
diagnostics

Article

Neoteric Algorithm Using Cell Population Data (VCS Parameters)
as a Rapid Screening Tool for Haematological Disorders

Angeli Ambayya 1,2,* , Jameela Sathar 1 and Rosline Hassan 2,*

����������
�������

Citation: Ambayya, A.; Sathar, J.;

Hassan, R. Neoteric Algorithm Using

Cell Population Data (VCS

Parameters) as a Rapid Screening

Tool for Haematological Disorders.

Diagnostics 2021, 11, 1652. https://

doi.org/10.3390/diagnostics11091652

Academic Editor: Evangelos Terpos

Received: 2 June 2021

Accepted: 3 September 2021

Published: 9 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Clinical Haematology Referral Laboratory, Haematology Department, Hospital Ampang,
Selangor 68000, Malaysia; jsathar@hotmail.com

2 Department Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan 15200, Malaysia
* Correspondence: angeli_100182@yahoo.com (A.A.); roslin@usm.my (R.H.)

Abstract: Hitherto, there has been no comprehensive study on the usefulness of cell population
data (CPD) parameters as a screening tool in the discrimination of non-neoplastic and neoplastic
haematological disorders. Hence, we aimed to develop an algorithm derived from CPD parameters
to enable robust screening of neoplastic from non-neoplastic samples and subsequently to aid in
differentiating various neoplastic haematological disorders. In this study, the CPD parameters from
245 subtypes of leukaemia and lymphoma were compared against 1103 non-neoplastic cases, and
those CPD parameters that were vigorous discriminants were selected for algorithm development.
We devised a novel algorithm: [(SD-V-NE*MN-UMALS-LY*SD-AL2-MO)/MN-C-NE] to distinguish
neoplastic from non-neoplastic cases. Following that, the single parameter MN-AL2-NE was used as
a discriminant to rule out reactive cases from neoplastic cases. We then assessed CPD parameters that
were useful in delineating leukaemia subtypes as follows: AML (SD-MALS-NE and SD-UMALS-NE),
APL (MN-V-NE and SD-V-MO), ALL (MN-MALS-NE and MN-LMALS-NE) and CLL (SD-C-MO).
Prospective studies were carried out to validate the algorithm and single parameter, MN-AL2-NE.
We propose these CPD parameter-based discriminant strategies to be adopted as an initial screening
and flagging system in the preliminary evaluation of leukocyte morphology.

Keywords: cell population data; algorithm; neoplastic; VCS parameters

1. Introduction

Haematological malignancies typically arises from two major blood cell lineages: lym-
phoid and myeloid cells [1], which can progress into different subtypes of leukaemia,
lymphoma, and multiple myeloma [2]. Haematological malignancies are the fourth
most frequently diagnosed cancer around the world, with an incidence rate of 9% of
all cancers [3]. For decades, the diagnosis of haematological malignancies has relied on
morphologic examinations of the subject’s blood or bone marrow aspirates [4], and by
immunophenotype profiling using flow cytometry techniques [5]. The advent of molec-
ular genetics and genomic technologies, such as polymerase chain reaction (PCR) and
sequencing-based methods, enabled deeper insight into the diagnosis and prognosis of
various haematological malignancies [6]. Due to restricted number of trained personnel, the
lack of sophisticated laboratory diagnostic equipment and the need to refer to the tertiary
hospitals in rural healthcare settings [7], the diagnostic workups are arduous, leading to
delays in initiating patients’ treatment protocols and, in some cases, resulting in untimely
death due to these limitations.

