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Abstract

Inactivating mutations in the MEN1 gene predisposing to the multiple endocrine neoplasia type 1 (MEN1) syndrome can
also cause sporadic pancreatic endocrine tumors. MEN1 encodes menin, a subunit of MLL1/MLL2-containing histone
methyltransferase complexes that trimethylate histone H3 at lysine 4 (H3K4me3). The importance of menin-dependent
H3K4me3 in normal and transformed pancreatic endocrine cells is unclear. To study the role of menin-dependent H3K4me3,
we performed in vitro differentiation of wild-type as well as menin-null mouse embryonic stem cells (mESCs) into pancreatic
islet-like endocrine cells (PILECs). Gene expression analysis and genome-wide H3K4me3 ChIP-Seq profiling in wild-type and
menin-null mESCs and PILECs revealed menin-dependent H3K4me3 at the imprinted Dlk1-Meg3 locus in mESCs, and all four
Hox loci in differentiated PILECs. Specific and significant loss of H3K4me3 and gene expression was observed for genes
within the imprinted Dlk1-Meg3 locus in menin-null mESCs and the Hox loci in menin-null PILECs. Given that the reduced
expression of genes within the DLK1-MEG3 locus and the HOX loci is associated with MEN1-like sporadic tumors, our data
suggests a possible role for menin-dependent H3K4me3 at these genes in the initiation and progression of sporadic
pancreatic endocrine tumors. Furthermore, our investigation also demonstrates that menin-null mESCs can be
differentiated in vitro into islet-like endocrine cells, underscoring the utility of menin-null mESC-derived specialized cell
types for genome-wide high-throughput studies.
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Introduction

Whole exome sequencing of different tumor types has identified

mutations in various genes whose products are associated with

epigenetic processes that are involved in chromatin modification

[1]. Sporadic pancreatic endocrine/neuroendocrine tumors of the

hormone secreting islet cells of the pancreas harbor inactivating

mutations in MEN1 encoding menin, a component of histone

methyltransferase complexes, in 27–44% of tumors [2,3]. Also,

14–25% of these tumors have mutations in DAXX or ATRX that

encode subunits of a chromatin-remodeling complex [3]. Menin is

found in a subset of COMPASS-like (complex of proteins

associated with Set1) mixed lineage leukemia (MLL) complexes

that trimethylate histone H3 at lysine 4 (H3K4), specifically in

MLL1/MLL2-containing complexes that trimethylate H3K4

[4,5]. The MLL core complex consists of homologs of proteins

found in the yeast Set1 histone methyltransferase (HMT) complex

such as ASH2, RBBP5, and WDR5.

Menin acts as a tumor suppressor in the autosomal dominant

multiple endocrine neoplasia type 1 (MEN1) syndrome charac-

terized by tumors of hormone producing cells of the parathyroids,

enteropancreatic endocrine tissues, and anterior pituitary [6].

Menin is essential for early development as indicated by the

embryonic lethality at E11.5-E13.5 of homozygousMen1-knockout

(Men1-ko) mouse embryos [7]. Men1 loss in mouse models driven

by RIP-Cre, GLU-Cre, or PDX1-Cre show islet endocrine cell-

type restricted tumorigenesis, implicating an essential role for

menin in islet endocrine cell homeostasis [7,8,9,10].

Surprisingly, menin’s association with MLL is pro-oncogenic in

MLL-associated leukemia cells. About 50–60 different transloca-

tions involving the MLL1 gene are known to cause acute lymphoid

and myeloid leukemias with increased expression of specific

homeobox (HOX) genes such as HOXA7, HOXA9, and the HOX

cofactor MEIS1 [11]. Menin binds to the highly conserved N-

terminal 44 amino acids of MLL1 or MLL2; hence, N-terminal

MLL peptides could serve as dominant negative inhibitors of the

MLL-menin interaction, inhibiting the growth of MLL-trans-

formed leukemic cells (containing MLL-AF9 fusion) by down-

regulating MLL targets including HOX genes and MEIS1 [12].

The direct role of H3K4 trimethylation (H3K4me3) catalyzed

by menin-containing MLL complexes in pancreatic islet endocrine

cells is unclear, and the functional relevance of H3K4me3
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catalyzed by the MLL1 and MLL2 complexes with or without

menin in islet cells has not been elucidated. Pancreatic endocrine

cells are found in the islets that comprise only ,1% of the

pancreas. Large quantities of live cells are generally required for

most genome-wide occupancy analysis assays. Menin-null human

islets are rarely available, which makes islets from MEN1 mouse

models (normal and tumor) an attractive alternative source.

