed in MDD, such as impaired monoaminergic neurotransmission [19–21], increased
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glutamatergic neurotransmission [22], stimulation of a neuroinflammatory response [23] as well as
reduced neuroplasticity [20,24]. In this scenario, the P2X7R becomes an interesting target for the
understanding of depression neurobiology and treatment. Based on these facts, we herein present a
critical review of the current evidence associating the P2X7R with stress and depression, with the overall
aim to discuss an integrative view of putative underlining neurochemical and molecular mechanisms.

2. Overview of P2 Receptor-Mediated Signaling in the Brain

Purinergic signaling is involved in several psychiatric disorders, including MDD [25–28], and is
mediated by nucleoside and nucleotide actions on P1 (P1R) and P2 (P2R) receptors. P1R are G-protein
coupled receptors activated by adenosine, while P2R can be divided in metabotropic (P2Y receptors,
P2YR) and ionotropic (P2X receptors, P2XR) cation subtypes, which both is sensitive to adenosine
triphosphate (ATP), adenosine diphosphate (ADP), uracil triphosphate (UTP), uracil diphosphate
(UDP) and UDP-glucose [29,30]. The actions of the Purines are efficiently controlled by an extracellular
enzymatic chain collectively called ectonucleotidases [31,32]. Among the purinergic receptors, the
P2X7R has been suggested as a putative target for therapeutic intervention in mood disorders [33]
(Figure 2).
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Figure 2. Purinergic signaling. ATP is synthesized in terminal nerves, glial cells or astrocytes by
mitochondrial oxidative phosphorylation, and released to extracellular space after physiological or
pathological stimulus by vesicular exocytosis, transmembrane channels (pannexin, connexin) or cellular
apoptosis. Extracellular ATP may either interact with P2 receptors or be rapidly metabolized to
adenosine. P2 receptors are divided in P2X (cation ionotropic) and P2Y (metabotropic) receptors.
Adenosine molecules may interact with P1 receptors (metabotropic), they can be reuptaken and
converted back into ATP in cell cytoplasm or they can be metabolized by ADA into inosine. ATP:
adenosine triphosphate; ATPase: adenosine triphosphatase; AK: adenylate kinase; AMPd: adenosine
monophosphate deaminase; ADA: adenosine deaminase.

The P2X7R, formerly known as the P2Z receptor [34], is an ATP-gated cation channel (for a detailed
review, see [18]). ATP is synthesized through oxidative phosphorylation in mitochondria localized in
terminal nerves, glial cells or astrocytes [35], and is found in the cell cytoplasm, stored in vesicles alone
or with other neurotransmitters [36,37]. Release of ATP into the extracellular space occurs rapidly
after physiological or pathological stimulus (hypoxia, hypoglycemia, ischemia, inflammation, cellular
injury or stress) [38] and may be mediated by vesicular exocytosis [39,40], transmembrane channels
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(pannexin, connexin) [41,42], cellular apoptosis [43] or through P2X7R [44,45]. Interestingly, P2X7R
have only low affinity for ATP (>100µM), requiring exceptionally high concentrations in order to be
activated, which can be observed during conditions of 2stress [46].

A recent debate has questioned the expression of P2X7R in neurons [47,48]. Despite being detected
in glial and neuronal cells [49–54], the activity of the P2X7R was not always investigated and used
antibodies lack specificity [49,55–57]. In addition, even few glial cells in the preparation studied could
be responsible for the P2X7R-mediated effects firstly attributed to neurons [58,59]. On the other hand,
the characteristic response following stimulation of this receptor has been demonstrated in cultured
neurons or synaptosomes by electrophysiological recordings, intracellular Ca2+ measurements and
activation of intracellular signaling cascades [50,60–64], which supports the hypothesis of P2X7R
expression in neurons. However, further in-depth studies are required to elucidate whether these
responses are reproducible in vivo.

The P2X7R is widely distributed in different brain regions, found both in neurons and in
glial cells [49,55,65]. P2X7R-mediated effects, which mainly occurs through activation of the
neuroinflammatory response, have been involved in MDD, neurodegenerative diseases, schizophrenia,
epilepsy, neuropathic pain and brain injury [28,66–68]. This receptor also interferes with other
mechanisms associated to stress response and the neurobiology of depression, which are supported by
human and pre-clinical studies that are further described below.

3. Targeting P2X7 Receptor in Stress and Depression

3.1. Human Studies

The human P2X7R gene is located on the chromosomal region 12q24.31, a region related to bipolar
disorder (BD) and depression [69,70]. Lucae et al. (2006) were the first to show the association of the
non-synonymous coding single nucleotide polymorphisms (SNP) rs2230912 in the P2X7R gene with
MDD [71]. The polymorphism causes an amino acid exchange from glutamine to arginine at position
460 (Gln460Arg) at long intracellular C-terminal domain of P2X7R, which have been suggested to affect
both Ca2+ influx, P2RX7dimerization, and other protein—protein interactions having effects upon
P2RX7-mediated signaling [71]. Subsequent studies, however, have shown controversial results on this
polymorphism, and in a case-control study no difference in the presence of SNP rs2230912 between
patients suffering from MDD and controls was shown, although it was found that the severity of
symptoms of depression was directly related to the presence of the polymorphism [72]. As mentioned,
the association between the severity of depressive symptoms and polymorphisms in the P2X7R
gene was also demonstrated in patients diagnosed with BD [73]. Corroborating the primary study
of Lucae and coworkers, it was later found that SNP rs2230912 is associated with mood disorders
and longer episodes of depression [74]. Finally, two independent meta-analysis studies conducted
showed controversial evidence. The first reported no association of rs2230912 polymorphism and
mood disorder (MDD and BD) [75], while the latter one reported a positive association with rs2230912
polymorphism and MDD [76]. However, as discussed in the latter study [76], it is noteworthy that the
included studies differed between the two metaanalyses, with the latter more recent one including
more validated studies. Nevertheless, these results highlight the need for further studies regarding the
presence and participation of this polymorphism in mood disorders.

