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Amino acid deprivation therapy (AADT) is a promising strategy for developing

novel anticancer treatments, based on variations in metabolism of healthy

and malignant cells. L-asparaginase was the first amino acid-degrading

enzyme that received FDA approval for the treatment of acute lymphoblastic

leukemia (ALL). Arginase and arginine deiminase were effective in clinical trials

for the treatment of metastatic melanomas and hepatocellular carcinomas.

Essential dependence of certain cancer cells on methionine explains the

anticancer efficacy of methionine-g-lyase. Along with significant progress in

identification of metabolic vulnerabilities of cancer cells, new amino acid-

cleaving enzymes appear as promising agents for cancer treatment: lysine

oxidase, tyrosine phenol-lyase, cysteinase, and phenylalanine ammonia-

lyase. However, sensitivity of specific cancer cell types to these enzymes

differs. Hence, search for prognostic and predictive markers for AADT and

introduction of the markers into clinical practice are of great importance

for translational medicine. As specific metabolic pathways in cancer cells are

determined by the enzyme expression, some of these enzymes may define the

sensitivity to AADT. This review considers the known predictors for efficiency

of AADT, emphasizing the importance of knowledge on cancer-specific amino

acid significance for such predictions.
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Introduction

More than 50 years of research on cancer cell metabolism
has concluded that a deficiency of certain amino acids inhibits
the growth and proliferation of tumor cells much more than
that of normal cells (1). Hence, àmino-acid degrading enzymes
have been studied for their potential to treat cancer since
1960s, starting with a report of Broome et al. on antilymphoma
effects of L-asparaginase (2, 3). Metabolic reprogramming
commonly occurs in tumor cells to sustain the high nutritional
requirements for carcinogenesis and growth (4). Many cancer
cells develop an auxotrophic response to certain amino acids,
such as methionine, arginine, and asparagine (5–7). For the
treatment of acute lymphoblastic leukemia (ALL), bacterial
L-asparaginase has been approved since 1970s (8). Arginine-
depleting enzymes are suggested to treat metastatic melanoma
(9). Arginine deiminase and recombinant human arginase 1 that
deplete serum arginine, have recently been evaluated in phase
II clinical trials (10, 11). Summarizing available information on
the molecular mechanisms of the cancer-specific action of these
amino-acid-degrading enzymes, our review draws attention
to the amino-acid-replenishing counterparts among potential
predictors of the efficacy of anticancer action of the amino
acid-degrading enzymes.

L-asparagine depletion therapy

In normal cells, L-asparagine is produced by asparagine
synthetase (EC 6.3.5.4), which catalyzes the synthesis of
asparagine from aspartate, using glutamine as a nitrogen source
(Figure 1A). Leukemic and certain other types of cancer cells
are dependent on exogenous sources of asparagine due to low
expression of the asparagine-synthetase-encoding gene ASNS
(12, 13).

During the last 50 years, bacterial asparaginase have
been widely used for acute lymphoblastic leukemia treatment
(8). This enzyme has recently received attention in the
treatment of advanced extra-nodal NK/T-cell lymphoma
(14, 15). In vitro, it is shown that asparaginase-resistant cells
become more sensitive to asparagine depletion when ASNS
expression is downregulated, as observed in lymphoblasts
(K562) and non-Hodgkin’s lymphoma (Karpas299) cells (16,
17). Immunohistochemistry of ASNS protein is available to
assess the enzyme expression (18), in addition to estimation
of mRNA levels. Tissue microarrays have been utilized
to identify asparagine-synthetase-low cancer cells within
a number of solid cancer subtypes in non-hematological
malignancies (19). Based on this study, asparagine synthetase
level in the tumor cells is proposed as a predictive biomarker
for their sensitivity to asparaginase therapy (19). In 2006,
FDA approved the first-line treatment of patients with
ALL by chemically modified form of E. coli asparaginase

(Oncaspar R©). The modification by polyethylene glycol
(i.e., pegylation) extends half-life of asparaginase in vivo
(20). Erythrocytes-encapsulated asparaginase (GRASPA R©,
Erytech) represents another innovative formulation, that has
been investigated for treatment of solid tumors, including
pancreatic cancer (21). Conjugation with heparin-binding
peptides or directed mutagenesis are also employed for the
therapeutic usage of asparaginase isolated from bacterial sources
(22–25).