However, to obtain large quantities of live cells, one would need to

isolate and pool islets from a large number of mice. Embryonic

stem cells (ESCs) from Men1-ko mouse embryos have been

established. ESCs can undergo multi-lineage differentiation in vitro

producing specialized cell types retaining an intact normal diploid

karyotype (unlike cell lines and tumors that are aneuploid) [13].

Men1-ko (menin-null) mouse ESCs (mESCs) cannot complete

hematopoietic differentiation in vitro due to reduced Hoxa9

expression [14]. However, it was not known whether menin-null

mESCs could undergo differentiation into pancreatic islet-like

endocrine cells in vitro.

We performed in vitro differentiation of wild-type as well as

menin-null mESCs into pancreatic islet-like endocrine cells

(PILECs) in order to obtain a source of cells with a homogenous

and diploid genetic background for global menin-dependent

H3K4me3 and gene expression analyses. We used ChIP-Seq

and microarray analysis to profile genome-wide H3K4me3 and

gene expression, respectively, in wild-type and menin-null mESCs

and PILECs. Specific and significant loss of menin-dependent

H3K4me3 was observed at imprinted Dlk1-Meg3 locus in menin-

null mESCs, and at all four Hox loci in menin-null PILECs. These

H3K4me3 losses were accompanied by reductions in gene

expression. Meg3 (maternally expressed gene 3) is an imprinted

long non-coding RNA that acts as a tumor suppressor [15]. Given

that the reduced expression of genes at the DLK1-MEG3 and HOX

loci is associated with sporadic pituitary tumors and parathyroid

tumors, respectively [16,17] (endocrine tumor types also found in

the MEN1 syndrome), our data suggests a possible role for menin-

dependent H3K4me3 at these genes in the initiation and

progression of sporadic pancreatic neuroendocrine tumors.

Results

Menin-null mESCs can differentiate into pancreatic islet-
like endocrine cells in vitro
Men1-ko (menin-null) mouse embryonic stem cells (mESCs)

were deficient in completing hematopoietic differentiation in vitro

[14]. In order to determine whether loss of menin affects the

development of islet endocrine cells, we performed in vitro

differentiation of menin-null mESCs into pancreatic islet-like

endocrine cells (PILECs). Menin-null mESCs used in our study

showed no growth defects, and were not compromised for

embryoid body (EB) formation (Figure 1A) which is consistent

Figure 1. In vitro differentiation of mESCs into pancreatic islet-like endocrine cells (PILECs). (A) Phase contrast images of wild-type (WT)
mESCs and menin-null (KO) mESCs differentiated into PILECs. (B) RT-PCR analysis measuring mRNA levels of genes expressed in islet cells using RNA
from mESCs and mESC-derived PILECs. WT: wild-type cells; KO: Men1-ko cells (menin-null). RNA from the mouse insulinoma cell line MIN6 was used as
a positive control. Gapdh served as an internal control for RT-PCR using a 1:10 dilution of the oligo-dT primed first strand cDNA template. (C) Western
blot analysis of whole cell protein extracts from wt or menin-null mESCs before and after differentiation into PILECs with antibodies against menin, an
ESC pluripotency marker Oct3/4, and an islet differentiation marker NeuroD1. Tubulin served as protein loading control. (D) In vitro differentiation of
pancreatic precursor cells (step-3) derived from mESCs into PILECS was performed in gelatinized chamber slides and processed for
immunofluorescence (red) staining with a pro-insulin C-peptide mouse monoclonal antibody to detect insulin. MIN6 cells cultured in chamber
slides were used as a positive control.
doi:10.1371/journal.pone.0037952.g001
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with previous reports [14,18,19]. Morphological changes during

the differentiation of wild-type (wt) and menin-null cells into

PILECs were similar (Figure 1A). In vitro differentiation of both wt

and menin-null mESCs into PILECs was assessed by measuring

the expression of marker transcripts characteristic of islet cells. We

observed comparable levels of the markers in both wt and menin-

null mESC-derived PILECs (Figure 1B). In menin-null mouse

models, either the development of islets was unaffected or the

development of early pancreatic endocrine cells was impaired

[18,20]. Our data show that menin is not essential for the

development of islet-like endocrine cells.

