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A B S T R A C T   

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common non-skin cancer with a tobacco 
consumption and infection with high-risk human papillomavirus (HPV) being major risk factors. Despite ad-
vances in numerous therapy modalities, survival rates for HNSCC have not improved considerably; a vast number 
of clinical outcomes have demonstrated that a combination strategy (the most well-known docetaxel, cisplatin, 
and 5-fluorouracil) is the most effective treatment choice. Immunotherapy that targets immunological check-
points is being tested in a number of clinical trials, either alone or in conjunction with chemotherapeutic or 
targeted therapeutic drugs. Various monoclonal antibodies, such as cetuximab and bevacizumab, which target 
the EGFR and VEGFR, respectively, as well as other signaling pathway inhibitors, such as temsirolimus and 
rapamycin, are also being studied for the treatment of HNSCC. We have reviewed the primary targets in active 
clinical studies in this study, with a particular focus on the medications and drug targets used.   

Introduction 

Squamous cell carcinoma of the head and neck (HNSCC) is one of the 
most common malignancies in the world, accounting for over 90% of 
head and neck tumors in Asia and Europe [85]. Tobacco usage, alcohol 
consumption, and infection with high-risk Human Papillomaviruses 
(HPV) are the main risk factors for HNSCC [86]. Furthermore, hyper-
calcemia and comorbidities are associated with poor clinical outcomes, 
increased relapse rates, and shorter survival times [87]. HNSCC is a kind 
of human cancer that is responsive to treatment. Despite the use of 
numerous treatment techniques in HNSCC patients, such as chemo-
radiotherapy, targeted therapy, and immunotherapy, overall clinical 
outcomes have not conclusively indicated a potential therapeutic 

benefit. 
Furthermore, individuals with metastasis are usually incurable, and 

only a few therapy approaches have been shown to improve overall 
survival (OS) or progression-free survival (PFS) [88]. Several factors 
other than treatment appear to influence OS and time to progression, 
according to multivariable study [1]. Chemotherapy is primarily 
assessed using several prognostic markers to determine the clinical 
result; however, prior treatment (chemo/radiotherapy, surgery, or 
other) and stage of cancer are the most important factors influencing the 
response [87]. Despite these restrictions, a number of pharmacological 
compounds, particularly monoclonal antibodies, have showed great 
promise in the treatment of HNSCC, and many are currently undergoing 
clinical studies [89]. 
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A large number of appropriately powered randomized and controlled 
clinical studies have established the therapeutic effects of numerous 
medications in various treatment cohorts such as chemotherapy, radi-
ation, immunotherapy, and targeted therapy [90,91]. So far, the most 
promising treatment is a combination of docetaxel, cisplatin, and 5-FU. 
However, new advancements in immunotherapy and targeted therapy 
suggest that monoclonal antibody-based medicines such as nivolumab, 
pembrolizumab, cetuximab, panitumumab, zalutumumab, and nimo-
tuzumab could be used in the future [89]. We provide a synopsis of the 
primary therapeutic techniques used in clinical trials around the world, 
as well as their application in the treatment of HNSCC. 

Recent clinical trials of HNSCC 

A large number of clinical trials in patients with HNSCC have been 
undertaken around the world. In the clinicaltrials.gov database, 1266 
clinical studies with the condition/disease ’HNSCC’ and a’start date on 
or before 31 January 2022′ have been found. A total of 393 studies were 
completed out of 1266 trials registered, while 590 studies were still 
recruiting with the following recruitment statuses: recruiting (387), 
active–not recruiting (157), not yet recruiting (42), and enrolling by 
invitation (4). (Fig. 1). Notably, the majority of completed clinical trials 
have yet to be published. Docetaxel, cisplatin, and 5-fluorouracil (5-FU) 
have been identified as the most often used medications in clinical trials 
around the world [89]. Furthermore, the thorough examination of 
completed trials led to a greater understanding of the numerous thera-
peutic agents employed in chemotherapy, immunotherapy, and targeted 
therapy. Table 1 summarizes the results of selected clinical trials 
examining the efficacy of immunotherapy and molecular targeted 
treatments. 

Chemotherapy 

Localized HNSCC is usually treated with surgery and/or chemo-
radiotherapy in a multidisciplinary manner [92]. Concomitant chemo-
therapy consists of regular docetaxel, cisplatin, and 5-FU treatment 
followed by radiation, which has been shown to enhance clinical out-
comes in post-operative or inoperable situations. Cisplatin-based treat-
ment enhanced OS in patients with localized HNSCC, according to a 
meta-analysis of 50 trials [93]. Furthermore, in high-risk patients, che-
moradiotherapy with cisplatin in the post-operative environment 
resulted in a considerable benefit. Five-year PFS increased from 36 to 47 
percent in a phase III trial with 334 patients, while five-year OS climbed 

from 40 to 53 percent. However, cisplatin-treated patients had more 
adverse effects (hematologic toxicities, mucositis, and nausea/vomiting) 
than radiotherapy-only individuals [94]. 

Other platinum-based therapy schemes were developed due to 
toxicity concerns. Three cycles of carboplatin (70 mg/m2/day; 4d) and 
5-FU (600 mg/m2/d; 4d) treatment in stage III/IV patients, for example, 
showed better 3-year PFS and OS. Mucositis of grade 3–4 looked to be a 
serious adverse occurrence once more [83]. Induction chemotherapy 
with cisplatin and 5-FU has been proven to be beneficial, as evidenced 
by a meta-analysis in the HNC cohort. In a phase III trial with 237 
inoperable stage III/IV HNSCC patients, four rounds of cisplatin (100 
mg/m2 q3w) and 5-FU (1000 mg/m2/days; 5days; q3w) followed by 
radiation increased 5-year OS by 13% as compared to radiotherapy 
alone [84]. 