The advent of state-of-the-art full blood count (FBC) analysers that are equipped with
advanced parameters, such as cell population data (CPD) information, provides useful
information for an initial screening and flagging system, enabling timely patient work up
and diagnosis in settings with limited resources. Newer generation FBC analysers, such
as Unicel DxH 800, are equipped to perform complex analysis of haematological cellular
structures with similar working principles to flow cytometry by using laser to distinguish
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the volume (V), conductivity (C), and size (S) of blood cells, also known as the VCS
parameters [8,9]. With similar data presentation to flow cytometry, this newer generation
of FBC analysers generates cell population data (CPD) which details the different clusters
of cell populations, such as leukocytes and erythrocytes. Shown in Figure 1 is the CPD
data comparison between a normal case and an acute lymphoblastic leukaemia (ALL) case.
Although the figure conveys a qualitative comparison, quantitative data can be calculated
by considering the five light scatter angles: Axial Light Loss (ALL) A◦, Low Angle Light
Scatter (LALS) 5.1◦, Lower Median Angle Light Scatter (LMALS) 10◦−20◦, Upper Median
Angle Light Scatter (UMALS) 20◦−42◦, and a fifth scatter channel called MALS, being the
sum of UMALS and LMALS regions [10].
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Figure 1. (a) Volume CPD presentation of a normal case. Blue population represents the lymphocytes
(lymph), magenta population represents the neutrophils (neut), green population represents the
monocyte, orange population represents the eosinophils and yellow population represents the
basophils; (b) CPD (volume parameter) presentation of ALL cases. The area marked with white
arrows on the blue population labelled as “lymphoblasts” shows the clearest distinction between the
two cases, being the lymphoblast population in ALL cases. Supplementary S1 provides descriptions
of the CPD parameters.

Leukaemia and lymphoma are among the major haematological malignancies in
Malaysia, comprising about 4.4% and 5.5% of the total reported cancer cases between 2007
and 2011, respectively [11]. Given the cancer burden, it is of utmost importance for patient
stratification, not only in healthcare facilities in large metropolitan cities but also in rural
primary and secondary healthcare facilities equipped with only basic diagnostic equipment
such as FBC analysers. This present study aims to offer an insight into utilising the CPD
parameters in their singular form or in a simple combined algorithm to delineate neoplastic
from non-neoplastic haematological cases, followed by singular parameters that could
differentiate reactive cases from neoplastic haematological cases and thereafter delineate
these cases by subtype. Ultimately, the knowledge on the usefulness of the algorithm and
singular parameters will be applicable for any clinical diagnostic laboratory in any part of
the world that utilises any FBC analysers with light scatter angle information technology.

2. Materials and Methods
2.1. Collection of Subject’s Data and Cases

Data of 1056 apparently healthy (non-neoplastic) subjects were retrieved from a previ-
ous study to determine haematological reference intervals in Malaysian adults between
September 2011 and February 2019, as described in Ambayya et al. (2014), and were retro-
spectively analysed [12]. Cases diagnosed with renal disease, immune thrombocytopenia,
and thalassaemia were excluded. Additionally, 47 cases which were reactive due to viral
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and/or bacterial infection were included in the non-neoplastic group alongside normal
cases, making a total of 1103 subjects in the non-neoplastic group.

Data of 245 haematological malignancy cases diagnosed between 2015 and 2019
were retrieved for retrospective analysis in the Department of Haematology, Hospital
Ampang, which serves as the national referral centre for Haematology in Malaysia. These
cases consisted of 62 acute myeloid leukaemia (AML), 30 acute promyelocytic leukaemia
(APL), 54 acute lymphoblastic leukaemia (ALL), 47 lymphomas, 28 chronic lymphoblastic
leukaemia (CLL), 12 chronic myeloid leukaemia (CML) and 12 myelodysplastic syndrome
(MDS). Two groups with small sample size (CML and MDS; 12 samples, respectively) were
excluded in order to produce statistically and clinically significant findings.

All cases were diagnosed according to the diagnostic workup of acute leukaemia
guidelines from the World Health Organisation of haematology malignancies diagnosis
(2016), College of American Pathologists and the American Society of Haematology, which
includes morphological review, immunophenotyping using flow cytometry, molecular
and cytogenetic analysis [13,14]. For all disease subsets in the neoplastic group, only
newly diagnosed cases were included. Cases of treated patients who were in the following
categories were excluded: remission, relapsed, refractory.

Ethical approval for this study was obtained from Medical Research Ethics Committee
of the Ministry of Health of Malaysia (Research ID 10-277-5480 and NMRR 17-2708-38327).
All subjects provided written informed consent prior to data collection. Samples were
collected in adherence to International Council for Standardisation in Haematology [15–17].

