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Major Depressive Disorder (MDD) is the most prevalent psychiatric disorder, seriously
affecting people’s quality of life. Manually identifying MDD from structural magnetic
resonance imaging (sMRI) images is laborious and time-consuming due to the lack of
clear physiological indicators. With the development of deep learning, many automated
identification methods have been developed, but most of them stay in 2D images,
resulting in poor performance. In addition, the heterogeneity of MDD also results
in slightly different changes reflected in patients’ brain imaging, which constitutes
a barrier to the study of MDD identification based on brain sMRI images. We
propose an automated MDD identification framework in sMRI data (3D FRN-ResNet) to
comprehensively address these challenges, which uses 3D-ResNet to extract features
and reconstruct them based on feature maps. Notably, the 3D FRN-ResNet fully
exploits the interlayer structure information in 3D sMRI data and preserves most of
the spatial details as well as the location information when converting the extracted
features into vectors. Furthermore, our model solves the feature map reconstruction
problem in closed form to produce a straightforward and efficient classifier and
dramatically improves model performance. We evaluate our framework on a private
brain sMRI dataset of MDD patients. Experimental results show that the proposed
model exhibits promising performance and outperforms the typical other methods,
achieving the accuracy, recall, precision, and F1 values of 0.86776, 0.84237, 0.85333,
and 0.84781, respectively.

Keywords: major depressive disorder, deep learning, feature graph reconstruction network, structural magnetic
resonance imaging, automated identification

INTRODUCTION

Major Depressive Disorder (MDD), one of the most common diseases associated with suicidal
behavior, has become increasingly prevalent in recent years and is expected to be the largest
contributor to the world’s disease burden by 2030 (GBD 2017 Disease and Injury Incidence and
Prevalence Collaborators, 2018). People with MDD are at higher risk for obesity, cardiovascular
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disease, stroke, diabetes, cognitive impairment, cancer, and
Alzheimer’s disease. Approximately 8% of men and 15% of
women suffer from depressive disorders during their lifetime,
and nearly 15% of them choose to commit suicide (Gold et al.,
2015). Therefore, it is crucial to diagnose MDD early and provide
timely treatment.

Currently, the clinical diagnosis of MDD is mainly based on
the relevant criteria in the Diagnostic and Statistical Manual
of Mental Disorders (DSM), combined with the patient’s
interview and the subjective judgment of the clinician (Sakai
and Yamada, 2019). The rapid development of medical imaging
technology has provided more possibilities for pathological and
identification studies of psychiatric disorders. Common medical
imaging available includes Computerized Tomography (CT),
Positron Emission Tomography (PET), Magnetic Resonance
Imaging (MRI). Compared with other types of medical
images, brain structural MRI (sMRI) images can describe
changes in brain tissue volume or structure and reflect
changes in neural activity in the brain. Therefore, sMRI is
widely used to detect and treat psychiatric disorders. On the
other hand, Segall et al. (2009) have found that sMRI of
the brain can generate reliable and accurate brain volume
estimates, making it practical to study the classification of
depression based on brain sMRI images. However, due to
the lack of clear physiological indicators, images of MDD
patients cannot visually present abnormalities or lesions.
Therefore, automated MDD identification is urgently needed in
clinical practice.

Under the deep learning method, it is not easy to obtain
many training samples, and the heterogeneity of MDD is
substantial. Furthermore, most current deep learning networks
rarely involve 3D data. How to apply deep learning framework
to the identification task of MDD sMRI data has become a
research hotspot and challenge. So far, many outstanding studies
have been presented, such as Seal et al. (2021) proposed a deep
learning-based convolutional neural network named DeprNet to
classify Electroencephalogram (EEG) data from MDD patients
and normal subjects. Baek and Chung (2020) proposed a
contextual Deep Neural Network (DNN) model using multiple
regression to efficiently detect depression risk in MDD patients.
However, the methods above use only a 2D deep convolutional
neural network, which cannot obtain the image’s shallow and
deep semantic features. It also easily leads to overfitting, which
seriously affects the accuracy and robustness of the system and
requires a considerable computational cost.

Previous methods rarely use sMRI data to identify MDD
automatically and lack of MDD sMRI dataset, motivating us to
start this study. Moreover, the primary purpose of this paper
is to improve the automated identification accuracy of MDD
effectively to help clinicians make a medical diagnosis. Therefore,
we propose and develop an automated MDD sMRI data
identification framework (3D FRN-ResNet), which introduces
the Feature Map Reconstruction Network (FRN) based on the
ResNet model. Its network structure is shown in Figure 1.
Compared with other methods, our novel framework can
preserve the granular information and details of the feature
maps without overfitting the model. The contributions of our

study are: (1) A feature map reconstruction network is proposed.
(2) Building a 3D residual connectivity network to learn more
deep features of sMRI images. (3) Preserving more texture
details in sMRI images of MDD patients. (4) To get better
identification results.