Multi-combinatorial therapy have also been found to be extremely 
beneficial, as evidenced by the results of multiple clinical trials. In 
comparison to the cisplatin-5-FU combination, adding docetaxel to the 
above-mentioned cisplatin and 5-FU combination followed with che-
moradiotherapy (weekly carboplatin) increased 3-year OS [95]. Only 
grade 3/4 neutropenia was frequently reported as an adverse occurrence 
[95]. Patients who received docetaxel, cisplatin, and 5-FU (DCF) fol-
lowed by chemotherapy/radiotherapy or cetuximab/radiotherapy 
significantly improved their PFS or OS in previous trials [96,97]. DCF 
toxicity, on the other hand, remained a worry, accounting for 25.8% of 
grade 3–4 neutropenia and, more crucially, 7% of treatment-related 
death [96]. Other similar trials, on the other hand, found no signifi-
cant changes in PFS and OS [98,99]. Furthermore, when compared to 
regular DCF, patients treated with modified DCF (leucovorin as an 
adjuvant) had a greater response and tolerability. 
Chemotherapy-induced toxicity appears to be a key issue in HNSCC 
treatment, highlighting the need for less toxic therapeutic options [100]. 
To date, no standard radiation regimen for post-induction chemotherapy 
has been created. To obtain a conclusion, experiments are being done 
employing cisplatin and/or cetuximab [101,102]. 

Molecular targeted therapy 

Despite advances in traditional therapies such as surgery, chemo-
therapy, and radiotherapy, HNSCC patients’ overall survival has not 
improved considerably. Molecular targeted treatments have showed 
potential in HNSCC in the current scenario [89]. Several molecular 
targets have been implicated in the treatment of HNSCC, including 
epidermal growth factor receptor (EGFR), Vascular endothelial growth 

Fig. 1. Number of HNSCC clinical studies in different stages as on 31 January 2022, searched with the term ‘HNSCC’ on https://clinicaltrials.gov/. Numbers marked 
with asterisks represent the studies which are currently active. Studies with “Unknown status” have passed their completion date but the status has not been verified 
within the past 2 years. 
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Table 1 
Selected clinical trials of immune checkpoint inhibitors and molecular targeted therapies in HNSCC.  

Target Drug Comparison treatment Clinicaltrials.gov 
Identifier 

Phase Status Treatment setting 

PD-1 Nivolumab Therapy of investigator’s 
choice (cetuximab, 
methotrexate, docetaxel) 

NCT02105636 
(CheckMate 141) 

3 Active, not 
recruiting 

As monotherapy in R/M platinum-refractory 
HNSCC 

Pembrolizumab – NCT01848834 
(KEYNOTE-012) 

1 Completed Monotherapy for the treatment of advanced 
solid tumors 

Sintilimab, nimotuzumab (anti-EGFR) 
combined with chemotherapy 

– NCT04882462 2 Not yet 
recruiting 

R/M HNSCC 

CTLA- 
4 

Nivolumab, ipilimumab Extreme study regimen 
(cetuximab +cisplatin/ 
carboplatin +
fluorouracil) 

NCT02741570 
(CheckMate 651) 

3 Active, not 
recruiting 

First line therapy of R/M HNSCC 

Nivolumab alone or in combination 
with ipilimumab 

Surgical resection +
adjuvant radio(-chemo) 
therapy 

NCT03700905 
(IMSTAR-HN) 

3 Recruiting In surgical resectable HNSCC after adjuvant 
therapy 

LAG-3 Relatlimab (BMS-986016) alone and in 
combination with anti-PD-1 
monoclonal antibody nivolumab 
(BMS-936558) 

– NCT01968109 1/2a Recruiting Solid tumors that have spread and/or cannot 
be removed by surgery 

INCAGN02385 – NCT03538028 1 Completed Select advanced malignancies 
XmAb®22841 monotherapy & in 
combination with pembrolizumab 

– NCT03849469 
(DUET-4) 

1 Recruiting Subjects with selected advanced solid tumors 

TIM-3 TSR-022 – NCT02817633 
(AMBER) 

1 Recruiting As a single agent and combination therapy in 
advanced solid tumors 

Siglec- 
15 

NC318 – NCT03665285 1/2 Recruiting Advanced or metastatic solid tumors 

VISTA JNJ-61610588 – NCT02671955 1 Terminated Advanced cancer 
CI-8993 – NCT04475523 1 Recruiting Advanced solid tumor malignancies 

STAT- 
3 

Durvalumab (MEDI4736, PD-L1 
inhibitor) in combination with 
AZD9150 (STAT3 inhibitor) or 
AZD5069 (CXCR2 inhibitor) 

– NCT02499328 1b/2 Active, not 
recruiting 

In patients with advanced solid malignancies 
and subsequently comparing AZD9150 and 
AZD5069 both as monotherapy and in 
combination with MEDI4736 as second line 
treatment in patients with R/M HNSCC 

TTI-101 – NCT03195699 1 Recruiting Advanced cancers 
IDO-1 Pembrolizumab (MK-3475) in 

combination with INCB024360 (IDO-1 
inhibitor) 

– NCT02178722 
(ECHO-202/ 
KEYNOTE-037) 

1/2 Active, not 
recruiting 

In participants with selected cancers 

Pembrolizumab plus epacadostat, 
pembrolizumab monotherapy 

EXTREME Regimen NCT03358472 
(KEYNOTE-669/ 
ECHO-304) 

3 Active, not 
recruiting 

As first line treatment for R/M HNSCC 

combination of GDC-0919 and 
atezolizumab 

– NCT02471846 1 Completed In participants with locally advanced or 
metastatic solid tumors that has progressed 
after available standard therapy or for which 
standard therapy is ineffective, intolerable, or 
inappropriate 

BMS-986205 In combination with 
nivolumab 

Nivolumab NCT03854032 2 Recruiting In treating patients with stage II-IV squamous 
cell cancer of the head and neck 

EGFR Cetuximab Radiotherapy NCT00004227 3 Terminated In treating patients with stage III or stage IV 
cancer of the oropharynx, hypopharynx, or 
larynx 