Menin expression levels in mESC-derived PILECs were largely

similar to that in wt mESCs. Upon differentiation of both wt and

menin-null mESCs, the ESC pluripotency marker Oct4 was

similarly downregulated and the differentiation marker NeuroD1

protein was similarly upregulated (Figure 1C). Also, anti-C-

peptide antibody immunofluorescence of the PILEC clusters

showed similar staining for insulin in wt and menin-null cells

(Figure 1D). Whether PILECs are capable of producing and

secreting physiological levels of insulin that is regulated by glucose

has not been firmly established [21]. However, low-to-moderate

level of insulin encoding transcripts (Ins-1 and Ins-2) and other

islet hormone encoding transcripts (Gluc and Iapp) were observed

in both wt and menin-null cells after differentiation (Figure 1B).
Therefore, we concluded that lack of menin did not affect the

ability of mESCs to differentiate into the islet endocrine lineage in

vitro, and that PILECs derived through in vitro differentiation of wt

or menin-null mESCs could serve as a good surrogate for wt or

menin-null islet endocrine cells, respectively.

Genome-wide mapping of H3K4me3 and gene
expression profiling in wt and menin-null cells
Histone methyltransferase complexes contain menin, specifical-

ly the MLL1- and MLL2-containing COMPASS-like MLL

complexes that are known to deposit the histone H3 lysine 4

trimethyl mark (H3K4me3). Homozygous Men1-ko mice are early

embryonic lethal, and the role of menin-dependent H3K4me3 in

embryonic lethality is unknown. To examine menin-dependent

H3K4me3, we used ChIP-Seq to perform genome-wide mapping

of regions enriched for H3K4me3 in wt and menin-null mESCs

and PILECs. To ensure that the data we generated is of high

quality, we compared our H3K4me3 data from wt mESCs with

a previously published H3K4me3 data from the same cell type

[22], and found that they were highly similar in specificity and

Figure 2. Decrease in gene expression accompanies decrease in H3K4me3 in menin-null PILECs but not in menin-null mESCs.
Correlation between changes in gene expression and changes in H3K4me3 in menin-null (KO) mESCs vs. wild-type (WT) mESCs (A), and menin-null
PILECs vs. wild-type (WT) PILECs (B). Normalized average tag density surrounding the transcription start site (TSS) is shown for genes that were at least
2-fold downregulated/upregulated in menin-null cells compared to WT cells.
doi:10.1371/journal.pone.0037952.g002
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sensitivity (Figure S1A). H3K4me3 marks were highly enriched

within the genic regions of the genome. In particular, H3K4me3

marks were specifically observed at proximal promoter regions

near transcriptional start sites (TSSs) (Figure S1B).

To determine the link between menin-dependent H3K4me3

and transcription, we used microarrays to profile global gene

expression in wt and menin-null mESCs and PILECs. Seventy one

and 167 genes were at least 2-fold differentially expressed (p-value

, 0.005) in menin-null mESCs and menin-null PILECs, re-

spectively (Figure S2, and Tables S1 and S2). Examination of

H3K4me3 levels at genes that were at least 2-fold upregulated or

2-fold downregulated in menin-null mESCs compared to wt

mESCs revealed that expression changes in menin-null vs wt

mESCs cells did not accompany changes in H3K4me3 levels

(Figure 2A). However, we found that genes that were at least 2-

fold downregulated in menin-null PILECs underwent significant

reduction in H3K4me3 levels (Figure 2B). These data suggested

a direct role for menin-dependent H3K4me3 in the regulation of

genes in PILECs, and a rather limited and indirect role in mESCs.

Menin-null mESCs exhibit loss of H3K4me3 at the Meg3
promoter
Since the genome-wide H3K4me3 profiles were largely similar

between wt and menin-null mESCs (Figure 2A), we systemati-

cally began identifying regions with differential H3K4me3. Only

a handful of genomic regions showed quantitative loss of

H3K4me3 in menin-null mESCs (Table S3), suggesting that

the role of menin-dependent H3K4me3 in mESCs is limited and

specific. Since a vast majority of these regions were intergenic, we

focused on those that were near genes. Among the most significant

differentially H3K4 trimethylated regions between wt and menin-

null mESCs were the promoters of imprinted Meg3 and Mest

(mesoderm specific transcript) genes that experienced complete

loss of H3K4me3 in menin-null mESCs compared to wt mESCs

(Figure 3A). Interestingly, no obvious change in H3K4me3 levels

at the Meg3 or Mest promoters in menin-null PILECs compared to

wt PILECs was observed (Figure 3A). ChIP-PCR assay

confirmed the loss of H3K4me3 at the Meg3 promoter in

menin-null mESCs but not in menin-null PILECs (Figure 3B).
These data suggested a mESC specific role for menin in regulation

of Meg3 and Mest.