For the prospective validation cohort, 9 mL of blood samples were collected in three
K2 EDTA tubes for full blood count and smears, flow cytometry immunophenotyping and
molecular analysis. For cytogenetic analysis, 2 ml of bone marrow aspirates in transport
medium were collected. Blood and bone marrow sample analysis was carried out as
described in a previous study [12]. The FBC protocol was carried out on Unicel DxH 800
(Beckman Coulter, Miami, FL, USA) within 6 h of sample collection based on the guidelines
provided by the International Council for Standardisation in Haematology (ICSH) [15].
The SP1000i automated slide maker (Sysmex, Kobe, Japan) was used to perform automated
blood smears and staining for all cases. May–Grunwald–Giemsa staining was performed
on the bone marrow aspirates.

Statistical analyses were carried out using IBM SPSS Statistics version 22 software
(SPSS, Chicago, IL, USA). Distribution of each parameter was tested using Kolmogorov–
Smirnov test of normality. Assessment of significant differences between each of the CPD
parameters was performed using one-way analysis of variance (ANOVA) with a test of
homogeneity of variance. As for the parameters that fulfilled the homogeneity of variance,
Tukey post hoc test was carried out, whereas for the parameters which did not fulfil the
homogeneity of variance, Games–Howell post hoc test was performed. A Welch test was
also performed to confirm parameters which did not meet the homogeneity of variance.
Following comparison between the groups, whereby differences which yield p-values of
<0.05 were considered as a candidate to generate ROC curves for further analysis. Within
this study, significance was defined as having a p-value of <0.05 and AUC of >0.7 in
the ROC curve analysis. Cut-off points of each of the shortlisted parameters were also
determined by considering the parameters’ sensitivity and specificity.

In this study, several strategies were utilised: first, to distinguish haematological
neoplastic from non-neoplastic cases in which five groups (AML, APL, ALL, lymphomas
and CLL) and second, discrimination of reactive cases from the non-neoplastic cases. Two-
tailed t-test was conducted to analyse the significant differences between the values generated
by each leukocyte CPD parameter from both groups. CPD parameters with p-values of less
than 0.05 were then selected for (Receiver Operating Characteristic) ROC analysis.

Based on our previous study on establishment of reference intervals for CPD param-
eters, no clinically significant differences between the age group, gender and ethnicity
were discovered upon performing statistical analysis, so the data was combined for these
factors [18]. We adopted a similar strategy in this study, as the main aim of this study is to
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develop algorithms that are applicable across different haematological malignancies as a
flagging system for the FBC analysers regardless of the age group, gender and ethnicity of
the patients.

For identification of leukaemia subtypes using CPD parameters, two-tailed t-test was
performed upon different leukaemia subtype pairs. The significant differences of the CPD
parameters between the pairs (AML versus APML, AML versus ALL, APML versus ALL
and ALL versus CLL) were evaluated. Only parameters with p < 0.05 were selected for
subsequent ROC analysis.

ROC analysis determines the diagnostic power of each parameter based on the AUC,
sensitivity, and specificity. For this study, parameters with AUC > 0.9 are considered to have
strong utility as a diagnostic tool. Cut-off points were also determined while maintaining
good sensitivity and specificity values (>80%).

2.2. Development and Validation of Novel Algorithm

Novel algorithm was developed by incorporating the CPD parameters with AUC > 0.9
to differentiate neoplastic from non-neoplastic samples in this study. Validation of this
algorithm was carried out in a prospective cohort of 284 cases of various disorders to ensure
the algorithm is robust and is able to delineate neoplastic from non-neoplastic samples in a
routine diagnostic laboratory sample processing. Cases that were included in the validation
cohort consisted of 118 lymphomas, 39 AML, 32 multiple myeloma, 22 MDS, 21 ALL, 4 CLL,
5 CML, 5 PNH, 4 reactive (infection), 4 thalassemia and 29 other conditions (including
anaemia, sarcoma, plasmacytoma, and other non-neoplastic disorders). This was then
followed by the validation of the single CPD parameter (MN-AL2-NE) in a prospective
cohort of 192 samples (154 neoplastic cases and 38 reactive cases) to assess the reliability in
distinguishing neoplastic from the reactive cases. Area under the curve (AUC), sensitivity
(true positive rate), specificity (false positive rate), positive predictive value (ppv) and
negative predictive value (npv) of the novel algorithm were calculated using VassarStats
(http://vassarstats.net/clin1.html) in these two prospective cohorts.