Erlotinib in combination with 
chemoradiotherapy 

Chemo-radiotherapy NCT00410826 2 Completed In patients with stage III and IV squamous cell 
carcinoma of the head and neck 

Afatinib Placebo NCT01345669 3 Terminated As adjuvant therapy after chemo-radiotherapy 
in primary unresected patients with stage III, 
IVa, or IVb loco-regionally advanced HNSCC 

EGFR antisense DNA in combination 
with radiation and cetuximab 

– NCT01592721 1/2 Active, not 
recruiting 

In patients with locally advanced HNSCC 

BB-401 – NCT03433027 2 Completed In patients with R/M HNSCC who have failed 
all available standard therapies 

MRG003 – NCT04868162 2 Recruiting R/M HNSCC 
Dacomitinib – NCT04946968 2 Recruiting Patients With EGFR-driven advanced solid 

tumours with low EGFR-AS1 IncRNA Expr or 
other novel emerging biomarkers 

VEGF Bevacizumab and erlotinib – NCT00055913 1/2 Completed R/M HNSCC 
Pemetrexed and bevacizumab – NCT00222729 2 Completed R/M HNSCC 
Cetuximab and bevacizumab – NCT00409565 2 Completed R/M HNSCC 
Cetuximab with or without sorafenib – NCT00939627 2 Completed R/M HNSCC 

mTOR Temsirolimus – NCT01172769 
(TEMHEAD) 

2 Completed In Patients With relapsed/recurrent HNSCC 

Temsirolimus – NCT01016769 1/2 Completed In combination with weekly paclitaxel and 
carboplatin for R/M HNSCC 

Everolimus (RAD001) – NCT01051791 2 Terminated Refractory, recurrent, locally advanced 
squamous cell carcinoma of the head and neck 

CDK Palbociclib (PD 0,332,991) – NCT02101034 1/2 

(continued on next page) 
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factor (VEGF) and phosphatidiylinositol 3-kinase (PI3K). Concurrent 
chemoradiotherapy has been linked to a slew of hazardous side effects in 
HNSCC patients, suggesting that exploring targeted therapies could be a 
good strategy in this cohort [89]. 

Epidermal growth factor receptor (EGFR) 

EGFR is a well-known cancer drug target as it influences cell pro-
liferation, apoptosis, angiogenesis, and metastasis of cancer cells. EGFR 
is a transmembrane protein, and after binding to the ligand (EGF and 
TGF-α), it forms a homo- or heterodimer with other Erb family proteins 
(ErbB2, ErbB3, ErbB4) and activates the downstream signaling through 
the mitogen-activated protein kinase (MAPK) cascades and PI3K/AKT/ 
mTOR pathway. This signaling cascade leads to the activation of certain 
genes in the nucleus, which promotes tumorigenesis and metastases 
(Fig. 2) [1,2]. EGFR overexpression is a negative prognostic factor that 
can be seen in about 90% of the HNSCC cases [3]. Furthermore, its 
overexpression has been positively correlated with earlier relapse, 
reduced disease-free survival and OS. Considering the abovementioned 
facts, inhibition of EGFR was targeted in HNSCC therapy. For EGFR 
inhibition, drug molecules either bind to the extracellular domain of 
EGFR, disrupting the link between ligands, or the cytoplasmic region of 

EGFR and inhibit the EGFR autophosphorylation by competing with 
ATP and thus interfere with the downstream cell signaling cascade [4]. 

Monoclonal antibodies 
Monoclonal antibodies form a major subset of the current EGFR 

targeted therapy regimen and have demonstrated significant clinical 
benefits. Cetuximab is a chimeric monoclonal antibody that binds to 
domain III of the extracellular region of EGFR, and its anti-cancer effects 
are based on apoptosis induction and inhibition of cancer proliferation 
and angiogenesis [5]. Cetuximab also inhibits the phosphorylation of 
EGFR and prevents signals from being transmitted to the cell [6]. Several 
clinical trials have demonstrated that cetuximab in combination with 
radiotherapy increased the median OS and PFS [7,8]. In 2006, after 
promising application of cetuximab in combination with radiotherapy, 
USFDA approved its use for HNSCC therapy (Table 2). Panitumumab 
[9], zalutumumab [10], and nimotuzumab [11] are other promising 
human EGFR monoclonal antibodies which have shown favorable but 
limited effects in HNSCC patients. Other investigational EGFR mono-
clonal antibodies are being evaluated as monotherapy as well as com-
bination therapy in several phase 1/2 clinical trials (NCT02277197, 
NCT03491709, and NCT03744208) (Fig. 2). 

Table 1 (continued ) 

Target Drug Comparison treatment Clinicaltrials.gov 
Identifier 

Phase Status Treatment setting 

Active, not 
recruiting 

With cetuximab in patients with incurable 
SCCHN 

Palbociclib Cetuximab NCT02499120 2 Active, not 
recruiting 

With cetuximab, in HPV negative, cetuximab 
naïve patients with R/M HNSCC after failure 
of one prior platinum containing 
chemotherapy regimen 

P276–00 – NCT00899054 
(SPARK) 

1/2 Completed In combination with radiation, in patients 
with recurrent and/or locally advanced 
HNSCC 

P276–00 – NCT00824343 
(MONARCH) 

2 Completed In Indian patients with recurrent, metastatic 
or unresectable locally advanced HNSCC 

Flavopiridol – NCT00020189 2 Completed R/M HNSCC 
ALK1 Dalantercept – NCT01458392 2 Completed R/M HNSCC  