Figure 3. H3K4me3 at the Meg3 promoter is menin-dependent in mESCs, but not in PILECs. (A) UCSC genome browser images of
H3K4me3 profiles (top four tracks) at Meg3 (left) and Mest (right) loci in wild-type (WT) and menin-null (KO) mESCs and PILECs. The bottom four tracks
show profiles for control Input DNA. Rectangular box highlights the promoter regions of Meg3 and Mest. Genes within the two loci and their
orientation are marked using arrows at the bottom. (B) Schematic (left) showing the Meg3 promoter region and the location of the ChIP-PCR primers
and product length. Transcriptional start site is marked with the forward arrow. Results from ChIP-PCR analysis (right) from control input DNA, and
DNA from ChIPs with antibodies against H3K4me3, menin, and normal rabbit IgG.
doi:10.1371/journal.pone.0037952.g003
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Menin regulates genes within the Dlk1-Meg3 locus in
mESCs but not in PILECs
To determine the connection, if any, between the loss of menin-

dependent H3K4me3 and transcription, we examined the

microarray gene expression data in wt and menin-null mESCs.

Since H3K4me3 is generally associated with active and poised

gene promoters [22,23], we hypothesized that the loss of

H3K4me3 at the Meg3 and Mest promoters in menin-null mESCs

accompanies loss of Meg3 and Mest expression. Examining the list

of genes differentially expressed between wt and menin-null

mESCs confirmed that this was indeed the case (Table S1). Meg3

and Mest were expressed 14-fold and 6-fold less (p,0.005) in

menin-null mESCs compared to wt mESCs.

Microarray analysis revealed few other genes that had reduced

expression in menin-null mESCs but showed no changes in their

H3K4me3 levels compared to wt mESCs (Table S1 and S3).
Among them were five transcripts encoded from genes within the

,300 Kb Dlk1-Meg3 locus (1110006E14Rik, Rian,

B830012L14Rik, and Mirg) that had ,4–13 fold reduced

expression in menin-null mESCs compared to wt mESCs

(Figure 4A). These transcripts along with Meg3, Dlk1, Rtl1,

and Dio3 are known to be coordinately regulated and controlled

by the Meg3-DMR (differentially methylated region) [24] that

overlaps with the Meg3 promoter region where H3K4me3 was lost

in the menin-null mESCs (Figure 4B). RT-PCR assay confirmed

the reduced expression of Meg3, Dlk1, Rtl1, Dio3 in menin-null

mESCs (Figure 4C). Unlike menin-null mESCs, the differenti-

ated PILECs derived from menin-null mESCs showed no

significant differences in the expression of genes within the

imprinted Dlk1-Meg3 locus nor promoter-bound H3K4me3 levels

at the Meg3 promoter overlapping Meg3-DMR (Figure 3A and

4C). Therefore, we concluded that the positive regulation of genes

within the Dlk1-Meg3 is menin-dependent only in mESCs but not

in the differentiated PILECs.

Menin-null PILECs have reduced H3K4me3 at the Hox loci
and reduced expression of Hox genes
Lack of menin did not affect the ability of mESCs to

differentiate into the islet endocrine lineage in vitro. However,

given that the loss of menin is known to lead to pancreatic

neuroendocrine tumors [2,3], we sought to determine the effect of

menin loss in differentiated PILECs. Genome-wide mapping and

analyses of H3K4me3 profiles in PILECs derived from wt and

menin-null mESCs revealed that among the most significant

differentially H3K4 trimethylated regions were the loci containing

the four Hox clusters (Figure 5 and Table S4). The Hox clusters,

each containing 9 to 11 genes, are located on chromosomes 6, 11,

15, and 2 in the mouse genome. The 39 HOX genes are a highly

conserved family of transcription factors essential for body axis

patterning, development and differentiation. Although HOX genes

are essential during embryogenesis, their regulation and target

genes are not well defined. HOX genes are epigenetically silenced

in undifferentiated ESCs, and their activation is associated with

differentiation. Hox genes in mESCs are known to be marked by

bivalent histone modifications of active H3K4me3 and repressive

H3K27me3 [22]: H3K27me3 keeps these genes silenced in

mESCs, while the H3K4me3 keeps them poised for future

activation. We observed low levels of H3K4me3 at the Hox loci in

both wt and menin-null mESCs (Figure 5). Upon differentiation

into PILECs, all four Hox loci in wt cells exhibited a significant

increase in H3K4me3 levels, whereas such increase was not

evident in differentiated menin-null cells. Interestingly, the in-

crease in H3K4me3 at the Hox loci in wt PILECs was in the form

of broader H3K4me3 footprints extending well past the proximal

promoter regions and into the gene bodies (Figure 5). Given that

it was previously shown using ChIP-chip that menin colocalizes

with H3K4me3 at the Hox loci [25], we concluded that the broad

H3K4me3 footprints in wt PILECs were clearly menin-dependent.