The remainder of this paper is organized as follows. After
reviewing the state-of-the-art in the field of traditional machine
learning-based methods, deep learning-based methods, and
mental illness detection methods in Section “Related Works.”
Then, we explain our approach for solving the problem of
MDD identification with sMRI data in Section “Materials and
Methods.” Then, we describe MDD sMRI dataset and the
evaluation metrics, also the experimental details in Section
“Experiments.” Finally, the results and the discussions are
described in Sections “Results and Discussion,” followed by the
conclusion in Section “Conclusion.”

RELATED WORKS

Traditional Machine Learning
In recent years, machine learning techniques have been
widely used to mine medical images as computer-aided
diagnostic methods. Multivariate pattern analysis (MVPA),
a data-driven machine learning method, has been used
in diagnostic classification studies of mental disorders at
the individual level (Bachmann et al., 2017). Researchers
have classified feature selection algorithms into Filter-style
feature selection algorithms and Wrapper-style feature selection
algorithms based on the different feature evaluation strategies
(Lazli et al., 2019). In the Filter feature selection model, Mwangi
et al. (2012) used the T-test algorithm to implement feature
selection and classification on a multicenter MDD dataset.
Moreover, in the Wrapper model, Guyon et al. (2002) proposed
a support vector machine-based recursive feature elimination
(RFE-SVM) algorithm for gene sequence feature selection. This
algorithm has been widely used in machine learning tasks for
medical image analysis, such as Hidalgo-Muñoz et al. (2014)
used the RFE-SVM algorithm to classify structural image features
of Alzheimer’s disease, which outperformed the T-test feature
selection algorithm.

However, the Filter model usually has low computational
intensity but poor classification accuracy; the Wrapper model
has high classification accuracy but runs slowly, which is
challenging to apply to datasets with many features. Therefore,
researchers combined the advantages of both and proposed
a combined Filter and Wrapper feature selection method
to improve the classification accuracy while reducing the
computational time overhead. Among them, Ding and Fu
(2018) used the feature selection method combining the Filter
model and Wrapper model to conduct experiments on several
different types of datasets. The experimental results showed
that the hybrid algorithm has high computational efficiency
and classification accuracy (Ding and Fu, 2018). However, the
drawback of the above methods is that they usually require
manual feature design and redundant feature removal to extract
useful distinguishable features.
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FIGURE 1 | The overall diagram of our proposed 3D FRN-ResNet framework.

Deep Learning
Deep learning techniques have led to remarkable progress in
machine learning methods and promising results in medical
image classification applications. Chen et al. (2021) proposed a
cyclic Convolutional Neural Network (CNN) framework that can
take full advantage of multi-scale and multi-location contexts
in a single-layer convolution (LeCun et al., 1989). Cyclic CNNs
can be easily plugged into many existing CNN pipelines, such
as the ResNet family (He et al., 2016), resulting in highly
low-cost performance gains (Chen et al., 2021). Liang and
Wang (2022) proposed a novel model which uses involution
and convolution (I-CNet) to improve the accuracy of image
classification tasks by extracting feature representations on the
channel and spatial domains. Wang et al. (2021) proposed
a semi-supervised generative adversarial network (CCS-GAN)
for image classification. It employs a new cluster consistency
loss to constrain its classifier to maintain local discriminative
consistency in each unlabeled image cluster. At the same
time, an enhanced feature matching approach is used to
encourage its generator to generate adversarial images from
low-density regions of the true distribution, thus enhancing
the discriminative ability of the classifier during adversarial
training. The model achieves a competitive performance in semi-
supervised image classification tasks (Wang et al., 2021). For fine-
grained image classification, it has been a challenge to quickly
and efficiently focus on the subtle discriminative details that make
subclasses different from each other. Zhang et al. (2021) proposed

a new multi-scale erasure and confusion method (MSEC) to
address the challenge of fine-grained image classification.

Furthermore, Dai et al. (2021) proposed a model named
TransMed for multimodal medical image classification in terms
of medical image. TransMed combines the advantages of CNN
and transformer to efficiently extract low-level features of images
and establish long-range dependencies between modalities. The
method has great potential to be applied to many medical image
analysis tasks. Karthikeyan et al. (2020) used three pre-trained
models-VGG16 (Simonyan and Zisserman, 2014), VGG19
(Simonyan and Zisserman, 2014), RESNET101 (He et al., 2016),
on a dataset of X-ray images from patients with common bacterial
pneumonia, COVID-19 patients, and healthy individuals to
investigate migration learning methods. The proposed method
obtained the best results (Karthikeyan et al., 2020). Talaat et al.
(2020) proposed an improved hybrid image classification method
that uses CNN for feature extraction and a swarm-based feature
selection algorithm to select relevant features.

