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ABSTRACT

Nanopore sequencing, also known as single-
molecule real-time sequencing, is a third/fourth gen-
eration sequencing technology that enables deci-
phering single DNA/RNA molecules without the poly-
merase chain reaction. Although nanopore sequenc-
ing has made significant progress in scientific re-
search and clinical practice, its application has been
limited compared with next-generation sequencing
(NGS) due to specific design principle and data
characteristics, especially in hotspot mutation de-
tection. Therefore, we developed Nano2NGS-Muta
as a data analysis framework for hotspot mutation
detection based on long reads from nanopore se-
quencing. Nano2NGS-Muta is characterized by ap-
plying nanopore sequencing data to NGS-liked data
analysis pipelines. Long reads can be converted
into short reads and then processed through ex-
isting NGS analysis pipelines in combination with
statistical methods for hotspot mutation detection.
Nano2NGS-Muta not only effectively avoids false
positive/negative results caused by non-random er-
rors and unexpected insertions-deletions (indels) of
nanopore sequencing data, improves the detection
accuracy of hotspot mutations compared to conven-
tional nanopore sequencing data analysis algorithms
but also breaks the barriers of data analysis methods
between short-read sequencing and long-read se-
quencing. We hope Nano2NGS-Muta can serves as a
reference method for nanopore sequencing data and
promotes higher application scope of nanopore se-
quencing technology in scientific research and clini-
cal practice.

INTRODUCTION

Nanopore sequencing, also known as third-generation
sequencing (TGS) or single-molecule real-time DNA
sequencing, enables the identification of single DNA
molecules without requiring the polymerase chain reac-
tion (PCR). TGS is dominated by two technologies: Pacific
Biosciences’ (Pacbio) single molecule fluorescent sequenc-
ing through their single molecule real time (SMRT) tech-
nique (1) and Oxford Nanopore Technologies (ONT) or Qi-
tan Technology’s nanopore sequencing by electrophoresis
(2–5). The former technique harnesses the intrinsic speed
of DNA polymerase. Ten bases can be detected per sec-
ond, which is 20 000 times the speed of chemical sequenc-
ing. This technique also exploits the processing capacity
of DNA polymerase, and long DNA molecules can be se-
quenced in a single reaction. The latter technique is marked
by the absence of PCR amplification or chemical labeling
during real-time sequencing of DNA or RNA molecules,
thus avoiding the introduction of false mutations during
operation and ensuring high fidelity. The sequencing speed
can reach 450 bp/s for DNA and 70 nt/s for RNA. NGS
can generate reads of hundreds of bases, whereas TGS can
produce reads of several kilobases, or even ultra-long reads
(several megabases) (6,7).

In recent years, nanopore sequencing technology has
made great achievements in the application of genome (es-
pecially bacterial genome) assembly and metagenomics.
Long reads from nanopore sequencing platforms such as
ONT are widely used in the study of bacterial genomes
(8–10). Compared with short reads from next generation
sequencing, long reads can span larger genomic repeats
and complex genomic structures, thus facilitating down-
stream genome assembly and analysis (11–13). Meanwhile,
most metagenomic studies are based on the NGS plat-
form (Illumina), whose sequencing time is >16 h, and
the overall sample-to-answer turnaround time is 48–72
h, although there are some studies into developing real-
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time analysis methods for NGS sequencing platforms, aim-
ing to shorten the overall run time (14–16). In contrast,
nanopore sequencing identifies pathogen sequences with
real-time computational analysis within 50 min if the host
DNA background can be effectively removed (e.g. using
saponin (17)), and the detection can be completed within
6 h (18). Nanopore sequencing can be used to detect the
genomes of a wide range of pathogenic bacteria and emerg-
ing viruses and holds great promise for clinical applica-
tions, such as real-time surveillance of epidemics at specific
sites.