Fig. 2. Inhibitors and monoclonal antibodies targeting various molecules in EGFR and VEGFR pathways being utilized in clinical trials of HNSCC.  
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Tyrosine kinase inhibitors (TKIs) 
Drugs of this class are under investigation in several early and late 

phase clinical trials. Gefitinib and erlotinib are the popular inhibitors 
which have shown potential for the treatment of HNSCC (Fig. 2) [12]. In 
a phase II study (NCT00410826), erlotinib in combination with cisplatin 
and radiotherapy was reported to improve complete response rate (CRR) 
as compared to the control group (only cisplatin and radiotherapy) but 
that was not significant [13]. Lapatinib is another TKI that inhibits EGFR 
(ErbB1) and HER2 (ErbB2) receptors by binding to the intracellular 
phosphorylation domain (ATP-binding pocket) preventing their 
self-phosphorylation and subsequent signaling activation [14]. Combi-
natorial therapy of lapatinib and capecitabine has been found effective 
and well-tolerated in HNSCC patients [15]. Afatinib, an irreversible 
ErbB family blocker, showed anti-proliferative and antitumor activity in 
in-vitro studies, which was further explored in clinical trials [16]. Effi-
cacy of afatinib has been found comparable to cetuximab as evidenced 
by a phase II trial in recurrent HNSCC treated previously with 
platinum-based chemotherapy [17]. The utility of afatinib as an adju-
vant has also been evaluated in a phase III trial (LUX-Head & Neck 2, 
NCT01345669) following chemoradiotherapy in the advanced stage of 
HNSCC [18]. Similarly, dacomitinib, an oral pan-EGFR inhibitor, has 
also shown clinical potential during the first line treatment of R/M 
HNSCC, warranting further studies as a part of combination therapy in 
advanced disease conditions (Fig. 2) [19]. 

EGFR anti-sense DNA 
EGFR anti-sense DNA is a synthetic DNA sequence designed as an 

antisense to the DNA sequence of EGFR gene (Fig. 2). It inhibits the 
EGFR expression by tumor cells and thus inhibits tumor growth. Anti-
sense therapy tends to be more effective due to the specificity and 
flexibility. Another advantage of this therapy is the ability to overcome 
drug resistance, since, the sequence of antisense DNA can be altered 
according to the genetic mutations of the targeted genes [20]. EGFR 
antisense DNA has been shown to reduce HNSCC proliferation and 
viability in preclinical studies [20,21]. Intratumoral EGFR antisense 
DNA has been evaluated in two phase 1/2 studies (NCT00903461 and 
NCT01592721), in combination with cetuximab and radiotherapy, in 
patients with locally advanced HNSCC and was well tolerated [22]. 
Intratumoral EGFR antisense DNA (BB-401) has completed a phase 2 
trial (NCT03433027) evaluating the safety, tolerability, and efficacy in 
patients with R/M HNSCC who have failed all available standard ther-
apies, and results have not been published yet. 

Vascular endothelial growth factor (VEGF) 

VEGF is a crucial signaling protein that stimulates angiogenesis and 
is responsible for the formation of new blood vessels [23]. Over-
expression of VEGF has been positively correlated in majority of HNSCC 
cases and favors tumor growth, cell migration and metastases. Activated 
angiogenesis by tumor cells reduce the sensitivity to radiation in the 
patients undergoing radiotherapy treatment [24]. There are several 
clinical trials focused on VEGF, where targeted therapies have helped 
inhibiting the angiogenesis The most commonly used molecules in tar-
geted therapies are bevacizumab, sunitinib, sorafenib and vandetanib 
(Fig. 2). [25]. Bevacizumab is USFDA approved monoclonal antibody 

and employed in the treatment of several cancer types including colon 
cancer, kidney cancer and cervical cancer. Although underlying mech-
anism remains unclear, pre-clinical studies have confirmed the ability of 
bevacizumab to improve the HNSCC sensitivity towards radiotherapy 
[26]. In a phase 1/2 trial (NCT00055913), bevacizumab in combination 
with erlotinib was well tolerated with four patients (out of 48) having a 
complete response. Median time of OS and PFS were 7.1 and 4.1 months 
[27]. Another phase 2 study (NCT00222729) investigating combinato-
rial therapy of bevacizumab and pemetrexed also has shown favorable 
outcomes [28]. Cetuximab (anti-EGFR) and bevacizumab (anti-VEGF) 
were evaluated in preclinical as well as phase 2 clinical study 
(NCT00409565). The combination enhanced growth inhibition both 
in-vitro and in-vivo, and also reduced tumor vascularization. Clinically, 
16% of objective response rate (ORR) and 73% of disease control rate 
(DCR) were observed [29]. Furthermore, in a phase II trial, bevacizumab 
in combination with high doses of cisplatin and intensity-modulated 
radiation therapy (IMRT) delivered favorable clinical outcomes in 
advanced stage HNSCC [30]. It is worth adding that IMRT minimizes the 
radiation exposure to healthy area by a planned and focused photon 
irradiation to the tumor confined area [31]. 

VEGFR and platelet-derived growth factor receptor (PDGFR) inhibition 
Several preclinical and clinical trials have indicated the importance 

of small molecules capable of modulating the signaling pathways acting 
through VEGFR and PDGFR [32]. Sorafenib is USFDA approved ser-
ine/threonine protein kinase inhibitor that targets VEGFR and inhibits 
tumor growth by inhibiting cell proliferation, cell migration, cell inva-
sion (Fig. 2) [33] and inducing autophagy [34]. Furthermore, Sorafenib 
sensitizes the HNSCC to radiotherapy by its ability of double-stranded 
DNA break repair inhibition [35]. Sunitinib is another FDA approved 
oral kinase inhibitor that targets VEGFR, PDGFR and c-kit, however its 
activity is not explored much in HNSCC cases. During clinical trials, 
Sunitinib showed poor activity alone, but in combination with cetux-
imab, it showed significant synergic effects, and addition of radio-
therapy completely abolished tumor growth [36]. Vandetanib is also a 
potential oral kinase inhibitor targeting EGFR, VEGFR, and RET-tyrosine 
kinase [37]. Pazipanib, nilotinib, axitinib and linifanib are other VEGF 
inhibitors which are under investigation in various clinical trials of 
HNSCC [32] (Fig. 2). 