Mental Illness Detection
There are numerous mental illness detection algorithms, most
of which are based on improvements to the basic deep
learning framework. Payan and Montana (2015) used sparse
autoencoder and 3D convolutional neural networks based on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets
to build algorithms that could predict patients’ disease status,
outperforming the latest research findings at the time. Similarly,
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Farooq et al. (2017) applied deep convolutional neural networks
such as Goolenet and ResNet on the ADNI dataset to learn
discriminative features, achieving the purpose of classifying
Alzheimer’s disease (AD), mild cognitive impairment (MCI),
advanced mild cognitive impairment (LMCI), and healthy
individuals. Moreover, the prediction accuracy of the proposed
technique was significantly improved compared (Farooq et al.,
2017). Li and Liu (2018) applied the deep dense network
(DenseNet) to the ADNI dataset. The original sMRI images did
not need to be standardized preprocessing and directly extracted
and classified features. The experimental results proved the
effectiveness of the proposed method. Yang et al. (2022) proposed
a spatial similarity-based perceptual learning and fusion deep
polynomial network model to learn further robust information to
detect obsessive-compulsive disorder (OCD); the model achieved
promising performance in the rs-fMRI dataset of OCD patients.
Ulloa et al. (2015) proposed a classification architecture using
synthetic sMRI scans to scale up the sample size efficiently.
A simulator that can capture statistical properties from observed
data using independent component analysis (ICA) and random
variable sampling methods was also designed to generate
synthetic samples. Afterward, the DNN was specially trained
on continuously generated synthetic data, and it significantly
improved the generalization ability in classifying Schizophrenia
patients and healthy individuals (Ulloa et al., 2015). Eslami et al.
(2019) devised a data augmentation strategy to generate the
synthetic dataset required to train the ASD-DiagNet model. The
model consists of an auto-encoder and single-layer perceptron
to improve the quality of extracted features and improve the
detection efficiency of autism spectrum disorder.

Our Work
Although various deep learning frameworks have been proposed
and significant progress has been made in the classification of
brain tumor images. There are still challenges, such as insufficient
sample size for training (Wertheimer et al., 2021), overfitting
or underfitting due to the increased dimensionality of images
(from 2D to 3D), and excessive consumption of computational
resources (Pathak et al., 2019). In addition, the use of deep
learning feature representation has weakened the interpretability
of the features and is not conducive to the pathological analysis
and understanding of the learned features (Zadeh Shirazi et al.,
2020). These challenges limit the application of deep learning in
medical images, so more innovative deep learning models are
needed to achieve better results in medical images.

We propose a 3D FRN-ResNet framework for MDD sMRI
images identification, which uses 3D-ResNet as the base
framework. The conventional ResNet network incorporates
pooling operations to extract global features, discarding a large
amount of local detail information and thus reducing the
resolution of the data. Specifically, during sMRI image processing
of the brain, changes in neural activity in abnormally active (or
inactive) brain regions are difficult to capture, but these small
changes may be necessary for MDD. To solve this problem, we
introduce the FRN method so that the granularity information
and details of the feature map can be retained without overfitting
the model. Its network structure is shown in Figure 1. It achieves

this by framing class membership as a problem in reconstructing
the feature map. Given a set of images belonging to a single
class, we generate the associated feature maps and collect the
component feature vectors across locations and images into a
single pool of support features. For each query image, we attempt
to reconstruct each location in the feature map as a weighted
sum of the support features with a negative mean squared
reconstruction error as the class score. Images from the same class
should be easier to reconstruct because their feature maps contain
similar embeddings, while images from different classes are more
complex and produce larger reconstruction errors. By evaluating
the reconstruction of the complete feature map, FRN preserves
the spatial details of the appearance. Additionally, by allowing
this reconstruction to use feature vectors from any location in
the support image, FRN explicitly discards the annoying location
information. An auxiliary loss function is also introduced, which
encourages orthogonality between features of different classes to
focus on feature differences.

We evaluate the performance of the proposed model on
a constructed sMRI dataset of MDD patients and compare
it with other methods. The results show that our model has
good performance in automated MDD sMRI data identification.
(1) A novel identification network structure based on feature
map reconstruction is proposed in this paper. (2) Feature
extraction followed by feature map reconstruction of sMRI
images retains more fine spatial details and dramatically
improves the identification performance. (3) Classification-
assisted loss functions are developed to distinguish between
different features classes.

MATERIALS AND METHODS

Our goal is to identify MDD using sMRI images automatically.
In order to obtain good identification performance, a robust
network structure is usually required. Therefore, we propose
the 3D FRN-ResNet model for automated MDD sMRI data
identification, consisting of a feature extraction network and a
feature map reconstruction network. The network structure of
3D FRN-ResNet is shown in Figure 1. This section describes the
preprocessing process, the network structure of 3D FRN-ResNet,
and the loss function used in detail.