Currently, the application of mutation detection based
on nanopore sequencing data is far less extensive than that
of genome assembly and metagenomic detection. Although
methods for detecting single nucleotide mutations (includ-
ing germline mutations and somatic mutations) based on
TGS data have not yet been well established, several re-
search groups worldwide have been developing algorithms
to accurately identify mutations such as single-nucleotide
variants (SNVs) and insertions-deletions (indels) for TGS
data. These algorithms include the Longshot with a pair-
hidden Markov model (19), the Clair with a deep neural net-
work model (20), and the PEPPER-Margin-DeepVariant
developed and optimized via DeepVariant (21). However,
there are challenges in the accurate detection of single bases
from nanopore sequencing data, such as low sample qual-
ity, low stability of current passing through nanopores, and
low accuracy of the base calling model. These challenges
lead to poor sequencing quality, errors in base calling, and
non-random systematic errors (7,22), which greatly dimin-
ish the algorithm’s accuracy. Despite the advances in meth-
ods for detecting single base mutations based on nanopore
sequencing data, these methods have obvious shortcomings.
Most notably, they are limited by sequencing quality, the
alignment algorithm, distribution of training data in deep
learning, narrow applications scenarios, and low robust-
ness.

Thus, we developed the Nano2NGS-Muta framework to
address the above problems. The main idea is to convert
long reads into NGS-liked short reads for downstream anal-
ysis, to some extent effectively avoiding the problems caused
by non-random systematic errors or low alignment rate re-
sulting from a high sequencing error rate, and improving
the reads effective utilization. Nano2NGS-Muta was de-
signed to evaluate and correct the detection results based
on the ‘common sense’ that there is higher base quality in
the middle than in the ends of the reads, the unique identi-
fiers (UIDs)/unique molecular identifiers (UMIs) used in
data analysis, and the weight used in statistical analysis.
Nano2NGS-Muta can effectively control the sensitivity and
specificity, and is theoretically particularly suitable for de-
tection of mutations in a hotspot panel for clinical diagno-
sis. Nano2NGS-Muta is highly compatible with the conven-
tional methods used for NGS data analysis, such as GATK
Best Practice pipeline, thus expanding the tools of nanopore
sequencing for hotspot mutation detection. Theoretically,
Nano2NGS-Muta can break the barriers of data analy-
sis methods between short-read sequencing and long-read
sequencing, thus increasing the potential applications of
nanopore sequencing technology in scientific research and
clinical diagnosis.

Figure 1. Schematic diagram of the Nano2NGS-Muta framework.

MATERIALS AND METHODS

Principles of Nano2NGS-Muta framework

Nano2NGS-Muta is used for hotspot mutation detection
with long reads from nanopore sequencing (Figure 1) based
on the following three steps. (i) Long reads are converted
to short reads for subsequent analyses. First, we define the
length of the short read is L, the number of times to ex-
tracted short read is N, the step size of the hotspot to be
detected between each extraction on the short read is D,
and N equals integer of L divided by D and subtract 1.
To do this, the hotspot should be scattered to various po-
sitions at the short read, such as the 5′ end, the middle, and
the 3′ end. The L-length target reference sequences con-
taining different hotspot positions are extracted from the
reference genome. Second, m bases at the top and end of
each extracted reference sequence are obtained as paired
seed sequences, and the seed sequences should not contain
the hotspots. That is, the paired seed sequences are located
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outside the hotspots. Finally, N paired seed sequences are
used to extract short reads from the original nanopore se-
quencing reads with zero mismatch to obtain N NGS-liked
short read sets. (ii) The N short read sets were analyzed by
NGS mutation analysis pipeline, respectively. (iii) The mu-
tation detection results in N short read sets are integrated
and filtered. Here, we use a ‘common sense’ to identify false-
positive variants in NGS: it is generally accepted that NGS
sequencing is more accurate for bases at the middle of reads,
and the accuracy of bases at both ends decreases due to se-
quencing fluctuation at the 5′ end or poor sequencing qual-
ity at the 3′ end. The position of the mutation in the read
also affects the score of the quality during sequence align-
ment, though the influence is insignificant due to random
sequencing. On this basis, we assign weights to the N analy-
sis results. High weights are assigned to hotspots in the mid-
dle; low and identical weights are assigned to hotspots at
both ends; and the total weight is 1. For instance, hotspots
located at the 5′ end, middle, and the 3′ end of extracted
reads (N = 3) are assigned weights of 0.3, 0.4, and 0.3, re-
spectively. Finally, the N analysis results and their weights
are used to calculate the weighted sum according to the fol-
lowing equation, which are the final hotspot mutation de-
tection results.

y = w1x1 + w2x2 + . . . + wn−1xn−1 + wn xn,

where wn is the weight of hotspot mutation detection result
in the nth short read set, and w(n+1)/2 > wn= w1> wn−1=
w2 > . . . . . . , if n is odd; or wn/2 = w n

2 +1> wn= w1> wn−1=
w2 > . . . . . . , if n is even;

n∑

1
wn = 1; xn is the hotspot muta-

tion detection result in the nth short read set.