3.2. Pre-Clinical Studies

Since the studies in humans are scarce and inconclusive, the results obtained in vitro or in
animal models have provided important information regarding the role of P2X7R in stress responses
and depressive disorders. Specifically, regarding the controversy on the association of Gln460Arg
polymorphism in the P2X7R gene with MDD as discussed above, recent data show that mice expressing
human P2X7R, with either normal (hP2X7R-wild type) or altered gene (hP2X7R-Gln460Arg), present
with no behavioral changes or alterations in P2X7R activity [77]. Interestingly, heterozygous mice for
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both variants exhibited attenuated function of P2X7R and impaired sleep, which was also observed
in healthy heterozygous human subjects [77]. Finally, hP2X7R-Gln460Arg mice show increased
vulnerability to chronic social defeat stress. These results indicate that heterozygotic individuals may
be more susceptible to development of depression through interaction between genetic predisposition
and stress exposure [77]. In this context, it is relevant to mention that the effect of stress or antidepressant
treatment on the expression and function of the P2X7R also provides supportive evidence for the
involvement of the P2X7R in the neurobiology of depression and mechanisms underlying clinical
antidepressant effects. Thus, the effect of antidepressants on P2X7R function has been demonstrated
in whole-cell patch-clamp studies, in which paroxetine but neither fluoxetine nor desipramine
administration reduced the inward currents evoked by 3’-O-(4-benzoyl)benzoyl-ATP (BzATP) on
cloned rat P2X7R, which was stably expressed in human embryonic kidney 293 (HEK293) cells [78]. In
another study, antidepressants demonstrated differential effects on human P2X7R-mediated responses,
as paroxetine inhibited while fluoxetine and clomipramine potentiated ATP-induced dye uptake in
HEK-293 cells expressing recombinant human P2X7R [79]. These results suggest that the activity of
the P2X7R can be selectively modulated by different antidepressants drugs, pointing to unknown
mechanisms by which these drugs may exert their therapeutic and/or side effects.

This hypothesis is further supported by evidence from in vivo animal studies. For instance,
exposure of mice to chronic unpredictable mild stress (CUMS) enhanced P2X7R expression in the
hippocampus and medial prefrontal cortex [80], and exposure of mice to chronic restraint stress
(CRS) increased hippocampal P2X7R levels [81]. Moreover, the antidepressant-like effect induced by
clemasine [80] and ketamine [81] were associated with decreased hippocampal P2X7R levels in the in
stressed mice. Similarly, we recently observed that the antidepressant-like effects induced by repeated
treatments with imipramine or desipramine attenuated P2X7R levels in the ventral hippocampus of
rats exposed to a paradigm of inescapable foot shocks [82].

Although the aforementioned evidence indicates that antidepressants may attenuate P2X7R
signaling, there are studies pointing to a more complex scenario. In studies using immunohistochemistry,
no alterations in hippocampal P2X7R levels were detected in animals exposed to chronic unpredictable
stress (CUS) [53]. Moreover, restraint stress was observed to reduce the expression of P2X7R in rats
submitted to three different protocols: (i) acute stress (1 session of restraint stress), (ii) chronic stress (21
sessions of restraint stress, 1 per day) and (iii) chronic stress with recovery (21 sessions of restraint stress,
1 per day followed by 7 days of no stress) [83]. Interestingly, a comparative analysis of normalized
data indicates that the magnitude of the P2X7R reduction was significantly greater during chronic
stress compared to the acute stress group, with a gradual normalization of the expression of P2X7R
in animals that were allowed to recover for 7 days following stress sessions [83]. The divergent data
may be explained by the use of different techniques to identify P2X7R levels (western blotting versus
immunohistochemistry). In this context, it could be relevant to characterize the regional P2X7R levels,
and how the P2X7R levels might vary in the different cell types of the brain, in response to acute and
prolonged stress. Association of the P2X7R levels with stress susceptibility/resilience could reveal
novel important information regarding its involvement in depression neurobiology. Nevertheless, as
summarized in Table 1, there seems to be consistent evidence that hippocampal P2X7R expression is
modulated by stress exposure and antidepressant treatment.
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Table 1. P2X7R modulation by stress and antidepressant treatment.

Stress/Treatment P2X7R Cell Type/Brain Structure Analysis Technique References

paroxetine ↓ BzATP-evoked
inward currents cloned rat P2X7R expressed in

HEK 293 cells
Whole-cell patch-clamp [78]

fluoxetine or
desipramine no change

paroxetine ↓ ATP-induced dye
uptake recombinant human P2X7R

expressed in HEK-293 cells
dye uptake assay [79]

fluoxetine or
clomipramine

↑ ATP-induced dye
uptake

inescapable foot shocks no change ventral hippocampus of
stressed rats

WB [82]
imipramine ↓ expression

CUMS ↑ expression hippocampus of
stressed mice

WB [80]
clemastine ↓ expression

chronic restraint stress ↑ expression
hippocampus of stressed mice WB [81]

ketamine ↓ expression

CUS no change hippocampus of stressed rats IHC [53]

Acute or chronic
restraint stress ↓ expression hippocampus of stressed rats IHC [83]

ATP: adenosine triphosphate; BzATP: 3’-O-(4-benzoyl)benzoyl-ATP; HEK: human embryonic kidney; WB: western
blotting; CUMS: chronic unpredictable mild stress; IHC: immunohistochemistry.