3. Results
3.1. Algorithm Development Using Preliminary Retrospective Chort

A total of 1472 (1103 non-neoplastic; 245 neoplastic) cases were included in this study.
The elaborated breakdown of the cases is listed in Table 1.

Table 1. Distribution of cases included in this study.

Diagnosis Cases (n) Total (n)

Non-neoplastic
1103

Normal 1056

Reactive 47

Neoplastic 245

Acute myeloid leukaemia (AML) 62
Acute promyelocytic leukaemia (APL) 30
Acute lymphoblastic leukaemia (ALL) 54

Lymphoma 47
Chronic lymphocytic leukaemia (CLL) 28

Chronic myeloid leukaemia (CML) 12
Myelodysplastic syndrome (MDS) 12

The ROC analysis (as previously described) revealed four separate leukocyte CPD
parameters with AUC more than 0.9 as follows: neutrophil parameters (SD-V-NE, MN-C-
NE), lymphocyte parameter (MN-UMALS-LY), and monocyte parameter (SD-AL2-MO).

http://vassarstats.net/clin1.html
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These parameters have good diagnostic power in distinguishing neoplastic from non-
neoplastic haematological cases.

Through the combination of four leukocyte parameters, a simple algorithm, [(SD-V-
NE*MN-UMALS-LY*SD-AL2-MO)/MN-C-NE] was formulated to distinguish neoplastic
from non-neoplastic haematological cases, which generated an excellent AUC of 0.989 with
high levels of sensitivity and specificity of 95.83% and 96.26%, respectively, at a cut-off
point of 106.44. The ROC of single parameters and combined algorithm are shown in
Figure 2 below. The ROC data of the parameters and algorithm are listed below in Table 2.
Box and whisker plots depicting this algorithm were generated for the two comparison
groups (neoplastic vs. non-neoplastic) as shown in Figure 3.

Table 2. ROC data of leukocyte CPD parameters used to distinguish neoplastic from non-neoplastic cases.

Parameters AUC 95% CI Cut-Off Sensitivity (%) Specificity (%)

Neoplastic Non-neoplastic
SD-V-NE 0.978 0.967–0.989 >18.95 <18.95 95.14 95.21

MN-C-NE 0.926 0.902–0.950 <148.50 >148.50 83.60 90.30
MN-UMALS-LY 0.907 0.880–0.934 >59.50 <59.50 81.94 84.19

SD-AL2-MO 0.919 0.888–0.951 >16.20 <16.20 86.11 91.48
Algorithm 0.989 0.980–0.998 >106.44 <106.44 95.83 96.26
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The neutrophil parameter, MN-AL2-NE was the only parameter useful in distinguish-
ing reactive from neoplastic cases with an AUC of 0.948 at a cut-off point of 147.5, with
sensitivity of 78.47% and specificity of 80.43% (Figure 4). Box and whisker plots illus-
trating the MN-AL2-NE parameter were generated for the neoplastic group versus the
reactive group (Figure 5) and for all subtypes in neoplastic group versus the reactive group
(Figure 6).
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Figure 6. Box and whisker plot for the MN-AL2-NE parameter depicting subtypes of the neoplastic
group (ALL, AML, APML, CLL, CML, lymphoma, MDS) versus the reactive group. There was an
outlier marked as “*” in the ALL group.

Several CPD parameters with AUC > 0.7 were found useful for the identification
of leukaemia subtypes, in which: AML can be differentiated from the other subtypes of
leukaemia using neutrophil parameters of SD-MALS-NE and SD-UMALS-NE; APL by
neutrophil parameter MN-V-NE and monocyte parameter SD-V-MO; ALL using neutrophil
parameters of MN-MALS-NE and MN-LMALS-NE; and CLL by monocyte parameter
SD-C-MO (Table 3).

Table 3. The ROC data for each leukocyte CPD to distinguish subtypes of leukaemia.