PI3K/AKT/mTOR pathway 

The PI3K/AKT/mTOR pathway is an intracellular signaling pathway 
and serves a crucial role in the regulation of cell cycle [38]. Activation of 
this pathway leads to reduced apoptosis and increased cell proliferation 
in tumor. mTOR is a serine threonine kinase which has been found 
activated in HNSCC and thus a potential therapeutic target [39]. Pri-
marily there are two types of mTOR inhibitors. First generation in-
hibitors are derived from rapamycin (antibiotic) while second 
generation is ATP competitive such as Torin1, PP242 and PP30. For 
mTOR inhibition in clinical trials, rapamycin analogues have been used 
including temsirolimus and everolimus (Fig. 2) [40]. Pre-clinical studies 
and patient derived xenograft models indicates that temsirolimus and 
everolimus is effective in inhibiting cell proliferation in HNC [41,42]. 

Several mTOR inhibitors are being evaluated alone or in 

Table 2 
Monoclonal antibodies approved for the treatment of HNSCC.  

S. 
No. 

Drug Mechanism of 
action 

Year Disease conditions Clinical trial Ref. 

1. Cetuximab EGFR inhibitor 2006 HNSCC after platinum-based therapy (in combination with radiotherapy) NCT00004227 [8] 
2009 R/M HNSCC (in combination with platinum–fluorouracil chemotherapy) NCT00122460 [68] 

2. Pembrolizumab PD-1 inhibitor 2016 HNSCC after platinum-based chemotherapy NCT01848834 [66] 
2019 Metastatic or unresectable recurrent HNSCC (in combination with platinum and fluorouracil 

(FU) for all patients and as a single agent for patients whose tumors express PD‑L1) 
NCT02358031 [71] 

3. Nivolumab PD-1 inhibitor 2016 R/M HNSCC with disease progression on or after a platinum-based therapy NCT02105636 [65]  
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combination therapies (with chemo/radiotherapy) in several phase1/2 
clinical trials. Temsirolimus has been evaluated in a phase 2 study 
(NCT01172769) in platin- and cetuximab refractory R/M HNSCC pa-
tients and has shown tumor shrinking properties with clinical efficacy. 
However, the incidence of mutations (KRAS, BRAF, and PI3KCA) were 
lower than anticipated and showed no association with clinical outcome 
[43]. A combination therapy consisting of temsirolimus along with 
low-dose weekly carboplatin and paclitaxel was evaluated in a phase 2 
study (NCT01016769) in R/M HNSCC patients and showed efficacy 
comparable to that of standard high-dose chemotherapy regimens and 
was well tolerated as well [44]. Everolimus failed to show efficacy as 
monotherapy in a phase 2 trial in previously treated R/M HNSCC pa-
tients (NCT01051791) [45]. Metformin, widely used drug for the 
treatment of type-2 diabetes worldwide, has shown to inhibit mTORC1 
activity by both AMPK dependent and independent mechanisms and 
reduced the growth of HNSCC cells in in-vitro and in-vivo models [46,47]. 
Based on these studies, metformin is being evaluated in several phase 
1/2 clinical trials alone and in combination with chemo/radiotherapy 
and immunotherapies [48]. 

Cyclin dependent kinases (CDK) 

Cyclin dependent kinases play crucial roles in the cell-cycle regula-
tion and are also involved in the pathogenesis of several diseases 
including cancer. USFDA approval of three CDK 4/6 inhibitors viz., 
palbociclib, ribociclib, and abemaciclib for the treatment of advanced 
and metastatic breast cancer has already proven the efficacy of this class 
of molecules as potential anticancer drugs (Fig. 3) [49]. Several CDK 
inhibitors have been evaluated in preclinical as well as clinical studies 
for the treatment of HNSCC. Ribociclib (LEE011), a CDK 4/6 inhibitor, 
has shown cytostatic effects in human papillomavirus (HPV) negative 
HNSCC models [50]. In another study, ribociclib was shown to induce 
cell-cycle arrest in HNSCC cell lines and also exhibited radio-
sensitization effects, suggesting that a combination of CDK 4/6 in-
hibitors with radiotherapy could be a promising option for the treatment 
of HNSCC [51]. 

Clinically, palbociclib, in combination with cetuximab, was 

evaluated in a phase 2 study (NCT02101034) in platinum- resistant and 
cetuximab-resistant HPV unrelated HNSCC patients. An objective 
response rate of 39% and 19% was observed in platinum-resistant and 
cetuximab-resistant groups, respectively, warranting further studies of 
CDK 4/6 inhibitors [52]. The same combination was investigated in 
another phase 2 study (PALATINUS, NCT02499120) in 
platinum-resistant, cetuximab-naive, HPV-unrelated HNSCC patients. 
Median OS was reported to be 9.7 months in palbociclib plus cetuximab 
group and 7.8 months in cetuximab group, showing a prolongation of 
median OS in combination group compared to cetuximab alone [53]. 
Riviciclib (P276–00), a novel inhibitor of CDK 1/4/9 [49], has been 
tested in two clinical studies (NCT00899054 and NCT00824343) in 
advanced HNSCC patients, and results are forthcoming. Flavopiridol, a 
CDK 4/9 inhibitor, has also completed a phase 2 trial (NCT00020189) 
focussed on the effectiveness in R/M HNSCC patients. Additional clinical 
trials investigating CDK inhibitors to treat HNSCC are ongoing (Fig. 3). 

Activin receptor-like kinase-1 (ALK1) 

The activin receptor-like kinase-1 (ALK1) belongs to TGF-β class and 
plays crucial role in modulating angiogenesis and vasculature develop-
ment [54]. Dalantercept, an anti-angiogenic compound, has shown a 
significant potential as an ALK1 inhibitor in patients suffering from 
advanced solid tumors including HNSCC in a phase 2 clinical trial 
(NCT01458392) (Fig. 3) [55]. Apart from this several other line of tar-
geted drugs such as proteasome inhibitors (e.g. bortezomib) and Notch 
inhibitors has also been explored [56–58], however an extensive clinical 
investigation is required in further studies. 