The direct modulation of P2X7R expression and function in the brain by means of genetic or
pharmacological manipulation, respectively, has provided additional evidence that increased P2X7R
signaling might be involved in depressive-related behaviors. Basso and co-workers investigated for
the first time the behavior of P2X7R knockout (KO) mice in two tests predictive for antidepressant
effects, the forced swim test (FST) and the tail suspension test (TST) [84]. These mice present increased
active behaviors in these tests, without changes in spontaneous locomotor activity, which can be
interpreted as less depressive-like phenotype, suggesting an antidepressant-like effect of the genetic
manipulation [84]. Further supporting this suggestion was found in a study with P2X7R KO mice,
which showed improved response to a sub-effective dose of the antidepressant drug imipramine in the
FST [84]. Additional studies further corroborated these initial findings, with observations that P2X7R
KO mice presents reduced immobility time in both the FST [85] and the TST [20,85].

In another study, however, the changed behavioral phenotype of P2X7R KO mice was only
observed when mice were repeatedly exposed to the FST, indicating that absence of P2X7R-mediated
signaling can facilitate behavioral adaptation upon repeated stress exposure, preventing development
of depressive-like behaviors, following a single exposure to the stressful condition [86]. According to
the authors, repeated stress is suggested to be the key in revealing the less depression-like phenotype
of P2X7R KO mice in the FST.

Altogether, data from P2X7R KO mice indicates that absence of the P2X7R results in increased
resilience to stress, and a phenotype showing less depression-like characteristics. Evidence from
pharmacological studies have further corroborated this hypothesis, since treatment with P2X7R
antagonists induce antidepressant-like effects in various animal models. Initial evidence from Csolle
et al. showed that treatment with Brilliant Blue G (BBG), a P2X7R antagonist, attenuated the anhedonia
induced by lipopolysaccharide (LPS) [20] and decreased the immobility time of mice exposed to
TST [85]. Similarly, our research group observed that the treatment with the non-selective P2R
antagonist (pyridoxal-phosphate-6-azophenyl-2’,4’-disulfonic acid, PPADS) or with a preferential P2XR
antagonist (iso-PPADS) decreased the immobility time of mice undergoing FST [87].

In line with these observations, systemic treatment with BBG (50 mg/kg, per day) or fluoxetine
(15 mg/kg, per day) during 7 weeks in mice exposed to CUMS reversed the behavioral alterations
induced by the chronic stress exposure, strongly suggesting an antidepressant-like effect of both
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interventions in the model [88]. In addition, administration of a more selective P2X7R antagonist,
A-804598 (5 mg/kg, twice daily), during 28 days, also reversed anhedonia caused by CUMS [23].

Similar findings were obtained using another animal model of depression, based on selective
breeding, the flinders sensitive line (FSL) rats [89,90], where seven days treatment with A-804598
(30 mg/kg, i.p., per day) induced antidepressant-like effects in the FST [82]. However, in another
study, administration of A-804598 (25 mg/kg) to rats through intubation failed to reverse behavioral
changes caused by foot shocks [91]. The divergent results may be explained by the different doses and
administration routes of A-804598 in each study.

As systemic injections have limited capacity to reveal the role of distinct brain regions, studies
with intracerebral administrations have been carried out. It was found that microinjection with two
P2X7R antagonists, BBG (1 pM) and A-438079 (1.75 nM), into the rat hippocampus, during 3 weeks,
prevented the development of depressive-related behaviors induced by daily exposure to CUMS,
pointing to hippocampus as an important site where the P2X7R might regulate behavioral/emotional
responses to stress [53]. In line with these observations, hippocampal administration of P2R agonists
(ATP 100 nmol/rat or BzATP 10 nmol/rat) for 3 weeks resulted in depressive-like behaviors similar to
those caused by stress exposure [53]. It can therefore be hypothesized that stress may trigger excessive
ATP release, followed by activation of P2X7R signaling in the hippocampus. This may subsequently
impair mechanisms involved in behavioral adaptation to chronic aversive situations, and facilitate the
development of depressive-like behaviors. While this points to the importance of the hippocampus,
the involvement of other brain regions remains to be explored.

Altogether, both pharmacological and genetic evidence strongly suggest that P2X7R stimulation
during stress increase the vulnerability and subsequent development of behavioral adversities
associated with the neurobiology of depression (Table 2).
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Table 2. Effect of P2X7R inhibition in animal models of depression.

P2X7R Modulation Specie Model Effect Mechanism Involved References

Genetic deletion mice FST, TST Antidepressant-like IL-1β release absence. [82]

Genetic deletion mice FST
Antidepressant-like effect
after 3 sessions of FST, but
not 1

Decreased activation of hippocampus dentate
gyrus and basolateral amygdala. [84]

Genetic deletion/pharmacological
blockade (BBG) mice FST, TST Antidepressant-like

Increased levels of NA in amygdala; and
attenuated stress-induced ACTH and
corticosterone responses.

[83]

Genetic deletion/pharmacological
blockade (BBG) mice TST and SPT after LPS

challenge Antidepressant-like

Absence of P2RX7-mediated glutamate release,
elevated basal BDNF production, enhanced
neurogenesis and increased 5-HT bioavailability
in the hippocampus.

