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ABSTRACT We report the isolation, whole-genome sequencing, and annotation of
Enterobacter sp. strain RIT 637, Pseudomonas sp. strain RIT 778, and Deinococcus sp. strain
RIT 780. Disk diffusion assays using spent medium demonstrated that all bacteria pro-
duced bactericidal compounds against Escherichia coli ATCC 25922, Pseudomonas aerugi-
nosa ATCC 27853, and Staphylococcus aureus ATCC 25923.

T hree bacteria belonging to the genera Enterobacter, Pseudomonas, and Deinococcus
were isolated for their antimicrobial-producing properties. Enterobacter species are

generally considered human pathogens, but some strains have been shown to possess
antibacterial (1–3) and antifungal (4) activities. Pseudomonas species also produce antibac-
terial (5–9) and antifungal compounds (10, 11); their genomes have been mined for the
ability to synthesize secondary metabolites and drug-like natural products (12), and P.
putida produces a number of natural product families (13). Deinococcus radiodurans pro-
duces an antioxidant exopolysaccharide, while a Deinococcus strain isolated from ants pro-
duces cancer-preventing aminoglycolipids (14).

RIT 637 was isolated from the rhizosphere of the tree Malus sylvestris on
Reasoner’s 2A (R2A) medium, and RIT 778 and RIT 780 were both isolated from a
water sample (Lake Ontario) on a 1:1 mixture of R2A and LB media. The bacteria are
shown in electron microscopy images (Fig. 1) using published methods (5). The in-
hibition activity of their spent medium extracts against Escherichia coli ATCC 25922,
Pseudomonas aeruginosa ATCC 27853, and the Gram-positive strain Staphylococcus
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FIG 1 Scanning electron microscopy images of the bacteria: (A) RIT 637 (magnification, 20,000�), (B)
RIT 637 (magnification, 14,700�), and (C) a mixed culture of RIT 778 (rods) and RIT 780 (cocci)
(magnification, 32,100�).
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aureus ATCC 25923 was verified using disk diffusion assays, according to published
methods (5).

The GenElute kit (Sigma-Aldrich, USA) was used according to the manufacturer’s
protocol; DNA was quantified using the Qubit 3.0 high-sensitivity (HS) assay and
diluted to 0.25 ng/mL. Sequencing libraries were prepared using the Nextera XT kit
according to the manufacturer’s specifications (Illumina, Inc., San Diego, CA). Unique
dual-indexed libraries were pooled, diluted to 4 nM, and denatured and sequenced
using the Illumina MiSeq platform (v3 600-cycle cartridge; paired-end, 2 � 300-bp for-
mat). Adapter trimming was conducted using Trimmomatic v0.39 to remove bases
with a Phred quality score of ,15 over a 4-bp sliding window (15). Reads ,36 bp long,
or those missing a mate, were removed. SPAdes v3.14.1 was used for de novo assembly
with default parameters (16). QUAST (http://cab.cc.spbu.ru/quast/) was used for quality
assessment, excluding any contigs of ,500 bp (17). The genera and species of the
genomes were identified using the Type Strain Genome Server (https://tygs.dsmz.de)
(18). An assembly could not be assigned to a particular species with ,80% sequence
identity to the type strains. The completeness and contamination were assessed using
CheckM v1.0.18 (19) and determined to be 99.96% and 2.08% for RIT 637, 99.95% and
0.6% for RIT 778, and 99.15% and 0.43% for RIT 780, respectively. The assemblies were
submitted to GenBank for annotation of the open reading frames (ORFs), tRNAs, and
rRNAs using the Prokaryotic Genome Assembly Pipeline v5.2 (20, 21) (Table 1).

Antibiotic biosynthetic gene clusters (BGC) were identified using antiSMASH v5.0
(22) and ARTS (23). RIT 637 contains 7 BGC with 1 self-resistance gene; RIT 778 contains
14 antibiotic BGC with one case of self-resistance, while RIT 780 contains 5 BGC, all
with no similarity to known BGC. The potential novelty of the secondary metabolites is
indicated by the low similarity of 5 of 7 BGC (RIT 637), low/no similarity for 12 of 15
BGC (RIT 778), and the complete lack of similar BGC for all 5 entries (RIT 780).

Data availability. The whole-genome assemblies have been deposited in GenBank under
the accession numbers JAIHAZ000000000.1, JAIHBA000000000.1, and JAIHBB000000000.1
(Table 1).
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