Signal transducer and activator of transcription 3 (STAT3) 

STAT3 is a transcriptional factor involved in various cellular pro-
cesses including cell proliferation, survival, differentiation, and angio-
genesis. In tumor cells, STAT3 becomes hyperactivated decreasing the 
expression of immunity factors like interferons, pro-inflammatory cy-
tokines, and chemokines, while increasing the expression of growth 
factors [59]. STAT3 has also been found to be involved in the increased 
expression of various checkpoint molecules (PD-1, CTLA-4), the com-
bination of STAT3 inhibitors with checkpoint inhibition therapy has 
shown encouraging results by increasing the therapeutic potential of 
checkpoint inhibitors and decreasing the resistance against them [59]. 
Various clinical studies are ongoing evaluating the potential of combi-
nation immunotherapy for the cancer treatment. A combination therapy 
of durvalumab (MEDI4736, PD-L1 inhibitor) and danvatirsen 
(AZD9150, STAT3 inhibitor) or AZD5069 (CXCR2 inhibitor) has been 
evaluated in a phase 1b/2 study (NCT02499328) in patients with 
advanced solid malignancies and HNSCC. This study showed improved 
anticancer activity as a result of combining PD-L1 inhibitor with STAT3 
inhibitor as compared to PD-L1 monotherapy [60]. Further, enhanced 
activity was reported by the combination of PD-L1 inhibitor with STAT3 
inhibitor compared to CXCR2 inhibitor plus PD-L1 inhibitor or PD-L1 
monotherapy and warrants further investigation. Another STAT3 in-
hibitor, TTI-101, is undergoing a phase 1 evaluation in patients with 
advanced cancers including HNSCC (NCT03195699). 

Indoleamine 2, 3-dioxygenase 1 (IDO-1) 

IDO-1 is a tryptophan catabolizing enzyme that is expressed by the 
cancer cells and cancer-associated cells. It exerts immunosuppressive 
effects by suppressing activity of T-cells and NK cells, and activation of 
regulatory T-cells. Further, IDO-1 is involved in the development of 
resistance against checkpoint inhibitors. Combination of IDO-1 inhibitor 
with checkpoint inhibitors could be an alternative therapy for the cancer 
treatment. Several IDO-1 inhibitors are in currently clinical 
development. 

Epacadostat is an investigational oral IDO-1 inhibitor; in a 
Fig. 3. Inhibitors and monoclonal antibodies targeting ALK1 and cyclin- 
D pathways. 
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preliminary phase 1/2 study (ECHO-202/KEYNOTE-037, 
NCT02178722) Epacadostat in combination with pembrolizumab 
showed tolerable safety profile and encouraging antitumor activity in 
multiple advanced solid tumors [61]. A phase 3 clinical study (KEY-
NOTE-669/ECHO-304, NCT03358472) is evaluating the efficacy and 
safety of pembrolizumab and epacadostat combination therapy, pem-
brolizumab monotherapy, and the EXTREME regimen (cetuximab +
cisplatin/carboplatin + 5-FU) as first-line treatment for R/M HNSCC. 
Another IDO-1 inhibitor, Navoximod (GDC-0919), has been studied in 
combination with a PD-L1 inhibitor atezolizumab in a phase 1 study 
(NCT02471846) in patients with advanced solid tumors, but failed to 
show additional benefit of combination [62]. BMS-986205 (linrodostat) 
is a selective and irreversible IDO-1 inhibitor that is being evaluated in a 
phase 2 clinical trial (NCT03854032) in combination with nivolumab in 
treating patients with stage II-IV HNSCC. Another phase 3 clinical study 
(NCT03386838) evaluating BMS-986205 plus nivolumab vs. standard of 
care EXTREME regimen in first line R/M HNSCC has been withdrawn. 

Immunotherapy 

Surgery and radiotherapy, with or without conventional chemo-
therapy, are the existing mainstays of advanced head and neck squa-
mous cell carcinoma (HNSCC) treatment. Advanced human 
papillomavirus (HPV)-negative HNSCC has a dismal prognosis despite 
this multi-modality treatment. Treatment intensification with molecular 
targeted therapies is not enough to appreciably improve overall sur-
vival. Immunotherapy for head and neck cancer offers patients, partic-
ularly those with HPV-related malignancies, interesting new treatment 
options without the potentially fatal side effects of traditional 
treatments. 

It is now widely accepted that a properly functioning immune system 
may effectively resist tumor cell effects. Blocking negative signaling 
pathways in effector cells (e.g., CTLA-4, PD-1/PD-L1) or inducing co- 

stimulatory signals could thus be used to boost host immunity. 
Agonistic monoclonal antibodies like MEDI0562 (against OX-40), ure-
lumab and utomiliumab (against CD137), and motolimod (toll-like 
receptor-8 agonist) have been studied in multiple clinical studies in the 
co-stimulatory cohort [103]. It’s worth noting that, in addition to 
cytotoxic effects, chemotherapy can also cause immunogenic changes 
that can stimulate the immune system. Cisplatin, for example, upregu-
lates immunosuppressive signaling in the tumor microenvironment by 
activating the expression of major histocompatibility complex I and 
promoting the lytic activity of effector cells [104]. These findings sug-
gest that immunotherapy could be combined with chemoradiotherapy 
to improve clinical outcomes in HNSCC. Immunotherapies are being 
tested on a variety of patient subgroups, including HPV-positive and 
HPV-negative subtypes. As indicated by multiple clinical trials [103], 
immunotherapy in HPV positive cases targets different non-host 
virus-specific tumor antigens E6 and E7. Recent clinical evidence from 
immunotherapy trials suggests that using the right checkpoint inhibitors 
can increase survival by many times. 