[19]

Pharmacological blockade
(iso-PPADS) mice FST Antidepressant-like Decreased NOS1 activation and NO synthesis in

prefrontal cortex. [85]

Pharmacological blockade (PPADS) mice FST Antidepressant-like 5-HT and NA availability. [92]

Pharmacological blockade
(A-804598) FRL/FSL rats FST Antidepressant-like Activation of BDNF signaling pathway in ventral

hippocampus. [80]

Pharmacological blockade
(A-804598) rats CUS/restraint stress Antidepressant-like Inhibition of inflammasome activation in the

hippocampus. [22]

Pharmacological blockade
(A-804598) rats Foot shocks No effect

Partially attenuated the increase in IL-1β and
CD14 mRNA in the paraventricular nucleus
induced by stress.

[89]

Pharmacological blockade (BBG) mice TST and SPT after LPS
challenge Antidepressant-like Decreased serum levels of TNF-α in serum after

LPS treatment. [93]

Pharmacological blockade
(combined hippocampal
microinjection of BBG and
A-438079

rats CUS Antidepressant-like
CUS increased ATP and NLRP3 inflammasomal
activation in the hippocampus but the effect of
P2RX7 blockade was not investigated.

[52]

Pharmacological blockade (BBG) mice CUMS Antidepressant-like
Regulation of HPA axis and decrease microglial
activation in cortex, hippocampus and basal
nuclei.

[86]

5-HT: 5-hydroxytryptamine or serotonin; ACTH: adrenocorticotropic hormone; ATP: adenosine tri-phosphate; BBG: brilliant blue G; BDNF: brain-derived neurotrophic factor; CD14:
cluster of differentiation 14; CUMS: chronic unpredictable mild stress; CUS: chronic unpredictable stress; FRL: flinders resistant line; FSL: flinders sensitive line; FST: forced swim test; HPA:
hypothalamic-pituitary-adrenal; IL-1β: interleukin 1β; LPS: lipopolysaccharide; mRNA: messenger ribonucleic acid; NA: noradrenaline; NLRP3: NLR family pyrin domain containing 3;
NO: nitric oxide; nNOS: neuronal nitric oxide synthase; P2X7R: P2X7 receptors; PPADS: pyridoxalphosphate-6-azophenyl-2’,4’-disulfonic acid; SPT: sucrose preference test; TNF-α: tumor
necrosis factor-α; TST: tail suspension test.
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4. Mechanisms Regulated by P2X7 Receptor Signaling with Relevance to Stress and Depression

4.1. Neurochemical Mechanisms

P2X7R is thought to play an important role in modulating the release and uptake of different
neurotransmitters dysregulated in stress and depression, such as 5-HT, NA and glutamate.
Therefore, the P2X7R might have an important role in controlling brain neurochemistry under
stressful circumstances.

Although there is scarce evidence regarding the localization of P2X7R in monoaminergic terminals,
studies conducted with radiolabeled ligands indicate that activation of presynaptic P2R in rat cortical
slices inhibits electrically-stimulated 5-HT release [94]. However, the specific purinergic receptor
subtype involved in this effect was not characterized, due to the lack of selective drugs. However, a
role for P2X7R in regulating 5-HT release has been confirmed in more recent studies with genetic and
pharmacological approaches, where it was reported that median raphe nuclei stimulation decreased
the 5-HT release in the hippocampus of genetically deficient in P2X7R mice, and after perfusion with
selective antagonists (JNJ-47965567 or AZ-10606120) [19]. In another study, however, P2X7R KO mice
presents with increased hippocampal 5-HT levels, increased 5-HT transporter binding sites and 5-HT
uptake, along with behavioral adaptation to stress [20]. As it is well documented that the median
raphe nuclei are activated in response to stress, increased 5-HT release in the hippocampus to promote
stress adaptation is a notable consequence [92,95]. Based on these findings, P2X7R-mediated increase
in 5-HT levels might be an important mechanism involved in behavioral adaptation to stress.

P2XR stimulation also elicits transporter-mediated NA release from rat hippocampal slices [21],
although the physiological relevance of this mechanism is not yet fully understood. In a recent study, it
was shown that the antidepressant-like effect in mice induced by systemic treatment with PPADS (P2R
inhibitor) was blocked by 5-HT or NA depletion, implicating these monoamines in the drug effect [96].
Indeed, co-treatment with sub-effective doses of PPADS and serotonergic (fluoxetine) or noradrenergic
(desipramine) antidepressants had synergistic effects [96]. Based on that, it is plausible to suggest that
P2X7R stimulation could inhibit 5-HT and NA release upon stress exposure and impair behavioral
adaptation. Similarly, blockade of P2X7R-mediated signaling could disinhibit 5-HT and NA release in
limbic brain regions and promote stress coping behaviors. This hypothesis, however, needs further
investigation, and additional studies are required to better elucidate the neural pathways involved in
this response under conditions of acute and repeated stress.

Interestingly, NA may trigger ATP release from glial cells activating P2X7R, subsequently
enhancing the efficacy of glutamatergic neurotransmission, by postsynaptically facilitating
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor insertion [97]. This is
in line with studies showing that genetic deletion of P2X7R in mice inhibits glutamate release
and downregulates AMPA and metabotropic glutamate receptor subunits and upregulates the
NR2B subunit of N-methyl-D-aspartate (NMDA) receptors in the amygdala of P2X7R deficient
mice [20]. Gamma-amino butyric acid (GABA) release modulation by these receptors has also been
documented. Dual labeling immunoreactivity studies in rats indicate that P2X7R may be co-localized
in glutamatergic and GABAergic terminals [98]. Moreover, P2X7R stimulation by ATP analogues
elicited a concentration-dependent GABA efflux from rat hippocampal slices, which was reduced by
treatment with the voltage-dependent sodium (Na+) channel blocker (tetrodotoxin, TTX) or kainate
receptor antagonists (gadolinium or 6-cyano-7-nitroquinoxaline-2,3-dione, CNQX), but not with the
NMDA antagonist (AP-5) or AMPA receptor blocker (GYKI 53655) [51]. P2X7R antagonists (BBG or
PPADS) reduced GABA release elicited by both ATP and electric stimulation [51]. Altogether, these
results suggest that stimulation of the P2X7R in hippocampal nerve terminals induce glutamate release,
which may leads to kainate receptor-mediated GABA efflux from interneurons [51]. In accordance
with these results, glutamate and GABA release induced by both electrical stimulation or P2X7R
activation were absent in hippocampal slices of the P2X7R KO mice [99]. In addition, the amplitude of
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glutamate-evoked currents recorded from neurons of cortical slices, were slightly decreased by both
genetic (KO mice) or pharmacological (JNJ-47965567) inhibition of the P2X7R [100].