A wide range of ASNS expression in different tissues is
reported. Particularly high levels of expression are detected in
the brain, testes, thyroid, and normal exocrine pancreatic cells.
Acute lymphoblastic leukemia and hepatocytes typically have
low ASNS expression (26, 27), and more than 50% of pancreatic
ductal adenocarcinomas have very low ASNS expression (28).
Thus, asparaginase may be suggested as effective drug for
the treatment of pancreatic ductal adenocarcinomas lacking
ASNS expression. Limited asparaginase efficiency in fighting
many solid cancers, such as prostate and ovarian cancer, is
believed to be due to the medium/high expression of ASNS
in these cancer types (29, 30). Moreover, it has been shown
that ASNS hypermethylation results in low ASNS protein
expression in liver and gastric cancer cells, making them
more susceptible to asparaginase therapy in vitro and in vivo
(31). However, many studies have demonstrated that acute
lymphoblastic leukemia can still be inhibited by asparaginase
even when ASNS is expressed (32, 33). Additionally, no
association was found between the asparaginase sensitivity
and various levels of asparagine synthetase in acute myeloid
leukemia subgroups in human cancer cells, probably explained
by post-translational control of asparagine synthetase (34, 35).
Asparagine auxotrophy not only has the apparent implication
in heightened sensitivity to asparagine depletion and, therefore,
to asparaginase therapy, but also implies the cancer cells’ tight
reliance on external supplies of the amino acid even under
normal growth conditions (26).

In summary, ASNS expression is suggested as a marker for
clinical prediction of asparaginase resistance (19), supported
by majority of the studies revealing a strong negative
correlations of the asparaginase efficacy with the ASNS
gene expression. High ASNS expression may contribute to
asparaginase resistance of tumor cells. Low ASNS expression in
tumor cells, including certain solid cancers, such as pancreatic
ductal adenocarcinomas, could be used to suggest patients the
treatment with asparaginase-added chemotherapy.

L-arginine depletion therapy

L-arginine is a crucial semi-essential amino acid involved
in a variety of physiological functions, including cellular
proliferation, through the arginine-dependent signaling
pathways. These pathways involve the arginine-dependent
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FIGURE 1

Reactions catalyzed by the amino-acid degrading enzymes used in cancer therapy (blue arrows) and reactions catalyzed by human enzymes
that may affect the efficacy of the anticancer enzymes (black arrows). (A) The reactions of asparagine synthetase and asparaginase in asparagine
depletion therapy. (B) The reactions of argininosuccinate synthase, argininosuccinate lyase, ornithine transcarbamylase, arginine deiminase and
arginase in arginine depletion therapy. (C) The reactions of methionine synthase and methionine γ-lyase in methionine depletion therapy.
(D) The reaction of L-lysine oxidase in lysine depletion therapy. The human genes encoding enzymes discussed as biomarkers are in red italic.

generation of nitric oxide and polyamines, as well as activation
of mTOR, a nutrient-sensing kinase strongly implicated in
tumorigenesis. Arginine is synthesized from citrulline in two
steps: (1) Argininosuccinate synthase converts L-citrulline
and aspartic acid to argininosuccinate; (2) argininosuccinate
lyase converts argininosuccinate to arginine and fumaric acid
(Figure 1B).