Gene expression microarray analysis revealed that the muted

levels of H3K4me3 at Hox loci in menin-null PILECs were

associated with significant and proportional reduction in the

expression of many Hox genes compared to wt PILECs (Figure 6A
and Table S2). RT-PCR assay confirmed the loss (or several-fold

reduction) of expression for many Hox genes (Figure 6B).
Together, these data indicated that menin is required for the

expression of Hox genes in pancreatic islet cells, and that its role in

the regulation of Hox genes is probably via its H3K4me3-

associated activity as a member of MLL1/MLL2 containing MLL

histone methyltransferase complex.

Discussion

Using genomic data generated from ChIP-Seq and gene

expression microarrays in wt and menin-null mESCs and

mESC-derived pancreatic islet-like endocrine cells (PILECs), we

found that menin loss results in a significant loss of H3K4me3 only

at a limited number of loci in mESCs and PILECs, thus defining

a specific role for menin in modulating gene expression at these

loci (Figure 7A). We identified the Dlk1-Meg3 locus in mESCs,

Figure 4. Menin-dependent regulation of genes within the
Dlk1-Meg3 locus in mESCs, but not in PILECs (A) Expression fold
changes of genes that showed at least 4-fold change (p-value ,0.005)
in menin-null (KO) mESCs vs wild-type (WT) mESCs in microarray
analysis. Genes marked in bold are from the Dlk1-Meg3 locus. (B)
Schematic showing the Dlk1-Meg3 locus of ,300 kb region near Meg3
on chromosome 12 showing the relative location of the nearby genes
and their orientation of expression indicated with arrows, and the
location of noncoding RNAs (miRNAs and snoRNAs). (C) RT-PCR analysis
measuring mRNA levels of Meg3 and other coordinately regulated
genes (Dlk1, Rtl1 and Dio3) within the Dlk1-Meg3 locus using RNA from
WT and KO mESCs and PILECs. Gapdh served as an internal control for
RT-PCR using a 1:10 dilution of the oligo-dT primed first strand cDNA
template.
doi:10.1371/journal.pone.0037952.g004
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and the four Hox loci in PILECs to be regulated by menin in an

H3K4me3-dependent manner. This is consistent with a previous

ChIP-chip study in human islets that showed colocalization of

menin with H3K4me3 at the Hox loci [25], and another ChIP-

chip study that showed loss of H3K4me3 at the Hox clusters in

menin-null mouse embryonic fibroblasts [26]. How menin gets

recruited to the MEG3 locus remains to be determined. The

MEG3 and HOX loci, identified in this study to be regulated by

menin-dependent H3K4me3, assumes significance given that

genes within these loci have been implicated in MEN1-like tumors

types: silencing of MEG3 in pituitary tumors and HOX genes in

parathyroid tumors [16,17] (Figure 7B).

The Dlk1-Meg3 region on mouse chromosome 12 (human

chromosome 14q32) is an imprinted locus consisting of multiple

maternally expressed noncoding RNA genes and paternally

expressed protein-coding genes (Figure 4C). MEG3 encodes

a noncoding RNA that acts as an imprinted tumor suppressor

gene. Reduced MEG3 expression and promoter DNA hyper-

methylation has been observed in various human tumor types:

pituitary adenomas, neuroblastomas, pheochromocytomas, Wilms

tumors, and other carcinomas [27]. Furthermore, most of the

Figure 5. H3K4me3 at the four Hox loci is menin-dependent in PILECs UCSC genome browser images of H3K4me3 profiles (top four tracks)
at the four Hox loci in wild-type (WT) and menin-null (KO) mESCs and PILECs. The bottom four tracks show profiles for control Input DNA. Rectangular
box highlights the regions showing differential H3K4me3 in WT and KO PILECs. Genes within the four Hox loci and their orientation are marked using
arrows at the bottom.
doi:10.1371/journal.pone.0037952.g005
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genes at the DLK1-MEG3 locus are selectively silenced in clinically