Most of the aforementioned effects were attributed to the stimulation of P2X7R expressed in
nerve terminals. However, as these analyses were performed in brain slices, in which glial cells were
also present in the preparation, it cannot be excluded that P2X7R activation in glial cells also could
have elicited the observed responses [101]. Another issue is that exogenously applied P2R agonists
may be hydrolyzed to adenosine [102], which is known to induce glutamate release [103–105]. The
effects mediated by P2X7R in glial cells and adenosine can be avoided in studies in pure neuronal cell
cultures [106] and synaptosomes [107–109], which confirms that stimulation of P2X7R expressed in
nerve terminals favors glutamate and GABA release. However, participation of P2X7R localized in
glial-cells on the net effect on glutamate release has also been indicated by radiolabeled studies in
murine cortical astrocyte cultures [110] and whole-cell patch-clamp analysis [111]. P2X7R stimulation
decreased GABA and glutamate uptake by nerve terminals from rat and human cerebral cortex [112,113]
as well as glutamate uptake and glutamine synthetase activity in astrocyte-cultures [114]. Finally,
P2X7R activation reduced expression of glutamate/aspartate sodium-dependent transporter (GLAST),
a mechanism directly involved in the extracellular clearance of glutamate by astrocytes [115].

Further studies are required to clarify the role of P2X7R in the tripartite synapse and detailed
distribution in the central nervous system (CNS). However, regardless of their specific location, P2X7R
stimulation increase the release of glutamate and GABA, as well as decrease the uptake/clearing of these
transmitters. Importantly, increased glutamate levels has been associated with mechanisms involved
in stress and depression, such as neuro-inflammatory process, decreased levels of neurotrophic factors,
diminished neurogenesis, and neuroplasticity impairment [116,117]. These processes are also regulated
by P2X7R.

As increased glutamate levels are observed in the brains of animals exposed to stress [118,119] and
in depressed individuals [120,121], understanding the importance of the regulation of glutamatergic
neurotransmission in stress and depression are crucial. Interestingly, antidepressants are believed to exert
one of the therapeutic effects by modulating the extracellular availability of this neurotransmitter [122–125].
For example, in humans, a single intravenous injection of the NMDA receptor antagonist, ketamine, induce
an antidepressant effect within 4 h lasting up to 7 days [126]. Recently, the intra-nasal administration of
ketamine was approved for treatment resistant-depression [127]. The neurobiological effects underlying
this remarkable effect have not been clarified in detail, but are likely to involve multiple biological
substrates, pathways and circuits.

Despite the evidence discussed above, it is not yet known to what extent glutamate or GABA
release modulated by P2X7R stimulation contributes to the behavioral responses elicited by stress
exposure. Quantification of glutamate and GABA levels in different brain regions of animals exposed
to stress and treated with P2X7R antagonists is needed in order to clarify this issue. Moreover, the
effects of direct pharmacological modulation of glutamatergic and GABAergic receptors in P2X7R
KO animals, or in animals treated with P2X7R antagonists could also reveal the importance of such
mechanisms in P2X7R-mediated signaling during stress.

Beyond 5-HT, NA, glutamate and GABA, P2X7R stimulation may also modulate nitric oxide
(NO) formation. Our research group observed that systemic administration of PPADS or iso-PPADS
induced antidepressant-like effect in mice associated with decreased NO levels in prefrontal cortex [87].
Besides, a molecular analysis suggest that P2X7R may be coupled to neuronal nitric oxide synthase
(nNOS) in prefrontal cortex [87]. Indeed, a double immunofluorescence study have shown that P2R are
co-localized with nNOS in some brain regions, including the hippocampus [128]. These results indicate
that P2X7R may also modulate stress-induced consequences by facilitating NO release in limbic brain
regions. This is coherent with evidence that inhibition of NO synthesis induces antidepressant-like
effects (for a review, see reference [129]).

Altogether, there are substantial evidence that P2X7R modulates 5-HT, NA, glutamate, GABA
and NO release, which are mechanisms consistently involved in stress and depression [123,129,130].
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However, the precise mechanisms by which P2X7R regulates this neurochemical balance during stress
is not yet known and deserves further investigation.