Arginine deiminase (EC 3.5.3.6) and arginase (EC 3.5.3.1)
degrade arginine. Arginine deiminase is widely distributed in
bacterial organisms and certain anaerobic eukaryotes, and is
isolated from a variety of sources, such as Pseudomonas putida,
Giardia intestinalis, Streptococcus pyogenes, Mycoplasma
spp. (36–39) and others. Arginine deiminase catalyzes

the irreversible conversion of arginine to L-citrulline and
ammonia (40). This process produces anti-tumor effect
in a wide range of human cancers, including hepatoma,
malignant melanoma, malignant fibrosarcoma, squamous cell
carcinoma, nasopharyngeal carcinoma, and lung carcinoma
in vitro and in vivo (41, 42). Arginine deiminase has been
effective in phase II clinical trials for metastatic melanoma,
hepatocellular carcinoma, and malignant mesothelioma
(42–46). Therapeutic usage of pegylated arginine deiminase,
possessing antiproliferative action against human leukemia
cells (47).

Arginase is a manganese-dependent enzyme catalyzing the
arginine conversion to ornithine and urea. Recombinant human
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TABLE 1 Enzyme expression as predictive markers for treatment
cancer with amino-acid degrading enzymes.

Therapeutic
enzyme

Amino acid
degraded

Human
gene(s) for
enzyme(s)-
predictor(s)

Pathway of
enzyme-
predictor

L-Asparaginase L-asparagine ASNS* Asparagine
biosynthesis

Arginine
deiminase and
arginase

L-arginine ASS*/ASL*/
OTC***

Arginine
biosynthesis from
citrulline or
regeneration from
ornithine

Methionine
γ-lyase

L-methionine MTR** Methionine
regeneration from
homocysteine

L-Lysine oxidase L-lysine DHTKD1***/
GCDH***/
SIRT5***

Protein
glutarylation***

*Validated in clinical trials.
**Validated in non-clinical trials.
***Putative predictors/ pathways, based on metabolism and/or biological functions of
L-arginine and L-lysine.

arginase 1 has previously been shown in vitro to suppress non-
Hodgkin’s lymphoma cells (48), prostate cancer cells (LNCaP,
DU-145, and PC-3) (49), melanoma cells, laryngeal squamous
cell carcinoma (50), leukemia cells (51), non-small cell lung
cancer (NSCLC) (52), and ovarian cancer cells (53).

Arginine-depriving enzymes, such as arginase and arginine
deiminase, may be useful to fight cancer cells (54) which
lack significant levels of the arginine-replenishing enzymes:
the ASS-encoded argininosuccinate synthase and ASL-encoded
argininosuccinate lyase. On the other hand, overexpression
of arginase in cells significantly increases the concentration
of L-ornithine, that is recycled to arginine by ornithine
transcarbamylase/argininosuccinate synthase (Table 1). These
arginine re-synthesizing reactions provide resistance to the
arginase treatment in several malignancies (5).

Deficiencies of argininosuccinate synthase and/or OTC-
encoded ornithine transcarbamylase are regarded to be
prognostic biomarkers and predictors of sensitivity to
the arginine deprivation (55). Human melanoma (56),
hepatocellular carcinoma (57), colon cancer (HT29) (58) and
prostate carcinoma (59) have been demonstrated to be sensitive
to arginine depletion by arginine deiminase due to low or
negligible expression of ASS/ASL genes in vitro and in vivo
(60–62). In contrast, arginine deiminase is ineffective in the
treatment of cancers with high or medium expression of ASS,
like ovarian (63), and colon cancer in vitro and in vivo (SW480
and HCT116) (58).

More than a 75% reduction of argininosuccinate synthase
activity in cancer cells, compared to their healthy counterparts,
is a positive prognostic marker for arginine deiminase efficacy
(46). Expression of ASL and OTC genes may also provide

valuable information to predict the efficacy of arginine-
depletion therapy (52, 64).

L-methionine depletion therapy

L-methionine is an essential amino acid that contains
a sulfur atom and participates in such a crucial function
as DNA methylation. In normal cells, methionine can be
recycled by re-methylation of homocysteine, catalyzed by the
cobalamin-dependent enzyme methionine synthase (Figure 1C)
or by betaine-homocysteine methyltransferase in the liver
(65). Experiments show that many cancer cells, including
leukemia (L1210 and J111) (66), breast (MDA-MB231, MCF7,
SKBR3, and T47D) (67), lung (A2182 and SK-LU), kidney
(A498), CNS (SK-N-SH), prostate (PC-3), and colon (SK-
CO-1 and loVo) (68) cancer cells, cannot proliferate when
methionine in growth medium is replaced with homocysteine
in vitro.