Parameters AUC 95% CI Cut-Off Sensitivity (%) Specificity (%)

AML
SD-MALS-NE 0.715 0.632, 0.798 15.81 71.43 70.10

SD-UMALS-NE 0.730 0.650, 0.811 17.70 71.43 66.36
APL

MN-V-NE 0.723 0.601, 0.844 159.50 67.86 67.18
SD-V-MO 0.776 0.679, 0.872 33.68 78.57 77.86

ALL
MN-MALS-NE 0.710 0.625, 0.796 129.50 68.75 62.61

MN-LMALS-NE 0.713 0.629, 0.797 122.50 68.75 63.48
CLL

SD-C-MO 0.743 0.600, 0.886 11.10 71.43 73.79

A schematic representation of all the algorithms devised in this study is shown in
Figure 7.
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Figure 7. This figure depicts the algorithm devised to firstly, distinguish neoplastic cases from non-
neoplastic cases and secondly, for the exclusion of reactive cases from neoplastic cases and followed
by leukaemia lineage and subtypes identification.

3.2. Algorithm Validation

The first algorithm for neoplastic versus non-neoplastic [(SD-V-NE*MN-UMALS-
LY*SD-AL2-MO)/MN-C-NE] was prospectively evaluated among 284 cases comprising of
neoplastic and non-neoplastic cases as depicted in Table 4. This algorithm generated 98.50%
(95% CI: 0.89, 0.96) sensitivity and 88.89% (95% CI: 0.63, 0.99) specificity in distinguishing
neoplastic from non-neoplastic cases. The positive predictive accuracy to discriminate
these two groups was 99.3% (95% CI: 0.97, 0.99) whereas the negative predictive accuracy
was 80.0% (95% CI: 0.56, 0.93).

Table 4. Validation of algorithm in distinguishing neoplastic from non-neoplastic cases.

Algorithm Prediction Neoplastic Non-Neoplastic Total

[(SD-V-NE*MN-UMALS-
LY*SD-AL2-MO)/MN-C-NE

Positive 262 2 264
Negative 4 16 20

Total 266 18 284

The single CPD parameter MN-AL2-NE was evaluated in a prospective cohort of
192 samples (154 neoplastic cases and 38 reactive cases). The algorithm resulted in 91.6%
(95% CI: 0.86, 0.95) sensitivity and 100% (95% CI: 0.88, 1.00) specificity. The positive
predictive accuracy to discriminate between these two groups was 100% (95% CI: 0.97,
1.00), whereas the negative predictive accuracy was 74.51% (95% CI: 0.60, 0.85).

4. Discussion

In this study we hypothesised that haematological neoplastic cases differ from the
non-neoplastic cases in terms of the morphological structure of the cells, including size and
internal complexity, and that the CPD parameters would be useful in distinguishing these
differences based on the VCS module and five light scatter angle measurements of cells
using Beckman Coulter’s Unicel DxH800. Other studies utilizing similar Beckman Coulter’s
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VCS technology (LH500, LH750 and DxH800) also supported this notion in exhibiting the
utility of CPD parameters in diagnosing a number of haematological disorders [19–24].

A study by Yang et al. (2014) on the classification of acute leukaemia using CPD
parameters resulted in a development of multi-parametric discriminating model that
was able to predict the lineage of 405 newly diagnosed acute leukaemia cases. By using
a 21 CPD parameter model, 40/47 ALL cases with specificity of 94.2% and sensitivity
of 85.1% were identified. For APL, using 13 CPD parameter model, 10/10 cases were
identified with specificity and sensitivity of 100% [22]. Yang’s CPD parameters’ model
for ALL are extensive, comprising parameters of neutrophils, monocytes, eosinophils and
lymphocytes. In contrast, our ALL discriminating model includes only the parameter of
neutrophils. Such a comprehensive model was also presented by APL, in contrast to our
APL discriminating model, which only includes the neutrophil and monocyte parameters.
The differences may arise due to the distinct analysis method used by both studies. For
a more reliable outcome, only CPD parameters with good diagnostic ability (AUC) were
selected through ROC for identification of leukaemia subtypes in our study (Table 3). ROC
analysis is not included in the study performed by Yang and team [22].