Simulation of nanopore sequencing data containing hotspot
mutations

Data simulation was performed on 10 single-base muta-
tions (BRAF-p.V600E, EGFR-p.L858R, EGFR-p.T790M,
EGFR-p.G719A, KRAS-p.G12C, KRAS-p.G13D, PIK3CA-
p.H1047R, PIK3CA-p.E545K, NRAS-p.Q61R, FGFR3-
p.Y375C) and two indel mutations (EGFR-p.E746A750del
and EGFR-p.A767V769dup). For each hotspot, 9000 wild-
type reads and 1000 mutant reads were randomly generated
(read lengths: 1020–3968 bp; mean = 2467 bp; sd = 783
bp). For each hotspot, data were mixed at theoretical mu-
tation frequencies of 10%, 5%, 1%, 0.5% and 0.1%, with
three replicates for each frequency. Negative control sam-
ples were randomly generated from 9000 wild-type reads
with three replicates. Read duplication was removed from
all data. Base quality was randomly selected between the
ASCII code ‘+’ and ‘K’ (phred33: Q10–Q42) (Supplemen-
tary Sheet Table S2). Since some hotspots were close to each
other, the simulated reads might contain neighbor hotspots,
which led to increased wild-type supporting read count and
slight fluctuation in the frequency of such hotspots.

Experimental procedures for standard samples containing
hotspot mutations

A genomic DNA (gDNA) standard product (GeneWell
Biotechnology Co., Ltd, Shenzhen, Guangdong, China)

with a tumor fraction of about 5% was used in this study,
and it contained 7 hotspot mutations, BRAF-p.V600E
(8.00%), EGFR-p.L858R (5.00%), EGFR-p.T790M
(5.00%), KRAS-p.G12C (5.00%), KRAS-p.G13D (5.00%),
EGFR-p.G719A (5.00%) and EGFR-p. E746A750del
(5.00%). The original gDNA standard product, its
5-diluted and 10-diluted samples with the GM12878
cell line (Coriell Institute, Camden, New Jersey, USA)
and the GM12878 cell line gDNA samples have also
three replicates. We designed 6 forward and reverse
amplification primers for these 7 hotspot mutations,
which were 5′-CAGCTTGCTGCAATGCACACAAG
TT-TTCTGTAGATTTCGAGGCCAGAGTCCTT-3′,
5′-AGTTGGGCTCAGCAAGGTAGGCATC-TGATTCC
AATGCCATCCACTTGATAGG-3′, 5′-GCCTGACTC
AGTGCAGCATGGATTTC-GAGAGATGACGGGCA
ACGGCGTAT-3′, 5′-TGCTTGGGATGGAAGTTCTAC
TC-CATATTGACTTCTAACACTTAGAGGTGG-3′,
5′-TGGTGACATGTTGGTACATCCATCCG-G
CCTGAGGTTCAGAGCCATGGACC-3′ and
5′-TGCGTTCGGCACGGTGTATAAGGTA-TCGAT
TCTGCTTCCCTAGTCCGCTG-3′, respectively. Then
we performed PCR amplification, end repaired, and lig-
ated nanopore sequencing adapters to build sequencing
libraries. Finally, the nanopore sequencing was performed
on the QNome-9604 instrument according to the manu-
facturer’s instructions (Qitan Technology (Beijing) Co.,
Ltd, Beijing, China), which is a new nanopore sequencing
platform.

Analysis of simulated data and standard data

Nano2NGS-Muta was used for data conversion. Read
length (L) was set to 101 bp, step size (D) was 10 and seed
length (m) was 10 bp. The positions of hotspots in the ex-
tracted sequence were 11, 21, 31, 41, 51, 61, 71, 81 and 91
(N = 9). Paired seed sequences were used to select the target
sequences from 18 simulated datasets with zero mismatches.
SAM files were generated from alignment using the BWA-
MEM algorithm (version: 0.7.17-r1188) (23). SAM files
were sorted to generate BAM files using Samtools (version:
1.12) (24). Mutations were detected using Freebayes (ver-
sion: v1.0.2) (25) and recorded in VCF files. The data in
VCF files were annotated using ANNOVAR (26). Weights
were assigned to hotspots according to their positions (0.05,
0.075, 0.10, 0.15, 0.25, 0.15, 0.10, 0.075 and 0.05). Finally,
the weighted sum was calculated for all hotspot mutations
to obtain the final analysis results. Mutation analysis and
comparison were performed on the simulated data and stan-
dard data using the Longshot (version 0.4.1), PEPPER-
Margin-DeepVariant (r0.4.1), and iGDA (27) algorithms.
Minimap2 (version 2.21-r1071) (28) and Sambamba (ver-
sion 0.8.0) (29) were used for alignment and sorting, respec-
tively.