nonfunctioning pituitary adenomas, ACTH-secreting pituitary

adenomas and PRL-secreting pituitary adenomas [16]. Somatic

MEN1 mutations are observed in 30% of the common sporadic

counterparts (e.g., parathyroid adenoma, gastrinoma, insulinoma

and bronchial carcinoid) of the endocrine tumor types seen in

familial MEN1, except in sporadic pituitary tumors (only 1–5%

with MEN1 mutation) [28]. Identification of Meg3 as a menin

target gene provides insights into the role of menin-regulated genes

as potential candidates for pituitary tumorigenesis. Meg3 is

essential for embryonic development indicated by the premature

lethality of Meg3 knockout mice; therefore, the role of Meg3 in

tumor development could not be assessed in mouse models

[29,30]. Early developmental factors are targets of mutation or

aberrant expression in cancers whereby tumors acquire ESC-like

self-renewal properties. Although Meg3 silencing did not affect the

viability or proliferation of menin-null mESCs, its silencing in

mature differentiated cells in vivo upon menin loss or from other

causes could contribute to tumorigenesis. Our data suggests that

perhaps other menin-independent mechanisms, activated during

the differentiation of mESCs into PILECs, induce the expression

of transcripts from the Dlk1-Meg3 locus, which would mean that

the Meg3 locus is essential for PILEC differentiation. Identification

of such mechanisms could lead to a better understanding of Meg3’s

role in early differentiation and in tumorigenesis.

HOX gene expression in mature adult cells is essential for the

maintenance of cellular identity; for instance, in cells with high

turnover such as in the proliferation and differentiation of blood

cells. Abnormal HOX gene expression has been observed not only

in acute leukemias but has also been associated with oncogenesis in

breast, cervical, lung, ovarian, prostate, and thyroid cancers [31].

For MLL-mediated leukemogenesis, MLL fusion proteins cause

constitutive HOX gene activation; without menin, specific HOX

gene expression is reduced thus preventing leukemogenesis [32].

Quantitative RT-PCR analysis of the 39 HOX genes by an earlier

study showed upregulation of 23 HOX genes among familial

MEN1 parathyroid tumors with biallelic MEN1 loss, and down-

regulation of 5 HOX genes among sporadic parathyroid tumors

without MEN1 loss [17]. This is consistent with observations in

other tumor types (e.g., breast) where both up- and down-

regulation of specific HOX genes was noted [31]. Therefore,

although menin-dependent Hox gene expression is not essential for

differentiation of mESCs into islet endocrine lineage in vitro, it

could be causative for endocrine tumorigenesis in mature cells.

However, the role of HOX downregulation in pancreatic

endocrine tumors from menin loss or from other causes needs to

be determined.

Further investigations analyzing the regulation of menin targets

(HOX and DLK1-MEG3 genes) during the initiation and pro-

gression of tumors found in MEN1 or MEN1-like sporadic

endocrine tumors will be instrumental in correlating these events

as biomarkers and/or causes of endocrine neoplasia.

Our investigation demonstrates the utility of mESCs differen-

tiated in vitro into pancreatic islet-like endocrine cells for genome-

wide analysis studies. Also, mESC-derived islet-like cells could be

used to examine factors that might help restore H3K4me3 that is

lost upon menin deficiency. Several labs are conducting improve-

ments in differentiation protocols for hormone enriched pancreatic

endocrine cells for replacement therapy in diabetes and other

diseases [21]. Such protocols may help extend our analysis of the

genome-wide menin-dependent histone modifications, and may

facilitate the in vitro analyses of factors that could counteract menin

deficiency. Available protocols for in vitro differentiation for specific

tissues affected by tumors from menin loss such as adipocytes,

parathyroids, and anterior pituitary [33,34,35] could be used for

generating specialized cells for similar genome-wide studies. This

will facilitate our understanding of menin-dependent molecular

and cellular processes in development and those disrupted in

neoplasia.

Figure 6. Menin-dependent regulation of Hox genes in PILECs. (A) Expression fold changes of genes that showed at least 4-fold change (p-
value ,0.005) in menin-null (KO) PILECs vs wild-type (WT) PILECs in microarray analysis. (B) RT-PCR analysis measuring mRNA levels of 39 Hox genes
from the 4 Hox clusters (HoxA, HoxB, HoxC and HoxD) using RNA from wild-type (WT) or menin-null (KO) mESC-derived PILECs. Gapdh served as an
internal control for RT-PCR using a 1:10 dilution of the oligo-dT primed first strand cDNA template. Blank boxes represent Hox genes whose
expression was undetectable in the WT or KO cells.
doi:10.1371/journal.pone.0037952.g006
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Methods