4.2. Neuroinflammatory Response and Inflammasome Activation

The immune system may present two different responses when challenged by a threat stimulus:
activation of innate or adaptative immunity. The innate immune response consists of the recognition of
pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs)
by pattern-recognition receptors (PRRs), expressed in innate immune and inflammatory cells such as
macrophages, microglia, monocytes, neutrophils and dendritic cells [131]. Among the different types
of PRRs, the newest described is the inflammasome, a high-molecular-weight complex, present in the
cytosol of immune cells [132]. The most studied and best-characterized inflammasome is the NLR
family pyrin domain containing 3 (NLRP3), which belongs to the nucleotide-binding oligomerization
domain (NOD) - like receptors. Structurally, the NLRP3 inflammasome presents a tripartite domain
organization: a C-terminal domain with regulatory functions composed by leucine-rich repeats
(LRR), a nucleotide binding-and-oligomerization domain (NACTH) centrally located that regulate the
self-oligomerization, and an N-terminal pyrin domain (PYD) that recruits an adaptor molecule called
apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC or PYCARD)
(Figure 3A) [133]. The activation and assembly of the inflammasome begin with the release of PAMPs
and DAMPs, causing an opening in NLRP3, which allows the interaction between the PYD domain in
NLRP3 and ASC. Subsequently, the caspase recruitment domain (CARD) of ASC binds to the CARD of
procaspase-1, originating the NLRP3 inflammasome. Formation of this complex elicit the self-cleavage
of procaspase-1, generating the active caspase 1 and inducing the conversion of proinflammatory
cytokines such as interleukin 1 beta (IL-1β) and interleukin 18 (IL-18) in their active forms, that will be
secreted from activated immune cells (Figure 3B) [134,135].

Since the observation that depressed patients have changes in the immune system [136,137],
neuroimmune mechanisms have been seen as a key mechanism to the development of depression,
and the molecular components of neural circuits involved in these processes have been increasingly
investigated. Increased levels of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-18,
tumor necrosis factor-α (TNF-α) and interferon-γ (IFNγ) have been consistently reported in the
blood of depressed patients [138–140] and in brain regions of stressed animals [141–143]. Moreover,
antidepressant treatment seem to attenuate this immunological response [140,143].

In a stressful situation (physical or psychological), the increase in ATP release may be interpreted
as a DAMP signal by the immune system in the CNS, especially by microglial cells [144]. A clinical
report published in 2014 showed that the levels of NLRP3 and caspase-1 were increased in the blood
of untreated depressive patients along with increased serum levels of IL-1β and IL-18 [145]. The
treatment with the tricyclic antidepressant (TCA) amitriptyline was able to reduce the levels of NLRP3,
caspase-1, IL-1β and IL-18, suggesting that, in some way, antidepressants modulate the activation
and/or release of inflammatory components [145]. In agreement with these findings, earlier studies
have demonstrated that both TCA and selective serotonin reuptake inhibitors (SSRIs) normalize the
serum levels of pro-inflammatory cytokines in patients with MDD [146–148] suggesting that the
relationship between stress, depression and inflammation does not occur in a single direction, but that
the three elements of this equation act on each other.

Studies with animal models also provide evidence to the involvement of NLRP3 in the neurobiology
of depression. Mice submitted to 4 weeks of CUMS presents with higher serum levels of IL-1β, along
with enhanced hippocampal NLRP3, caspase-1 and active IL-1β protein levels [149]. As expected,
inhibition of the NLRP3 was able to reduce the serum and hippocampal levels of IL-1β, while
attenuating the depressive-like behaviors induced by stress [149]. A functional inflammasome NLRP3
appears to be necessary for the development of depressive behaviors induced by stress, since genetic
depletion of NLRP3 in mice prevented the stress-induced alterations associated with depression,



Int. J. Mol. Sci. 2019, 20, 2778 12 of 26

like decreased sucrose preference, reduced social interaction ratio and high immobility time in the
FST [150].
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Figure 3. P2X7R-mediated NLPR3 inflammasome activation. (A) NLRP3 is composed by an
N-terminal pyrin domain (PYD), a central nucleotide-binding-and-oligomerization (NATCH) domain,
and a C-terminal leucine-rich repeats (LRR) domain. PYD domain recruits the apoptosis-associated
speck-like protein (ASC) that contains a caspase recruitment domain (CARD). This complex recruits the
procaspase-1. Together, these components constitute the NLRP3 inflammasome. (B) 1. High ATP levels
released from neurons or astrocytes reach P2X7R located in microglia; 2. P2X7R stimulation elicits
K+ efflux, which may trigger NLRP3 inflammasome assembly and activation through NIMA-related
serine/threonine kinase 7 (Nek7) binding; 3. NLRP3 inflammasome mediates the activation of caspase-1;
4. Caspase-1 induces the maturation of interleukins (IL) by cleaving pro-IL-1β and pro-IL-18 in IL-1β
and IL-18, respectively; 5. Finally, the mature form of cytokines are secreted.
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Interestingly, P2X7R is activated only by high concentrations of ATP (EC50 ≥ 100 µmol·L−1),
which occurs after stress exposure [34]. The activated P2X7R allows Ca2+ and Na+ influx as well as
potassium (K+) efflux from cells. Decreased K+ levels in the cytosolic microenvironment may lead
to NLRP3 inflammasome assembly and activation through NIMA-related serine/threonine kinase
7 (Nek7) binding, which culminates in the secretion of inflammatory cytokines, such as IL-1β and
IL-18 [151,152] (Figure 3B).

Another convergent point between purinergic signaling and the NLRP3 inflammasome is that
P2X7R as well as NLRP3 are heavily expressed in microglia [47]. In fact, stimulation of microglia cell
culture with ATP enhance the expression of NLRP3, ASC protein and caspase-1 along with enhanced
secretion of IL-1β and IL-18 in a NLRP3 inflammasome-dependent manner. The same NLRP3
inflammasome components (ASC, caspase-1 and cytokines) were not observed in astrocytes culture
cell, indicating a cell-type specific NLRP3 expression [153]. Additionally, the effects of ATP in microglia
NRLP3 activation were blocked by pre-treatment with potassium chloride (KCl), preventing the efflux
of K+, suggesting requirement of low concentrations of this ion in the intracellular environment for the
activation of NLRP3 inflammasome [153].