RESULTS

Nano2NGS-Muta accurately detected hotspot mutations in
simulated data

We compared the detection performance of hotspot
mutations by Nano2NGS-Muta + Freebayes, Long-
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shot, PEPPER-Margin-DeepVariant and iGDA on
simulated data. We found that the results of Nano2NGS-
Muta + Freebayes were exactly as expected (Supplementary
Sheet Table S2). Neither false-positive nor false-negative
results were observed, resulting in 100% sensitivity and
specificity (Figure 2A). Longshot detected only six muta-
tions at 10% frequency (BRAF-p.V600E, EGFR-p.L858R,
PIK3CA-p.H1047R, PIK3CA-p.E545K, NRAS-p.Q61R
and FGFR3-p.Y375C). No mutations were detected by
PEPPER-Margin-DeepVariant and iGDA. For PEPPER-
Margin-DeepVariant, the result may be explained by the
fact that the lower limit of mutation detection was set to
the default value (may be) of 20%. iGDA used the infor-
mation of multiple loci to detect low-frequency SNVs and
showed poor performance on detection of low-frequency
hotspot mutations due to the intrinsic limitations of the
algorithm’s design. This result highlights the limitations
of mutation detection by PEPPER-Margin-DeepVariant
and iGDA. We compared the mutation frequency detected
by Nano2NGS-Muta + Freebayes between repetitions and
found no significant differences (Figure 2B).

Nano2NGS-Muta had better performance in standard sam-
ples

We also compared the detection performance of hotspot
mutations by Nano2NGS-Muta + Freebayes, Longshot,
PEPPER-Margin-DeepVariant and iGDA algorithms on
sequencing data for standard samples (Supplementary
Sheet Tables S3 and S4). We found that except for
Nano2NGS-Muta + Freebayes, none of the other three
software detected the seven known hotspot mutations. For
Nano2NGS-Muta + Freebayes (Figure 2C), if we set 0.1%
as the threshold for all sites in the data of repeated experi-
ments, the detection sensitivity of this method was 95.24%,
100.00% and 85.71%, and the specificity was 28.57%,
28.57% and 42.86%, respectively. Although there were false
positive results, there was no false-negative result in which
none of the other three methods have detected the target
mutations. While we also found that in the 0.5% and 1%
mutation frequency analysis results, the mutation frequency
values of replicated samples have more obvious fluctua-
tions, and the NM12878 data also had 0.19% to 1.86% of
positive results detected. This may be related to the base
errors introduced during the experiment, sequencing pro-
cess, basecalling algorithm and/or the background noise of
the system. Therefore, we inferred that for the Nano2NGS-
Muta + Freebayes mode for nanopore sequencing data, the
mutation frequency limit of detection (LoD) may be 2% or
even 5%.

DISCUSSION

Nanopore sequencing, or long-read sequencing, provides
many advantages over short-read sequencing (30). Com-
pared with the commercial short-read sequencers, such as
Illumina’s HiSeq, NextSeq and MiSeq instruments (31,32),
BGI’s MGISEQ and BGISEQ instruments (33,34), and
Thermo Fisher’s Ion Torrent instrument (35), which gener-
ate reads of up to 600 bases, long-read sequencing technolo-
gies can produce >10 kb reads (30). Short-read sequencing

has evolved rapidly over the last decade and is very econom-
ical and efficient; its sequencing data are highly accurate;
and there are various well-developed data analysis tools and
workflows (32,36). These features are lacking in long-read
sequencing technologies, and the developed tools have lim-
ited application (6,37). Most typically, the clinical applica-
tion of liquid biopsy or early cancer screening, nanopore
sequencing platform is helpless so far. Although there are
some research methods that can be applied to cell-free DNA
(cfDNA) and/or circulating tumor-derived DNA (ctDNA),
they are limited to the direction of experimental develop-
ment and optimization or copy number variation detection
(38,39). There are still no more breakthroughs in these re-
searches and/or applications, so NGS technology is still the
main choice. But more and more studies is devoted to the
development of new methods, such as Gorzynski et al. de-
veloped a rapid whole-genome sequencing method, which
using nanopore DNA sequencing technology to improve
the prognosis of critically ill patients, and the time to iden-
tify disease-causing genetic variants reduced to <8 h (40).