Programmed cell death protein 1 (PD-1) and programmed death-ligand 1 
(PD-L1) 

Programmed death-1 (PD-1) is an immunoreceptor which is 
expressed on T and B lymphocytes, as well as on monocytes and den-
dritic cells (Fig. 4) [63]. PD-1 is activated through binding of its ligands: 
PD-L1 and PD-L2, and as a result, suppress inflammatory response. Both 
PD-1 and PD-L1 have been found to be overexpressed in cancer cases, 
including head and neck, lung, colon, melanoma, breast, and kidney. In 
fact, overexpression of these receptors and ligands results in dysfunction 
of anti-cancer signaling, which allows tumor cells to escape from im-
mune surveillance [64]. Thus PD-1 receptor and its ligands (PD-L1 and 
PD-L2) are attractive targets for various cancers, including HNSCC. 

In a clinical trial (CheckMate 141, NCT02105636), an anti-PD-1 

Fig. 4. Interaction between various co-inhibitory molecules expressed on cancer cells (APCs) and various immune cells infiltrated in tumor microenvironment 
(TME). APC, antigen-presenting cells; CTLA-4, cytotoxic T lymphocyte antigen 4; LAG-3, lymphocyte activation gene 3; MHC, major histocompatibility complex; PD- 
1, Programmed death 1; PDL-1, Programmed death-ligand 1; TIM-3, T-cell immunoglobulin mucin protein 3; VISTA, V-domain Ig suppressor of T cell activation. 
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antibody nivolumab was evaluated in recurrent/metastatic (R/M) 
HNSCC patients at an intravenous dose of 3 mg/kg every 2 weeks and 
compared with weekly single agent intravenous chemotherapy using 
methotrexate (40–60 mg/m2), docetaxel (30–40 mg/m2) or cetuximab 
(first dose at 400 mg/m2 then 250 mg/m2). The group treated with 
nivolumab showed less adverse effects and increased OS as compared to 
other groups [65]. In another prospective trial (KEYNOTE-012, 
NCT01848834) with an anti-PD-1 antibody pembrolizumab (10 mg/kg 
every 2 weeks), clinical outcomes in terms of efficacy and toxicity were 
found similar to nivolumab [66]. Furthermore, an expanded study in 
similar cohort of R/M HNSCC patients at a fixed intravenous doses of 
200 mg/kg every 3 weeks also showed promising clinical outcome in 
line with the nivolumab trial [67]. It is worth adding that several factors 
need to be determined before interpreting or comparing the results of 
different trials, as the inclusion criteria of trials may vary to a significant 
extent, which may affect the outcome across the trials. For example, 
pre-treatment status and age range of participants, randomized or 
non-randomized trials, drug doses, and treatment duration are major 
factors that directly impact final clinical outcomes. To date, cetuximab 
as an adjunct to platinum/5-FU, and, nivolumab monotherapy have 
responded to achieve significantly longer OS as compared to their 
respective control arms [68]. Immune checkpoint inhibitors usually 
elicit a delayed but a unique long-term off-treatment survival response 
than that of other targeted therapies (e.g., EGFR inhibitors) and con-
ventional chemotherapies [69,70]. Both nivolumab and pembrolizumab 
are well tolerated and have gained FDA approval to be used as new care 
options for the treatment of HNSCC (Table 2) [32]. 

Cytotoxic T lymphocyte antigen 4 (CTLA4) 

CTLA-4 is a receptor present on the surface of activated T-lympho-
cytes (Fig. 4), it competes with CD28 receptors to bind with B7 ligands 
present on the antigen presenting cells (APCs, tumor cells), inhibiting 
the activation signal required for T-cells. CTLA-4 has also been reported 
to inhibit IL-2 production, T-cell proliferation, and induce cell-cycle 
arrest [72]. Blocking CTLA-4 receptors can result in T-cell activation 
and immune response in the host cells. To date, only one CTLA-4 in-
hibitor, ipilimumab (Yervoy), has been approved for the treatment of 
unresectable or metastatic late-stage melanoma as well as adjuvant to 
surgery for high-risk stage III melanoma patients [73,74]. Recently, 
USFDA has approved the combination of ipilimumab and nivolumab as 
first-line treatment of metastatic non-small cell lung cancer (PD-L1 
tumor expression ≥1%) after an investigation in a randomized, 
open-label, phase-3 clinical trial, CHECKMATE-227 (NCT02477826) 
[75]. 

CTLA-4 inhibitors are being evaluated in several clinical studies for 
the treatment of HNSCC. The combination of ipilimumab and nivolumab 
is undergoing a randomized, open-label phase 3 clinical trial as first-line 
treatment of R/M HNSCC compared to standard of care (CheckMate 
651, NCT02741570). Another phase 3 clinical study, IMSTAR-HN 
(NCT03700905) is evaluating the potential of nivolumab, alone or in 
combination with ipilimumab, as immunotherapy vs standard follow up 
in surgical resectable HNSCC after adjuvant radio(-chemo)therapy [76]. 

Lymphocyte activated gene-3 (LAG-3) 

LAG-3 is present on the surface of activated T-cells as well as natural 
killer (NK) cells, B cells, and dendritic cells (Fig. 4). It binds to MHC-II 
present on APCs inhibiting the interaction of T-cell receptors with 
MHC-II. Crosslinking of LAG-3 and T-cell receptors can impair cytokine 
production and T-cell proliferation [77]. Thus, LAG-3 interferes T-cell 
signaling in immune response. LAG-3 blockers can inhibit the binding of 
LAG-3 to MHC-II and provoke an immune response to the APCs. 
Anti-LAG-3 antibody relatlimab (BMS-986016) is being evaluated in a 
phase 1/2 study to assess the safety, tolerability, and effectiveness alone 
or in combination with anti-PD-1 nivolumab for the treatment of solid 

tumors (NCT01968109). INCAGN02385, an Fc-engineered IgG1κ anti-
body having high affinity to LAG-3, is being evaluated against advanced 
malignancies including HNSCC in a phase 1 study (NCT03538028). A 
bispecific antibody, XmAb®22841, targeting CTLA-4 and LAG-3 simul-
taneously has been developed and is being tested as monotherapy and in 
combination with pembrolizumab in patients with advanced solid tu-
mors in an ongoing trial (DUET-4, NCT03849469). More clinical trials 
are undergoing to assess anti-LAG-3 antibodies alone or in combination 
with other drugs (nivolumab, relatlimab, ipilimumab; NCT04326257). 