Data Preprocessing
The sMRI data preprocessing work is implemented using the
MATLAB-based SPM12 toolkit (Ashburner et al., 2021). The
main contents of preprocessing include AC-PC calibration,
non-brain tissue removal, gray matter segmentation, spatial
standardization, and spatial smoothing. The size of sMRI data for
each subject after processing is 121× 145× 122 voxels.

Anterior Commissure-Posterior Commissure
Calibration
The calibration procedure focuses on the anterior commissure
(AC) and posterior commissure (PC) calibration. We use
MATLAB software to perform AC-PC calibration, resampling the
images in the standard 256 × 256 × 256 mode, and then the
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FIGURE 2 | Results of removing non-brain tissue.

N3 algorithm is used to correct for non-uniform tissue intensity.
We also perform skull stripping and cerebellar resection after
correcting the images by AC-PC correction.

Non-brain Tissue Removal
The original images of sMRI contain some non-brain structures,
such as skulls. In order to avoid increasing the computational
workload and to avoid subsequent image preprocessing, which
may affect the experimental results. Non-brain structures such
as skulls need be removed from the images during the image
preprocessing operation. Figure 2 shows the comparison of a
sample before and after removing non-brain tissue.

Gray Matter Segmentation
During sMRI image processing, sometimes only the state of
specific regions is focused on, which requires tissue extraction
from the target area according to the brain’s anatomy. In the
preprocessing process, we segment the sMRI into three different
images by brain gray matter, white matter, and cerebrospinal fluid
structures. Considering the critical influence of the gray matter
region on the diagnosis of MDD (Arnone et al., 2013), only
the gray matter part is used for the experiments in this paper.
Figure 3 shows the result of gray matter segmentation.

Spatial Standardization
Standardization is the alignment of the images from the previous
preprocessing process to the standard brain template space
Montreal Neurological Institute (MNI) to unify the coordinate
space of all images. The algorithms used for standardization
are non-rigid body alignment algorithms, including affine and
non-linear transformations. Figure 4 shows the comparison of
a sample before and after spatial standardization.

Spatial Smoothing
After completing the above series of processing, it is also
necessary to perform a smoothing process on the image to
suppress the noise of the functional image. Additionally, the
signal-to-noise ratio needs to be improved to reduce anatomical

FIGURE 3 | Results of gray matter segmentation.

FIGURE 4 | Results of spatial standardization.

or functional differences between images. Usually, the function
used for the smoothing process is the Gaussian kernel function.
In addition, based on experience and practical attempts, we
use a 64 × 64 × 64 pixel cube to down-sample gray matter
density images, and this processing saves computing time and
memory consumption with no loss of classification accuracy.
Figure 5 shows the comparison of a sample before and after
spatial smoothing.

3D-ResNet Framework
Although ResNet has achieved excellent results on many 2D
natural image datasets, it has little success in medical images. The
reason is that the convolution kernels and pooling kernels in 2D
networks are two-dimensional matrices. It can only move in the
two directions of height H and width W of 2D flat images, so only
2D features can be extracted. In contrast, most medical image
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FIGURE 5 | Results of spatial smoothing.

data such as sMRI are 3D stereo data. When using 2D network
processing, only 3D images can be input in layers, or one of the
dimensions can be used as the channel dimension. But neither of
the two methods can make good use of the inter-layer structure
information of the data.

Based on this, this paper adds a depth dimension D to the
filters such as convolution kernels and pooling kernels in the 2D
network, and extends them into 3D matrix. In this way, the filters
can be moved in all 3 directions (H, W, D) of the sMRI data, so
that the spatial information of the data can be fully exploited. And
the output of each filter is also a 3D data. The structure diagram of
the 3D-ResNet is shown in Figure 6. Let the size of one of the 3D
convolution kernels is k × k × k × channel, the number is n, the
input data size is h× w× d. And since the sMRI data used in this
paper is similar to a grayscale map, the channel dimension is 1.
Therefore, the output size of this convolution kernel is as follow:

(h− k+ 1)× (w− k+ 1)× (d − k+ 1)× n (1)

By a similar method, the pooling layer and batch
normalization layer in ResNet can be extended to construct
a 3D residual connected network (3D-ResNet). The network can
better extract representative features from 3D sMRI data and
improve the accuracy of identification in MDD patients.

The 3D-ResNet network structure is shown in Figure 6. Due
to the small size of the input region feature map, the convolution
pooling operation is removed from the bottom layer of the
network. And the input map is directly made to enter the residual
network consisting of four stacked residual convolution modules.

Figure 7 shows an example of feature extraction from the
3D-ResNet middle layer. At the end of the extraction process,
the network learns details such as contour boundaries, position,
and orientation, enabling more learning of deeper features in the
sMRI and preparing it for the next step.