Virk and team studied the utility of CPD parameters to distinguish AML from normal
and reactive cases. The authors identified MNV (mean neutrophil volume), MNV-SD
(standard deviation of neutrophil volume), MMS (mean monocyte scatter), and MLS
(mean lymphocyte scatter) as the best parameters to distinguish AML from normal control
(AUC > 0.9). MNV-SD was the most significant parameter, with the highest AUC of 0.972,
with sensitivity and specificity of 94% and 95%, respectively. For AML versus reactive cases,
MNC-SD (standard deviation of neutrophil conductivity), MNS-SD (standard deviation of
neutrophil scatter), MNV-SD, MNV, MMV-SD (standard deviation of monocyte volume),
MMV (monocyte volume) and MMS-SD (standard deviation of monocyte scatter) were
the best parameters to rule out reactive cases from AML cases (AUC > 0.7). In separate
study by Gaspar et al., complete blood count (CBC), volume, conductivity and scatter
parameters of leukocytes were compared between 103 CML cases versus 58 reactive cases
and 100 pregnant women. The study identified MNV (mean neutrophil volume), MNC-SD
(standard deviation of neutrophil conductivity) and MLS (mean lymphocyte scatter) as
the best parameters to distinguish CML from reactive and pregnancy groups (AUC > 0.9;
sensitivity and specificity: 94%).

Both Virk et al. and Gaspar et al. only focused on the comparison of CPD parameters
among specific types of neoplastic cases, i.e: AML and CML [23,24]. In contrast, we
performed a comparison of the CPD parameters among a broad group of neoplastic cases
(Table 1). Virk et al. claimed MNV-SD was the most significant parameter to distinguish
AML from non-neoplastic cases [24]. A similar result was observed in our study across all
neoplastic cases, in which SD-V-NE (standard deviation of neutrophil volume) is the most
significant parameter found to distinguish neoplastic from non-neoplastic cases (AUC:
0.978; sensitivity: 94%; specificity: 95%). The selected parameters to rule out reactive
cases from neoplastic cases in both AML and CML studies were extensive (as previously
described), including several neutrophil and monocyte parameters. Contrary to this, we
identified MN-AL2-NE (neutrophil mean axial light loss) as the sole discriminating factor
for ruling out reactive cases from neoplastic cases.

To the best of our knowledge, this is the first CPD comparison study which includes
large cohort of neoplastic cases that comprise of different types of haematological disorder
(AML, APL, ALL, chronic leukaemia, lymphoma, PNH, MM, MPD and MDS) against
non-neoplastic cases (Figure 6). The detailed stepwise screening of leukaemia subtypes
using CPD parameters as portrayed by this study has yet to be reported elsewhere.

A total of 126 CPD parameters were considered as candidates to develop the neoteric
algorithm in this study. The most significant parameters to screen out neoplastic from non-
neoplastic cases were SD-V-NE, MN-C-NE, MN-UMALS-LY, SD-AL2-MO, with SD-V-NE
as the most significant with the highest AUC of 0.978, sensitivity of 94.14% and specificity
of 95.21%. Although the results were significant, we want to improve the outcome by
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devising algorithm equations using all the significant CPD parameters. The equation
was devised for the comparison groups: neoplastic versus non-neoplastic cases. The
results improved; the specificity and sensitivity of the algorithms were higher compared
to the single parameters as shown in Table 2. A similar method was also implemented
by Zhu et al. [25]. The authors incorporated single parameters LV (mean lymphocyte
volume); LV-SD (lymphocyte volume standard deviation); LC (lymphocyte conductivity)
into lymph index LV×LV-SD ÷ LC and achieved 91.67% sensitivity and 97.2% specificity
for diagnosing viral infections [24].

The performance of the algorithm was evaluated in the validation set of 284 samples
comprising a plethora of cases that were processed routinely (118 lymphomas, 39 AML,
32 multiple myeloma, 22 MDS, 21 ALL, 22 other cases (Idiopathic thrombocytopenic pur-
pura, iron deficiency anaemia, anaemia of chronic disease) 6 CML, 5 PNH, 4 CLL, 4 reactive,
4 thalassemia, 3 aplastic anaemia and 3 polycythaemia rubra vera). By using the algorithm
equation [(SD-V-NE*MN-UMALS-LY*SD-AL2-MO)/MN-C-NE], we identified 262 out of
266 neoplastic cases and ruled out 16 out of 20 non-neoplastic cases, with sensitivity of
98.50% and specificity of 88.89%. False negative results in neoplastic samples could be
explained by low percentages of abnormal cells with low WBC counts, ranging between 0.9
to 7.9 × 109 L which probably led to the erroneous exclusion of these neoplastic samples.
However, we could not explain the reason on why two non-neoplastic samples, including
Type II von Willebrand Disease and thalassemia with WBC counts within the normal limit,
were incorrectly assigned as neoplastic after full blood picture smear review. Details of the
four false negative and two false positive cases are summarised in Supplementary.