T cell immunoglobulin mucin-3 (TIM-3) 

TIM-3 is an inhibitory protein expressed by CD4+ and CD8+ T-cells, 
and other immune cells including regulatory T-cells, mast cells, natural 
killer cells and dendritic cells (Fig. 4). Galectin-9 act as major ligand for 
TIM-3, and is produced by the APCs (tumor cells). Upon binding, 
galectin-9-TIM-3 complex suppresses immune responses by disrupting 
the formation of immune synapse, phosphatase recruitment, and ulti-
mately, cell becomes anergic [78]. Blocking the interaction of galactin-9 
and TIM-3 by anti-TIM-3 antibodies may facilitate the immune response 
against cancer, inhibiting tumor growth. In a preclinical study, PD-1 and 
TIM-3 have been reported to be co-expressed on T-cells of mice bearing 
solid tumors; and combined targeting both targets was highly effective 
in inhibiting tumor growth and restoring T-cell functions [79]. TIM-3 is 
also being targeted in multiple clinical trials for the treatment of various 
types of cancer. An anti-TIM-3 antibody TSR-022 is being evaluated in a 
phase 1 dose escalation and dose expansion in patients with advanced 
solid tumors (AMBER, NCT02817633). In another phase 1 clinical study, 
INCAGN02390 is undergoing safety, tolerability and preliminary effec-
tiveness evaluation as a monotherapy in patients with advanced ma-
lignancies including HNSCC. 

Siglec-15 

Siglec-15 is an immunosuppressive protein expressed on tumor cells 
and/or tumor-associated macrophages (Fig. 4). It has been shown to 
suppress T-cell proliferation and activation in-vitro as well as in-vivo. On 
the other hand, siglec-15 deficiency has been shown to promote T-cell 
responses, and control tumor growth. Also, siglec-15 targeting with 
monoclonal antibody in murine model inhibited tumor growth by 
reversing T-cell suppression [80]. Thus, targeting siglec-15 by specific 
monoclonal antibodies can be a therapeutic option for cancer treatment, 
or it can provide additional support to the existing anti-cancer immu-
notherapy. Currently, anti-siglec-15 monoclonal antibody, NC318, is 
being evaluated in a phase 1/2 dose-escalation, safety and tolerability 
study, in patients with advanced or metastatic solid tumors including 
HNSCC cohort (NCT03665285). 

V-domain immunoglobulin suppressor of T cell activation (VISTA) 

VISTA is a negative checkpoint regulator, expressed on hematopoi-
etic cells, mainly tumor infiltrating myeloid cells. It has been shown to 
inhibit T-cell proliferation and cytokine production in vitro. The same 
study highlighted that anti-VISTA mAb enhanced T-cell responses [81]. 
Another preclinical study demonstrated that VISTA mAb administration 
enhanced T-cell proliferation and function, as well as, suppressed tumor 
growth in transplantable and inducible tumor models [82]. Thus, VISTA 
could be an important target for the cancer therapeutics, either as a 
monotherapy or in combination with other therapies. To date, there has 
been two clinical studies utilizing anti-VISTA antibodies in subjects with 
advanced cancer, of which, a phase 1 study of monoclonal antibody 
JNJ-61610588 has been terminated (NCT02671955). Another phase 1 
clinical trial evaluating the safety, tolerability, pharmacokinetics, 
pharmacodynamics, and anti-cancer activity of CI-8993, anti-VISTA 
antibody, in patients with advanced solid tumor malignancies is 
currently in the recruiting stage (NCT04475523). 
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Conclusion 

Despite the fact that a variety of therapeutic techniques are being 
used to improve the prognosis of HNSCC patients, the treatment has yet 
to be revolutionized due to the disease’s complexity and heterogeneity. 
Several medications have been studied in clinical trials around the world 
as monotherapies or in combination with other drugs. Chemotherapy, 
chemoradiotherapy, targeted therapy, and immunotherapy have all 
shown varying results depending on a variety of parameters such as the 
stage of HNSCC, comorbidities, age, and past treatment. Because of the 
critical involvement of the immune system in carcinogenesis, immuno-
therapy has emerged as a promising treatment option in recent years. 
The development of targeted therapeutics is based on a molecular un-
derstanding of the underlying biology of cancer progression, however 
the response is limited because to the complicated interplay of numerous 
cell-signaling cascades. To ensure their significance in diverse cohorts 
and stages of HNSCC, more clinical trials are needed. Docetaxel, 
cisplatin, and 5-FU were the most commonly used medications in the 
prospective and conventional treatment of HNSCC. Apart from these 
medications, the USFDA has only approved three others: cetuximab, 
pembrolizumab, and nivolumab. Furthermore, there is still room for 
advancement in immunotherapy and the addition of appropriate prog-
nostic biomarkers for better therapeutic options in HNSCC patients. 
Biomarkers may play a crucial role in onco-immunotherapy, according 
to the suggestions of a research committee from the National Cancer 
Institute. For example, tumor-related biomarkers (e.g., interferon, PD-1/ 
PD-L1, and CTLA-4 expression), peripheral blood mononuclear cell- 
related biomarkers (e.g., MDSCs and regulatory T lymphocytes, HPV 
virus peptides), serum biomarkers (e.g., cytokines, antibodies, and 
growth factors), bio-imaging (e.g., computed tomography and/or posi-
tron emission Although these biomarkers are not routinely used before 
and after diagnosis, they must be prospectively validated in well- 
designed controlled clinical trials. The direct link between exosomes, 
metabolomics, and the aggressiveness of HNSCC has become a hot area 
of research in recent years. Exosomes as HNSCC biomarkers, therapeutic 
targets, and drug carriers for HNSCC treatments require more research, 
and metabolomics must overcome a number of challenges before it can 
be extensively employed in clinical research and practice. 
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