Antibodies
The following antibodies were used: rabbit anti-H3K4me3

(Upstate, 07–473), rabbit anti-menin (Bethyl, A300–105A), rabbit

anti-NeuroD1 (Aviva, ARP32036_T100), rabbit anti-Oct3/4

(Santa Cruz, sc-9081), mouse anti-Tubulin (Calbiochem, CP06),

normal rabbit IgG (Santa Cruz, sc-2027), HRP-conjugated rabbit

and mouse secondary antibodies (Santa Cruz, sc-2054 and sc-

2055).

mESC culture
Wild-type mESCs (TC-1) and Men1-ko (menin-null) mESCs

(3.2N) [14] were cultured on a feeder layer of IRR-STO irradiated

primary MEFs (ATCC) in ESC maintenance medium containing

Leukemia Inhibitory Factor (LIF). The mESCs were rendered

Figure 7. Proposed model for menin-dependent H3K4me3-mediated regulation of gene expression. (A) Left and right panels show
gene expression status of genes regulated by menin-dependent H3K4me3 as the wild-type and menin-null embryonic stem cells (ESCs), respectively,
differentiate into pancreatic islet-like endocrine cells. H3K4me3 marks along the chromatin is shown using filled green circles. Transcription start sites
of Meg3 and Hox genes are marked using a green (expressed) or a red (silent) arrow. Menin positively regulates Meg3 expression in ESCs, but not in
islet cells. The loss of menin results in the loss of Meg3 expression in ESCs, but not in islet cells. In contrast, menin positively regulates the expression
of Hox genes in islet cells, but not in ESCs. Hox genes are silenced in menin-null islet. (B) The gene expression status of MEG3 and HOX genes in MEN1-
like tumors types (left), parathyroid tumors (middle), and pituitary tumors (right) as previously reported [16,17].
doi:10.1371/journal.pone.0037952.g007
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feeder-free by several rounds of culturing for short periods of time

(30 mins) on tissue culture treated dishes to get rid of the attached

feeder layer cells, and the unattached mESCs were ultimately

cultured on gelatin-coated dishes.

Differentiation of mESCs into pancreatic islet-like
endocrine cells (PILECs)
Wild-type mESCs and menin-null mESCs were differentiated

into pancreatic islet-like endocrine cells (PILECs) [36] with the

reagents and protocol, ‘In Vitro Differentiation of Mouse

Embryonic Stem Cells into Insulin Secreting Pancreatic Islet-like

Clusters’ provided by the manufacturer (STEMCELL Technolo-

gies). Briefly, mESCs were plated onto gelatinized dishes in ESC

maintenance medium containing LIF for 2 days, followed by

embryoid body (EB) formation in ultra-low adherent dishes as

suspension culture in the same medium without LIF for 2 days.

EBs were plated onto gelatinized dishes in serum-free ITS-A

supplemented medium for 6 days. These pancreatic precursor

cells were trypsinized and first expanded on gelatinized dishes in

pancreatic proliferation medium (serum-free medium with N2 and

B27 supplements, and FGF-b) for 6 days; then cells were induced

to differentiate in the same dishes into pancreatic islet-like cells in

the presence of nicotinamide (in serum-free medium with N2 and

B27 supplements, but without FGF-b) for 6 days. Microscopy and

photomicrography was performed with the Axio Observer.Z1

inverted microscope (Zeiss). Pancreatic precursor cells were also

plated in gelatinized chamber slides for expansion and differen-

tiation into pancreatic islet-like cells. These chamber slides were

later used for assessing insulin by immunofluorescence. For

chromatin lysate preparation used in ChIP and ChIP-Seq,

differentiation was performed using EBs from 26106 mESCs in

each 100 mm dish.

RNA, gene expression microarray, and RT-PCR
Total RNA was isolated using Trizol (Invitrogen) and further

purified using the RNeasy kit (Qiagen) from 2 independent

cultures of wt or menin-null mESCs and 2 independent cultures of

differentiated wt or menin-null PILECs. RNA quality was assessed

on the Agilent Bioanalyzer. Each sample was processed and

analyzed at the NIDDK microarray core facility using an

Affymetrix microarray platform. Labeled RNA samples were

hybridized to Affymetrix Genechip mouse genome 430, 2.0 array.

Microarray data were normalized and analyzed using the

Affymetrix Genechip software, Microarray Analysis Suite 5.0.

For RT-PCR, DNase I (Ambion) treated RNA samples were

reverse transcribed using oligo-dT and SuperScript III (Invitro-

gen), and the first strand cDNA was used for PCR in standard

PCR reactions with Taq Gold (Applied Biosystems). PCR

products were analyzed by agarose gel electrophoresis. The

primers sequences are listed in Table S5.