The main idea of Nano2NGS-Muta framework is to con-
vert long reads into NGS-liked short reads for data anal-
ysis. The converted data are compliable with the analysis
algorithms and software used for NGS short reads. The
framework takes advantage and avoids the shortcomings
of nanopore sequencing data while improving the reads ef-
fective utilization, thus accelerating the commercialization
of nanopore sequencing technology. We also tried to apply
this concept to the metagenomic taxonomical classification
detection, named Nano2NGS-Meta (Supplementary Fig-
ure S1), and the satisfactory results were obtained. By an-
alyzing the simulated data and standard sequencing data
with Nano2NGS-Meta, and comparing with the results an-
alyzed by commonly used software for nanopore sequenc-
ing data, we found that the performance of Nano2NGS-
Meta can be on a par with that of the others, even slightly
better in some places (Supplementary Figures S2 and S3,
Sheet Tables S5–S8). For example, sample P3 contained cul-
turable Pseudomonas aeruginosa and Streptococcus pneu-
moniae. Only Pseudomonas aeruginosa was identified in the
Charalampous et al. paper, whereas both species were de-
tected by Nano2NGS-Meta. Similarly, sample P34 con-
tained Staphylococcus aureus, which was also identified by
Nano2NGS-Meta but missed by the paper’s method (Sup-
plementary Table S1).

However, there are still some challenges in the current
version. The problems in Nano2NGS-Muta include the se-
lection of read length, the position of hotspots, and the ef-
ficiency of software, which may affect the stability and ac-
curacy of data analysis. The algorithms and processes used
for subsequent NGS data analysis also need to be consid-
ered. Although a higher number of sampling dataset is as-
sociated with a higher accuracy of results, each sampling
dataset should be analyzed, which increases not only the
analysis time but also the consumption of computing re-
sources. GATK analysis pipeline, for example, consumes
large amount of memory and storage. All these problems
need to be addressed considering data volume and prac-
tical application. It is necessary to balance analysis accu-
racy with the time and consumption of computational re-
sources. Another is the LoD to this method, that is, when
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Figure 2. Comparison of Nano2NGS-Muta + Freebayes, Longshot, PEPPER-Margin-DeepVariant, and iGDA on simulated data and standard experi-
mental data. (A) Distribution of mutations detected by Nano2NGS-Muta + Freebayes on simulated reads. (B) Significance of differences in the mutation
frequency between replicates detected by Nano2NGS-Muta + Freebayes. (C) Performance of four detection methods on standard experimental data.
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the threshold of mutation frequency is detected, the false
positive rate and false negative rate could be better con-
trolled, which more samples need to be collected for evalu-
ation. Therefore, for the application scenarios of the detec-
tion method combined with the data characteristics should
be emphatically considered. For example, the default LoD
of Deepvariant-pepper-margin may be 20%, and the LoD
of Nano2NGS-Muta may be 2% or even 5%, which means
that mutation detection of nanopore long-read sequenc-
ing may only be used to detect the high-frequency muta-
tions or low-frequency rare mutations such as genetic dis-
eases. These will also be the focus on further development
and optimization of the Nano2NGS-Muta framework. The
detection of hotspot mutations by iGDA and PEPPER-
Margin-DeepVariant algorithms is dependent on the train-
ing dataset with consistent data characteristics and distribu-
tion, whereas our own experimental data were insufficient
as training dataset. Therefore, the default training datasets
published with software were used to do the data analysis,
but it may be inappropriate to use such results for compar-
ison. Although we simulated ONT or ONT-like data, they
were not generated on the same experimental and sequenc-
ing platforms. We will regenerate training datasets for these
two algorithms based on lots of experimental data to im-
prove the accuracy of evaluation.