Feature Map Reconstruction Networks
Framework
The feature extractor can produce a feature map. However,
the distance metric function requires a vector representation of
the whole graph. Therefore, a method needs to be found to
convert the feature map into a vector representation. Ideally,
this conversion would preserve the granularity of information
and details of the feature map without overfitting the model. But
existing methods, such as global average pooling, are very crude
in discarding some spatial information or flattening a feature
map into a long vector, which also loses location information.
In order to convert the feature map into a vector representation
while preserving the spatial details, Feature Map Reconstruction
Networks (FRN) are proposed in this paper.

When there is a single input image xq, we wish to predict its
label yq. Firstly, let xq passes through feature extractor to generate
a feature map Q ∈ Rr×d, where r represents the size of the space
and d is the number of channels. For each class c ∈ C, we pool
all features from the k input images into a feature matrix Sc ∈
Rkr× d .

Then, we try to reconstruct Q as a weighted sum of rows in
Sc by finding the matrix W ∈ Rr × kr so that W × Sc ≈ Q can
be obtained. Finding the optimal W is equivalent to solving the
linear least squares problem:

W = arg min
W
||Q-WSc||2 + λ||W||2 (2)

where || • || is the Frobenius norm, which λ is a weighted ridge
regression penalty term used to ensure the treatability of the
linear system when it is over- or under-constrained (kr 6= d).

The ridge regression equation leads to the optimal solution W
and Qc.

W = QSTc (ScSTc + λI)−1 (3)

Qc =WSc (4)

For a given class c, the distance between Q and Qc is defined as
the Euclidean distance and then deflated by using 1

r . A learnable
temperature factor λ is also introduced. The final predicted
probability is thus given by:

〈
Q,Qc

〉
=

1
r
||Q− Qc||

2 (5)

P(yq = c|xq) =
e(−γ〈Q,Qc〉)∑

c′∈C e
(−γ

〈
Q,Qc′

〉
)

(6)

In order to ensure the stability of the training, we decide to
use 1

kr to improve λ. This has the additional benefit of making
our model somewhat robust, in addition to the parameters that
λ should be learned. The change λ has diverse effects: the large
one λ avoids over-reliance on the weights of W, but it also
reduces the effectiveness of the reconstruction. And it increases
the reconstruction errors as well as limit the distinguishability.
Therefore, we disentangle the degree of regularization ρ from
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FIGURE 6 | Proposed 3D-ResNet structure.

FIGURE 7 | Visualization of extracted features.

the magnitude of Qc by introducing a learned recalibration term.
This leads to the following formula:

Qc = ρWSc (7)

λ andρare parameterized as eα and eβ to ensure non-negativity
and are initialized to zero. In summary, our final prediction is
given by the following equation.

λ =
kr
d
eα ρ = eβ (8)

Qc = ρWSc = ρQSTc (ScSTc + λI)−1Sc (9)

P(yq = c|xq) =
e(−γ〈Q,Qc〉)∑

c′∈C e
(−γ

〈
Q,Qc′

〉
)

(10)

The method introduces only three learning parameters:α,β,
andγ. The temperature γ appears in previous works
(Chen et al., 2020).

Figure 8 is a diagram of the FRN network structure. Support
image is converted to a feature map (left) and aggregated to
a pool of class conditions (middle). A best-fit reconstruction
of the query feature map is computed for each class, and the
closest candidate generates the predicted class (right). Among
them, h × w is the feature map resolution, d is the number
of channels, and the green triangle represents the convolutional
feature extractor.

Loss Function
Medical image classification often faces the problem of minor
differences in the appearance of pathological targets and non-
targets. We also face this challenge for our MDD brain tumor
classification task. For this purpose, our loss function consists
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FIGURE 8 | Feature map reconstruction networks network structure diagram.

of two components. The first is the cross-entropy loss function,
which can be understood as a composition of two parts. The first
part is the calculation of the mutual entropy with label 1, and the
second part is the calculation of the mutual entropy with label
0. We sum the two to obtain the overall mutual entropy. The
formula is as follows.

L = −
1
N

N∑
i=1

[
yi log(pi)+ (1− yi) log(1− pi)

]
(11)

where N is the total number of samples, yi is the category to
which the ith sample belongs, and pi is the predicted value of the
ith sample.

In addition to the classification loss, we use an auxiliary loss
that encourages support features from different classes to span
the potential space.

Laux =
∑
i∈C

∑
j∈C,j 6=i

||̂SîSTj ||
2 (12)

Among then, Ŝ is line normalized and projects the features
onto the unit sphere. This loss encourages orthogonality between
features from different classes. Similar to Christian et al. (2020),
we reduce this loss by a factor of 0.03. We use Laux as the auxiliary
loss in our subspace network implementation, which replaces
the SimCLR fragment in the cross-transformer implementation
(Carl et al., 2020).