Western blot
Whole cell protein extract (WCE) from wt or menin-null

mESCs, and wt or menin-null mESCs differentiated into PILECs

was prepared in buffer containing 1X TBS, 0.1% Igepal, and

protease inhibitors (Roche). Protein concentrations were de-

termined with a detergent-compatible protein assay (Bio-Rad).

Equal amount of proteins (50 mg) were separated by SDS-PAGE,

electro-blotted onto nitrocellulose membranes, and detected with

appropriate antibodies and ECL (Millipore).

Immunofluorescence
mESCs differentiated into PILECs in gelatinized chamber slides

were fixed in 4% paraformaldehyde, permeabilized with 0.5%

Triton X-100, and stained with pro-insulin C-peptide mouse

monoclonal antibody (Millipore, AB1342) and anti-mouse sec-

ondary antibody conjugated to Texas Red (Jackson ImmunoR-

esearch Laboratories). Microscopy and photomicrography was

performed with an epifluorescence microscope (Zeiss).

Chromatin immunoprecipitation (ChIP) and ChIP-Seq
Cells in culture dishes were cross-linked with 1% formaldehyde,

and processed for chromatin lysate preparation, and chromatin

immunoprecipitation (ChIP) using the ChIP assay kit (Millipore).

Chromatin lysate was sonicated with a Bioruptor system (Diag-

enode) to yield a DNA smear averaging 250 bp. Sonicated

chromatin lysate from 26106 mESCs undifferentiated or differ-

entiated was used for each ChIP with 5 mg antibody (H3K4me3,

menin, JunD, IgG). About 20 ng of DNA was obtained from each

H3K4me3 ChIP of chromatin from 26106 cells. ChIP DNA was

used for ChIP-PCR assays or for preparation of ChIP-Seq

libraries. ChIP-PCR was performed in standard reaction condi-

tions with Taq Gold (Applied Biosystems), and the products were

analyzed by agarose gel electrophoresis. The primers sequences

are listed in Table S5. For ChIP-Seq libraries, 20 ng of input

chromatin DNA or ChIP DNA was processed using the ChIP-Seq

sample prep kit (Illumina). Gel purified ChIP-Seq library DNA

was further purified by phenol-chloroform extraction and ethanol

precipitation, and processed for cluster generation, 36 cycle

sequencing, and sequence analysis using Illumina GAII.

ChIP-Seq data analysis
Sequenced 36-bp reads were aligned to the mouse reference

genome (mm9 assembly), and only those reads/tags that mapped

to unique genomic locations with at most two mismatches were

retained for further analysis. The mapped tags for each sample

were converted to a browser extensible data (BED) file, detailing

the genomic coordinate of each tag. Summary files, displaying the

normalized number of tags in 200-bp windows, in BED format

were used for viewing in the UCSC Genome Browser, and to

generate screenshots. For generating tag density plots, data across

samples were normalized by the total number of reads within each

sample.

Data availability
All the ChIP-Seq and Gene expression microarray data

generated for this study were deposited in the NCBI GEO

repository under the accession number GSE37776.

Supporting Information

Figure S1 Data quality of genome-wide H3K4me3
ChIP-Seq from mESCs. (A) UCSC genome browser images

of H3K4me3 profiles (top two tracks) at a randomly selected

,600 Kb region on chromosome 17 in wild-type mESCs. The top

track shows H3K4me3 data from a previously published report

(17). The middle and bottom track shows the data (H3K4me3 and

input, respectively) generated for this study. Genes within the locus

are shown at the bottom. (B) Normalized average tag density

across a gene unit (left) and 10 Kb surrounding the transcription

start site (TSS) (right) is shown. All genes in the mouse genome

were used to calculate the average tag density.

(TIF)
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Figure S2 Differentially expressed genes in menin-null
cells. Number of genes that were at least 2-fold differentially

expressed (p,0.005) in menin-null vs wild-type (WT) mESCs and

menin-null vs WT pancreatic islet-like endocrine cells (PILECs)

are shown. Overlaps between the differentially expressed subsets

are represented as venn diagrams.

(TIF)

Table S1 Genes differentially expressed in menin-null vs wild-

type mESCs.

(XLSX)

Table S2 Genes differentially expressed in menin-null vs wild-

type pancreatic islet-like endocrine cells.

(XLSX)

Table S3 Genomic regions with differential H3K4me3 in

menin-null vs wild-type mESCs.

(XLSX)

Table S4 Genomic regions with differential H3K4me3 in

menin-null vs wild-type pancreatic islet-like endocrine cells.

(XLSX)

Table S5 PCR Primers.

(XLSX)
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