Though the overall analysis performance of Nano2NGS-
Meta was close to conventional analytical algorithms for
nanopore sequencing data, there were differences in the cal-
culated relative abundance and problems of missed or false-
positive species. For the undetected species, to be noted,
we checked the analyzed process files and found that some
results were not detected in all the extracted data, they
were just filtered out when integrating them. For example,
Salmonella enterica was not detected by the Nano2NGS-
Meta + Metaphlan in simulated data-1. In fact, this strain
was detected in 4 of 30 extracted NGS-liked short read sets,
the relative abundance value was 0.129, 0.355, 0.247 and
0.123, respectively, and the remain results were 0. With a
confidence level of 0.05, the 95% confidence interval is [-
0.0008, 0.0578], so the four detected results were regarded as
outliers. Certainly, the reason may also be insufficient ran-
domly simulated data, loss of long-read information during
NGS-liked short-read extraction or inaccurate taxonomi-
cal classification due to the similar conserved regions of se-
lected species along with the presence of mismatches and
indels. This issue required more detailed analysis and dis-
cussion. Moreover, the construction of standard databases
for alignment is critical, and the databases used by conven-
tional software have specific characteristics and modifica-
tions. Probably, none of these databases include all species,
which requires laboratory-built databases for taxonomical
classification. Selecting the threshold and filtering the rel-
ative abundance of detected species are also important.
Based on the analysis of published data, some true-positive
species could be detected but showed very low relative abun-
dance (1e − 16), and such a low threshold would inevitably
lead to very high false-positive rate. If a high threshold is
used for detection, some key pathogenic species might be
missed in scenarios with strong host backgrounds (e.g. alve-
olar lavage fluid) (41,42). The host genome not only reduces
the relative proportion of metagenomic DNA and the vol-

ume of metagenomic data in subsequent analyses but also
increases sequencing data volume for validation, leading to
high sequencing cost and extremely low cost-effectiveness.
In data analysis, it is important to identify microbial taxa
with high sensitivity and a well-controlled false-positive rate
and to address inefficient data analysis caused by the intrin-
sic characteristics of nanopore sequencing data. Therefore,
we suggest that different thresholds of relative abundance
should be used in different application scenarios to balance
false-positive and false-negative results. Undoubtedly, there
are also significant challenges in the analytical methods for
metagenomic data from nanopore sequencing platform.

In summary, the Nano2NGS-Muta as an analytical
framework requires further development and optimization
regarding computing resource consumption, running time,
and statistical algorithms, among others, to minimize run-
ning time and resource consumption while ensuring the ac-
curacy of analysis. In the future, we will continue to ex-
tend this concept to develop algorithms for the detection
of copy number variation, structural variation, gene fusion
and gene expression, and integrate them into a big frame-
work, named Nano2NGS. While enriching the functions
of the Nano2NGS framework, it also expands more ap-
plications in scientific research and clinical practice. Deep
learning models or algorithms such as Convolutional Neu-
ral Networks (CNN), support vector machines (SVM) and
bootstrap will also be incorporated into the framework
to improve the performance and accuracy of analysis. We
are also working on optimizing the Nano2NGS-Muta and
Nano2NGS-Meta to improve the performance of nanopore
sequencing data analysis. These efforts will accelerate the
application and popularization of nanopore long-read se-
quencing, so that TGS can better serve the development of
the sequencing industry and the commercialization of pre-
cision medicine.

CONCLUSIONS

The Nano2NGS-Muta framework converts nanopore se-
quencing data into NGS-liked short-read data and can
be compatible with the NGS data processing algorithms
and/or software for hotspot mutation detection, and shows
higher sensitivity and specificity. Nano2NGS-Muta can im-
prove effective utilization of nanopore sequencing data, and
effective in solving the problems of low detection accuracy
and limited applications of nanopore sequencing data anal-
ysis tools. Nano2NGS-Muta is highly extensible and accel-
erates the application of nanopore sequencing technology
in scientific research and clinical diagnosis.

DATA AVAILABILITY

The download link of the strain reference genome se-
quences is https://www.ncbi.nlm.nih.gov/genome/; the
download link of the NA12878’s Nanopore data is
https://github.com/nanopore-wgs-consortium/NA12878;
the download link of the NA12878′s data analysis result
file is ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/
Garvan NA12878 HG001 HiSeq Exome/project.NIST.
hc.snps.indels.vcf. FASTQ data files for this study can be
found in the NCBI Sequence Read Archive (SRA) database

https://www.ncbi.nlm.nih.gov/genome/;
https://github.com/nanopore-wgs-consortium/NA12878;
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome/project.NIST.hc.snps.indels.vcf
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https://github.com/langjidong/Nano2NGS.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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