EXPERIMENTS

Dataset
The benchmarking clinical MDD sMRI images dataset is
collected at the Seventh Hospital of Hangzhou (SHH) with
Institutional Review Board (IRB) approval, and is used to
train and test our model. Furthermore, the SHH dataset
contains 68 subjects, including 34 MDD patients and 34 healthy
controls (HC). All patients with MDD met the diagnostic
criteria of the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (DSM-IV) for MDD. And all healthy
controls passed the non-patient version of the structured clinical
interview of the DSM-IV. All sMRI images have an imaging
field of view (FOV) = 240 mm × 256 mm, a voxel size of
1 mm × 1 mm × 1 mm, a layer thickness of 1 mm, and a scan
layer count of 192. sMRI slice images from the MDD and HC in
SHH dataset are shown in Figure 9.

Evaluation Metrics
A total of 54 samples in SHH dataset are used in the training
process, including 27 MDD patients and 27 healthy individuals.
In addition, 14 samples are used for validation, including 7
MDD patients and 7 healthy individuals. We use four metrics to
evaluate the model performance: Accuracy, Recall, Precision, and
F1 score. Accuracy is calculated as:

Accuracy =
TN + TP

FP + TN + TP + FN
(13)
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FIGURE 9 | Structural magnetic resonance imaging slice images from the MDD and HC in SHH dataset. Left to right: axial view, sagittal view, coronal view, and 3D
presentation.

where TN, TP, FP, and FN are the number of true negative,
true positive, false positive, and false negative, respectively. Recall
refers to the ability of a classifier to correctly detect positive
samples, reflecting the proportion of patients with MDD that
are correctly determined as a percentage of the total number of
patients, defined as:

Recall =
TP

TP + FN
(14)

Precision refers to the proportion of samples with a positive
prediction that are correctly predicted, defined as:

Precision =
TP

TP + FP
(15)

Precision and Recall are contradictory metrics. In general,
Recall tends to be low when Precision is high, while Recall
tends to be high when Precision is low. When the classification
confidence is high, Precision is high; when the classification
confidence is low, Recall is high. To be able to consider these two
metrics together, the weighted average F-measure of Precision
and Recall is proposed, which reflects the overall metric, defined
as:

F1 =
2× Precision× Recall
Precision+ Recall

(16)

In disease diagnosis studies, the higher the recall rate, the
smaller the missed diagnosis rate. Therefore, the accuracy and
recall of models are of most interest.

Experimental Details
In deep learning training, the setting of hyperparameters is
critical and determines the performance of our model. In the
training of the 3D FRN-ResNet model, the initial learning rate
is set to 0.01, the weight decay value is set to 0.001, the number
of epochs is 100, and then the learning rate is changed to 0.1
times when the validation set loss value does not drop for 10
consecutive epochs. Considering the sample size limitation and
using a fivefold cross-validation method to enhance the model’s
generalization ability.

All experiments are performed on a CentOS server with
NVIDIA TITAN Xp GPU, dual-core Intel(R) Xeon(R) Silver 4210
CPU @ 2.20 GHz processor, Python 3.6 programming language,
and PyTorch 1.0 deep learning framework.

RESULTS

We use four metrics, Accuracy, Recall, Precision, and F1 value,
to measure model performance. The average results of the
metrics obtained on the training and validation sets are shown
in Table 1. The experimental results show that the model has
good robustness. We can observe that the Recall is at a high value,
which indicates that the model is quite comprehensive in MDD
patient identification. Furthermore, we can see that the Precision
is also at a high value, demonstrating that the model has a good
ability in MDD patient identification. In addition, the Recall of
the training set is 0.84, and the F1 value of the training set is
0.85, which is very close. The same is true in the validation set,
suggesting the ability to discriminate between healthy and MDD
patients in our model is about the same.

Figures 10, 11 respectively show the composite plot of the
scatter plot and box plot of the evaluation index results of the
training set and the validation set. It can be seen from the box
plots that the fluctuations of the results are tiny, and only a
few outliers appear. In the box plot, the horizontal line in the
middle of the box indicates the median of a dataset. It can
also be observed in the scatter plot that the recall rate reaches
a high range, and the recall rate represents the ability of the
model to diagnose patients who suffer from MDD. The smaller
the difference between the Recall and F1 values, the better the
model’s performance in resolving class imbalance. It can be seen

TABLE 1 | Test results on the training and validation sets.

Accuracy Recall Precision F1

Training 0.86 0.84 0.85 0.85

Validation 0.78 0.76 0.77 0.76
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FIGURE 10 | Combination of scatter plot and box plot of training set.

FIGURE 11 | Combination of scatter plot and box plot of validation set.

from the figure below that the recall fluctuation range is not
large, indicating that the model has the similar ability to predict
the MDD patients and healthy individuals. After validation, the
overall performance of the model reached a high level.