As it is equally paramount to ensure that the algorithm is robust in distinguishing
neoplastic haematological cases from reactive cells, the single CPD parameter [MN-AL2-
NE] was also assessed in a 192 prospective cohort alongside with the algorithm that we
have developed. With the use of MN-AL2-NE as a single CPD discriminant, 141 neoplastic
cases were successfully delineated from the reactive cases. Although this parameter was
highly specific in differentiating neoplastic cases from the reactive cases, 13 out of 154
of the neoplastic cases were falsely grouped as reactive. This could be explained by the
low percentages of abnormal cells in the neoplastic samples, which had low WBC counts,
ranging between 3.7 to 11.4 × 109 L, which probably led to erroneous exclusion of these
neoplastic samples, as summarised in Supplementary S4.

As for the other CPD parameters that were studied to distinguish subtypes of leukaemia
as reported in Table 3, no prospective validation was carried out as the AUC (<0.9), and
sensitivity, as well as specificity of these parameters, were lower than 80%. In order to
overcome this limitation, these parameters need to be tested in a larger cohort of neoplastic
haematological cases in future, followed by a prospective validation study.

The main aim of this study is to distinguish the neoplastic haematological samples
from the non-neoplastic samples using the CPD parameters in order to expedite the diag-
nostic and clinical management of patients, especially in primary health care facilities prior
to performing more sophisticated and laborious testing in tertiary health care institutes.
This was achieved by the algorithm we have developed, which has excellent sensitivity and
specificity in distinguishing the neoplastic haematological cases from the non-neoplastic
samples. In order to ensure that the reactive cases are not included erroneously as the
neoplastic sample, MN-AL2-NE as the single parameter will be the second-line discrimi-
nant parameter. Our strategy has been proven to be powerful in the prospective cohort
study using both discriminants, as described, with excellent positive predictive accuracy
to distinguish neoplastic from non-neoplastic samples [99.3% (95% CI: 0.97, 0.99)] and
neoplastic cases from the reactive cases (100% (95% CI: 0.97, 1.00)).

The clinical aim of this study is not to replace gold standards of diagnosis of haemato-
logical malignancies [26], but rather to form a flagging system which may alert laboratori-
ans, pathologists, and physicians during the initial screening using full FBC analysers. This
method is applicable for analysers that are equipped with CPD parameters that measures
cell properties at various scatter angles, similar to the VCS technology developed by Beck-
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man Coulter. There are no publications on algorithm development using CPD parameters
on haematological malignancies on other FBC analysers from different manufacturers, so
further investigations are required to evaluate the similarity of these parameters across var-
ious FBC analyser technologies. This will be especially beneficial in primary and secondary
healthcare centres which lack the advanced diagnostic facilities and technical expertise
needed to execute the prompt actions required for the timely making of clinical decisions
and patient management.

5. Conclusions

This study highlighted the utility of leukocyte CPD parameters in distinguishing
neoplastic from non-neoplastic cases and the identification of leukaemia subtypes. The
neoteric algorithm and single CPD parameters explored in this study have shown excellent
correlation with the gold standard of haematological malignancies diagnosis by morpho-
logic and immunophenotypic studies. This novel algorithm was also proven diagnostically
powerful in the preliminary evaluation of leukocyte morphology before the review of
blood smears. The use of CPD parameters as an initial screen and alert for neoplastic
haematological cases will be useful as a timely and rapid alert and flagging system for
the laboratory, especially in settings with limited resources. This is essential in countries
with rural primary health care facilities where the clinical management of patients relies
on limited laboratory equipment in providing diagnostic information such as full blood
count. Hence, these findings are promising in the elucidation of the usefulness of CPD pa-
rameters in the development of rapid and useful FBC-based diagnostic tools for neoplastic
haematological disorders.
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