Altogether, these data support the notion that increased ATP levels induced by stress exposure
may stimulate P2X7R leading to diminished intracellular K+ concentration, with subsequent NLRP3
inflammasome activation and secretion of pro-inflammatory cytokines [93,154].

This proposal is further substantiated in a study where CUS increased ATP levels and promoted
activation of the hippocampal NLRP3 inflammasomal pathway [53], while P2X7R KO mice showed
a less depression-like phenotype after a challenge with LPS. These findings were associated with
inability to release IL-1β [20,84]. In another study, BBG treatment blocked increase in TNF-α levels
in serum and induced antidepressant-like effect in LPS-treated mice [155]. Furthermore, as already
mentioned, systemic treatment during 7 weeks with BBG (50 mg/kg, per day) or fluoxetine (15 mg/kg,
per day) reversed the behavioral alterations and microglial activation in cortex, hippocampus and
basal nuclei of mice exposed to CUMS [88]. Similarly, acute treatment with A-804598 (10 mg/kg,
i.p.) completely blocked activation of the NLRP3 inflammasome, release of IL-1β and TNF-α in
hippocampus following restraint stress [23]. However, administration of A-804598 (25 mg/kg) in
rats through intubation only partially attenuated the increase in IL-1β and CD14 mRNA in the
paraventricular nucleus, and failed to reverse the behavioral changes induced by stress [91]. However,
the dose or administration route used in this study may have not been sufficient for A-804598 reach the
CNS and induce antidepressant/anti-inflammatory effects.

Interestingly, a recent study reported that the antidepressant-like effect induced by ketamine,
attenuated the LPS-induced depressive-like behavior together with hippocampal over-expression of
IL-1β and NLRP3 [156]. Moreover, selective inhibition of the NLRP3 inflammasome with systemic
treatment using Ac-YVAD-CMK, exhibited anti-inflammatory and antidepressant effects [157,158]
This study raises the possibility that antidepressant effects may be associated with the ability of drugs
to down-regulate activation of the NLRP3 following exposure to chronic stressful situations. This
highlights the P2X7R as an important target in promoting stress adaptation and providing potentially
antidepressant effects through its ability to regulate inflammasome activation.

4.3. Neurogenesis and Neuroplasticity Process

Neural progenitor cells (NPCs) may generate cells of the neural lineage, neurons and glial cells by
differentiation, as well as self-renewal in order to maintain the original pool of parent cells [159,160].
Neurogenesis in the adult brain may therefore takes place at the sites in which the pool of NPCs is
active, called neurogenic niches. In mammals there are two canonical regions, the subventricular zone
(SVZ) and subgranular zone (SGZ) at the dentate gyrus of the hippocampus [159,161]. However, other
regions like neocortex, striatum, amygdala, hypothalamus, substantia nigra, cerebellum and brain
stem may also have sporadic neurogenesis [162]. These regions are important for cognitive functions
like learning and memory, emotion control, anxiety and stress response [163–165].
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The differentiation process is triggered in order to replace dead cells, which for example are
controlling the retrieval of memories. Therefore, quiescent NPCs exit the dormant state, and re-enter
in the cell proliferation cycle. The new-born cells are then determined to neuronal vs glial fate, migrate,
maturate and integrate to the neuronal circuitry [166]. Meanwhile, the new cells gain the archetypical
morphology by extending projections - neurites (neuritogenesis), which further matures to dendrites
and axons [167]. These new extensions will connect to existing neurons, creating new synapses
(synaptogenesis) [168].

Together, neuritogenesis and synaptogenesis are main neuroplasticity processes in the CNS, which
are adaptations to the surrounding environment of the organism. New neurons that are still maturing
possess an intriguing capability to sense information and fine-tune synapses, promoting synaptic
plasticity, leading to increased sensitivity and potentiation upon cognitive demands, environmental
stimuli, and behavioral or sensory experiences [166,169]. In addition, throughout life, the brain acquires
and registers information in order to better adapt to environment, inducing the establishment of new
cognitive blocks, like emotional control [170].

According to the neurogenic hypothesis of depression, impaired adult hippocampal neurogenesis
would be inhibited by stress, and be a causal factor for triggering depressive episodes; while
antidepressant treatments would induce therapeutic effect by restoring normal hippocampal
neurogenesis [171]. There are studies suggesting that decreased neurogenesis is not a major
contributor to the MDD development, but it may be associated to cognitive impairments induced
by stress and observed in patients with depression [172,173]. In line with this prospect, mice lacking
adult hippocampal neurogenesis are not more susceptible to stress [174] or do not present more
depressive-related behavior [175,176]. However, neurogenesis have been reported to be required for
antidepressant response [174,175,177,178], although many of these studies are controversial and lacks
replication. Moreover, the relevance of neurogenesis in adult humans is heavily debated [179,180]

Research on stress-induced consequences and antidepressant effect on neuroplasticity processes
have given rise to the neuroplasticity hypothesis of depression [181–183]. According to that, mood
alterations, cognition, learning and memory impairments induced by stress or depressive conditions
are a result of dysfunctional neuroplasticity, which can be observed as affected neurogenesis and/or
synaptogenesis [184]. In line with this, stress—which also is a crucial environmental factor in the
pathology of depression—diminish the number of dendritic spines and synapses [185], cause dendritic
atrophy [186,187] and leads to reduced glial cells (both in number and size) [188,189] in structures
related to development of depression, such as hippocampus and prefrontal cortex. Furthermore,
studies suggest that restoration of neuroplasticity is fundamental for antidepressant effects [190,191].