In order to explore the influence of different network
structures on the performance of the MDD identification
algorithm, firstly we use five feature extraction networks with
different structures for training based on the FRN structure
in the classification layer. After that, the 3D-Resnet structure
with the best effect is used as the feature extraction network,
and the FRN structure is replaced with a general fully
connected layer for classification. The experimental results
show that compared with ordinary convolutional networks,
ResNet and DenseNet structures can extract and retain richer
detail information, and learn feature representations with
strong discriminative power, thereby effectively improving the
identification accuracy of the network.

From Table 2, we can see that the structural model combining
3D-ResNet and FRN has the highest classification accuracy,

with the correct rate and recall rate achieving 85 and 84%,
respectively. We can also observe that accuracy and recall
have been significantly improved after the 3D operation of the
network. For example, the identification accuracy of 3D-ResNet
is 6% higher than that of 2D DenseNet, which shows that the 3D-
ResNet proposed in this paper can mine effective information,
providing more effective features than the general ResNet and
the traditional 2D networks. Meanwhile, it can be seen from
Table 2 that the FRN network can effectively improve the high
heterogeneity problem in the sMRI images of MDD patients and
thus is applicable in MDD sMRI images identification.

Figure 12 shows the ROC curves of different algorithms using
FRN-net on the SHH dataset. It can be seen that from the figure
out algorithms outperforms others, which further confirms the
effectiveness of our algorithm. The main reason is that we exploit
both multi-scale layers and contextual spatial information to
reduce the semantic gap to a large extent.

The results of the ROC curve in Figure 13 are consistent
with those in Figure 12, indicating that our algorithm does
improve image identification accuracy. On the one hand, our
algorithm proposes a 3D residual connection network, which
extends the idea of residual connections to three dimensions.
It makes full use of the spatial and contextual information of
the image, and preserves the spatial details when converting the
extracted features into vectors and location information. Thus,
higher average accuracy than other methods is achieved, which
also demonstrate the effectiveness of the 3D residual connection
network and classification based on feature map reconstruction.
On the other hand, since we decompose the image into multiple-
scale layers, sufficient scale information is used when generating
multi-scale visual histograms. Therefore, our method has the best
classification specificity and sensitivity.

To further illustrate that the feature map reconstruction
method proposed in this paper is informative for correct
classification, we obtain experimental results for each query
image. In Table 3, all networks are trained with 3D-ResNet
as the backbone. The results in their tables validate the
effectiveness of the classification method based on the feature
map reconstruction proposed in this paper.

Figure 14 illustrates the algorithm’s performance based on the
above test parameters. The proposed FRN can be predicted to be
the best due to its property of classifying affected regions spread
over a given image from a performance overview. 3D ResNet
guarantees its performance in computation time and average

TABLE 2 | Results comparison with different network structures.

Model Backbone Accuracy Recall Precision F1

FRN(ours) 3D-ResNet 0.85 0.84 0.86 0.84

ResNet 0.79 0.78 0.80 0.79

3D-DenseNet 0.84 0.82 0.87 0.84

DenseNet 0.78 0.78 0.79 0.78

SimpleCNN 0.60 0.58 0.61 0.60

Full connected 3D-ResNet 0.82 0.80 0.82 0.81

Bold values mean the best performance.
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FIGURE 12 | ROC curves with FRN-Net for different backbones of the training set.

FIGURE 13 | ROC curves with FRN-Net for different backbones of the validation set.

accuracy for medical image datasets, with the highest recall and
satisfying precision. Statistical, visual, and experimental evidence
is provided through comparisons with other algorithms.

To sum up, through the above experiments, we can see
that the performance of the ProtoNet method is not as good
as other methods. Because traditional ProtoNet algorithms
extract feature histograms through direct statistical methods,
which are linear features that need to be combined with non-
linear classifiers to perform well. The DSN method outperforms
the ProtoNet method, probably because the DSN algorithm

predicts class membership by computing the distances between
query points and their projections into the latent subspace
formed by the supporting images of each class, which improves
methods for image predictive classification. Whereas the CTX
method explicitly produces class-level linear reconstructions
and outperforms the DSN method. Our algorithm decomposes
the image into multi-scale layers and performs 3D residual
network feature extraction and feature map reconstruction to
predict classification, greatly enhancing the discrimination of
image feature representation. Therefore, our algorithm has the
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TABLE 3 | Results comparison with different classifiers.

Model Accuracy Recall Precision F1

Train ProtoNet 0.82 0.81 0.83 0.82

DSN 0.81 0.79 0.82 0.81

CTX 0.80 0.79 0.81 0.80

FRN(ours) 0.86 0.83 0.84 0.83

Validation ProtoNet 0.76 0.75 0.77 0.76

DSN 0.74 0.72 0.75 0.74

CTX 0.75 0.74 0.76 0.75

FRN(ours) 0.80 0.78 0.76 0.77

best average classification accuracy, specificity, and sensitivity,
which indicates that 3D FRN-ResNet indeed improves image
classification accuracy. On the one hand, our algorithm proposes
a 3D residual connection network, which extends the idea of
residual connections to three dimensions. It makes full use of the
spatial and contextual information of the image and preserves
the spatial details when converting the extracted features into
vectors and location information. Thus, higher average accuracy
than other methods is achieved, demonstrating the effectiveness
of the 3D residual connection network and classification based
on feature map reconstruction. On the other hand, since
we decompose the image into multiple-scale layers, sufficient
scale information is used when generating multi-scale visual
histograms. Therefore, our algorithm has the best classification
specificity and sensitivity.

DISCUSSION

The 3D FRN-ResNet proposed in this paper can effectively
improve the identification accuracy and recall rate of sMRI
data from MDD patients and healthy controls, and verifies

TABLE 4 | Results comparison with typical methods.

Method Accuracy Recall Precision F1

Jiao et al., 2017 0.82 0.79 0.84 0.81

An et al., 2021 0.81 0.79 0.82 0.80

Ben et al., 2020 0.79 0.77 0.81 0.79

Cheng et al., 2022 0.83 0.80 0.82 0.81

Abdar et al., 2021 0.81 0.80 0.81 0.79

Proposed 0.85 0.82 0.82 0.82

Bold values mean the best performance.

its effectiveness and feasibility. The proposed model can assist
physicians to complete the diagnosis, and has significant
significance in research value.

The method is compared with some typical medical image
classification algorithms, and the results are shown in Table 4.
All of these methods use the private SHH dataset. These
results can be compared with those obtained using the
proposed method. Our proposed method is one of the best
and achieves better performance than other methods evaluated
under the same conditions. Jiao et al. (2017) introduced a
joint model with a CNN layer and a parasitic metric layer.
Where the CNN layer provides the essential discriminative
representation, and the metric learning layer enhances the
classification performance for that particular task (Jiao et al.,
2017). An et al. (2021) proposed a multi-scale convolutional
neural network, a medical classification algorithm based on a
visual attention mechanism, which automatically extracts high-
level discriminative appearance features from the original image.
In the method proposed by Ben et al. (2020), a new classification
framework was developed to classify medical images using
sparse coding and wavelet analysis, which showed a significant
improvement in identification accuracy. Cheng et al. (2022)

FIGURE 14 | Performance comparison with various models.
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proposed a modular group attention block that captures feature
dependencies in medical images in both channel and spatial
dimensions for resulting in improved classification accuracy.
Abdar et al. (2021) proposed a novel, simple and effective
fusion model with uncertainty-aware module for medical image
classification called Binary Residual Feature fusion (BARF).

Table 4 shows that the model has some advantages in
classification. The bold text in the table represents the best
performance. But there are still differences in accuracy, and
the model has limitations. In future work, solutions can be
proposed for this situation, such as designing a network structure
more suitable for small samples to maximize the neural network
learning ability. In addition, many of the algorithms proposed in
the top methods have excellent performance. How to combine
the advantages of these algorithms and integrating them into
models is the focus of future work. In clinical care, it helps
experts understand patients’ current situation faster and more
accurately, saving experts’ time and achieving a leap in the quality
of automatic medical classification.

CONCLUSION

This paper proposes an automated MDD sMRI data
identification framework and performs a performance validation
on the private SHH dataset with satisfactory results. The
framework comprises a feature extractor and a feature map
reconstruction network. 3D-ResNet acts as a feature extractor
to ensure that MDD sMRI data with depth features can be
learned. Then, the feature map reconstruction network solving
the reconstruction problem in a closed-form produces a class
of simple and powerful characters, which contains fine spatial
details without overfitting the position or pose. Furthermore,
we use an auxiliary loss that encourages support features from
different classes to span the potential space to more clearly
distinguish between classes. Additionally, a benchmarking
clinical MDD sMRI images dataset with 68 subjects (SHH)
is collected to train and test the model, and we evaluate the
proposed 3D FRN-ResNet on the SHH dataset. Experimental
results show that the proposed model exhibits promising
performance and outperforms the typical other methods,
achieving the accuracy, recall, precision, and F1 values of 0.86776,
0.84237, 0.85333, and 0.84781, respectively. Compared with some
benchmark methods, the method proposed in this paper can
effectively improve the identification accuracy and recall of MDD

and healthy controls, and then assist doctors to complete the
diagnosis in medicine, which has great value in practical clinical
computer-aided diagnosis applications.

Even though the 3D FRN-ResNet framework has
demonstrated its potential within the automated identification
for MDD sMRI data, some limitations still need to be improved.
For example, the model performance cannot be well exploited
due to sample size limitations. Thus, we can use better data
enhancement methods, which provide a good starting point for
further research.
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