Since increased neurogenesis and synaptogenesis could reverse depressive-related behaviors
induced by chronic stress, understanding these processes are crucial in the search and development
for new antidepressant drug targets. As recently reviewed by our group [192], extracellular ATP
plays important roles in neurogenesis through stimulation of purinergic receptors, especially P2X7R.
Importantly, during embryo development, it has been reported that P2X7R expression could be detected
in immature neurons of the SGZ [193] and in brain neural stem cells (NSCs) of SVZ and SGZ [194,195].
Moreover, stimulation of P2X7R induced cell death of NPCs [196], which subsequently during the
development may adjust the number of neurons in the organism [197].

Interestingly, studies indicate that P2X7R expressed in cultured NPCs prepared from the adult
mouse SVZ, can trigger apoptosis through activation of caspase 3, which can be of particular
relevance during pathological conditions, such as stress exposure which is known to increase ATP
release [198]. Therefore, P2X7R stimulation would shift the homeostasis of the NPC pool, leading to
increased cell death or inhibition of neurogenesis, which could contribute to the establishment of the
depressive behavior.

These suggestions are supported by results showing that P2X7R KO mice presents enhanced
neurogenesis [20]. Furthermore, P2X7R KO also shows reduction in the spine synapse number in
DG of hippocampus, associated with improved performance in the learned helplessness model of
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depression [24]. Although the mechanisms by which P2X7R controls neuroplasticity are not yet
entirely understood, there is support for a claim that it might involve regulation of brain-derived
neurotrophic factor (BDNF), a neurotrophin essential for neurogenesis and synaptogenesis in the
developing and adult brain. BDNF has been consistently associated to the therapeutic effect of
antidepressant drugs [199–201]. Intriguingly, administration of BzATP caused a decrease in BDNF
levels, which could be reversed by BBG treatment, suggesting that this response was mediated by
P2X7R [20]. In addition, it was also observed by our group that P2X7R blockade with A-804598,
reverted the depressive-like behavior exhibited by FSL rats, an effect which also was associated with
activation of the BDNF signaling pathway in ventral hippocampus [82].

Although emerging evidence indicates that P2X7R signaling impairs neurogenesis and
synaptogenesis, both processes that are important for antidepressant effects, there is still little evidence
relating the antidepressant effect induced by P2X7R antagonists with altered neuroplasticity events
in the brain, especially for the prefrontal cortex and hippocampus. Specifically, it is not known how
P2X7R stimulation affects BDNF levels and neuroplasticity.

5. Final Remarks

Stress exposure, the main environmental cause of MDD, elicits a massive ATP and glutamate
release from neurons and glial cells with subsequent stimulation of the P2X7R and NMDA receptor
(Figure 4). Stimulation of these receptors leads to: 1. enhanced K+ efflux resulting in NLRP3
inflammasome activation and secretion of inflammatory cytokines (e.g., IL-1β, IL-18, TNF-α) from
astrocytes and microglia; 2. increased Ca2+ influx leading to ATP and glutamate release from nerve
terminals and astrocytes, which is responsible to excitotoxicity; 3. NMDA-mediated nNOS activation
and subsequent NO formation in nerve terminals, also contributing to excitotoxicity process; 4. ROS
production causing neuronal damage. Under condition of stress, high levels of ATP, glutamate
and pro-inflammatory cytokines are maintained by a regenerative circuit, even after stress stimulus
termination, leading to diminished BDNF levels, decreased synapto-/neuro-genesis and damage of
brain circuits important for emotional/mood regulation.

Further investigation is required to better elucidate whether P2X7R modulates the function
of the tri-synaptic networks through its direct action in neurons, or via the indirect stimulation of
these receptors in glial cells. Additionally, characterization of the molecular and neurochemical
mechanisms involved in P2X7R signaling during stress could provide important information regarding
the neurobiology of depression and antidepressant effects.

P2X7R has been proposed to be a potential target for therapeutic intervention in mental
disorders, due to its activity in neuroinflammatory processes, which are significantly involved
in MDD, schizophrenia, epilepsy and neurodegenerative diseases (e.g., multiple sclerosis, Huntington,
Parkinson’s and Alzheimer’s disease) [66–68]. Hence, brain penetrant P2X7R antagonists have been
developed, and testing the clinical effects of these drugs in neuropsychiatric disorders is the next
step [67,68]. The use of P2X7R antagonists as monotherapy or adjunctive with other drugs for treating
mental disorders would benefit patients with high inflammatory disease burden, which may not
respond to current available treatments.

Finally, given the high incidence of patients resistant to conventional monoaminergic
antidepressants, targeting P2X7R might represent a promising approach in the search for more
effective antidepressants in the clinical practice, since it re-establishes both neurochemical and
neuroimmunological mechanisms that are compromised in depression.
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astrocytes, which is responsible to excitotoxicity; 3. NMDA-mediated nNOS activation and 
consequent NO formation in nerve terminals, also contributing to excitotoxicity process; 4. ROS 
production causing neuronal damage. Under conditions of stress, high levels of ATP, glutamate and 
pro-inflammatory cytokines are maintained by a regenerative circuit, even after stress stimulus 
termination, which leads to diminished BDNF levels, decreased synapto-/neuro-genesis and damage 
of brain circuits important for emotional/mood regulation. Further investigation is required to better 
elucidate whether P2X7R induce glutamate and ATP release by its direct action in neurons or due the 
indirect activation of these receptors in glial cells. ATP: adenosine triphosphate; Ca2+: calcium; IL-18: 
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