Methionine γ-lyase (EC 4.4.1.11) is a bacterial pyridoxal-
5’-phosphate-dependent enzyme which catalyzes γ-elimination
of L-methionine to generate α-ketobutyric acid, methyl
mercaptan and ammonia (69). The enzyme has been isolated
from Pseudomonas putida (70), Trichomonas vaginalis (71),
Clostridium sporogenes (72), Entamoeba histolytica (73),
Citrobacter freundii (74), Clostridium tetani (75), and others.
Methionine γ-lyase from Pseudomonas putida inhibited the
growth of neuroblastoma (LAN-1 and NMB-7) (76), Yoshida
sarcoma and lung cancer (H460) (77), advanced breast cancer
(78, 79), renal cancer and lymphoma (78), human colon cancer
xenografts (HCT15, HT29, COLO205, and SW620) (80) and
glioblastoma (81). Pegylation of methionine γ-lyase was used
to increase serum half-life and reduce immunological reactions
in vivo (82). No clinical toxicity was found after treatment with
methionine γ-lyase in a pilot phase I trial on human cancer
patients (83).

Compared to normal tissues, cancer cells have a higher
requirement for methionine synthase activity and may thus be
more sensitive to methionine synthase inhibition (84–87). Large
number of tumor cell lines, including melanoma, glioblastoma,
colon, lung, breast, bladder, and kidney tumors, lack the normal
pathway of methionine re-synthesis (88, 89). Methionine
synthase is encoded by MTR gene whose polymorphism
may affect DNA methylation and thus contribute to cancer
development (90). Furthermore, the A2756G (rs1805087)
substitution in the MTR gene plays a role in the progression
of breast and prostate cancer via the pathway of the methyl
group transfer, which is involved in both DNA methylation
and DNA synthesis (91, 92). Ile22Met mutation (A66G) of
the MTRR-encoded methionine synthase reductase is linked to
folate, vitamin B6, or vitamin B12 levels in colorectal cancer.
However, no statistically significant correlation between the
Ile22Met mutant and risk of pancreatic cancer is reported
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(93). Instead, pancreatic cancer risk is influenced by His595Tyr
mutation of methionine synthase reductase (94). MTRR gene
suppression may be effective in the treatment of pancreatic
ductal adenocarcinomas (94).

Thus, analysis of available data suggests that expression of
methionine synthase could predict sensitivity of cancer cells
to methionine-cleaving enzymes. Cells with low expression
of methionine synthase are expected to be more sensitive to
treatment with methionine γ-lyase. However, further studies are
needed to establish the diagnostic significance.

Lysine depletion therapy

L-lysine is an essential and abundant amino acid in humans.
In addition to proteinogenesis (95), L-lysine may be used for
ketogenesis. An important energy source under starvation (96,
97), ketogenesis is also involved in responses of cancer cells to
therapeutic agents (98). Besides, L-lysine catabolism through
the DHTKD1-encoded 2-oxoadipate dehydrogenase produces
glutaryl-CoA for protein glutarylation (97, 99, 100). Particularly
glutarylation of histones, associated with gene activation (99),
and regulation of pyruvate dehydrogenase by glutarylation (100)
may be involved in metabolic transformation of cancer cells,
causing their specific sensitivity to L-lysine depletion. L-lysine
α-oxidases (EC 1.4.3.14) catalyze the oxidative deamination of
L-lysine, resulting in the production of α-keto-ε-aminocaproate,
ammonia, and H2O2 (Figure 1D). Over the last 40 years,
several biological effects of L-lysine α-oxidases have been
described, including antiviral, antimicrobial, anti-protozoa,
anti-metastatic, and antitumor (101–105).

L-Lysine α-oxidase from Trichoderma cf. aureoviride Rifai
has significant cytotoxicity against the following human cancer
cell lines: K562, LS174T, HT29, SCOV3, PC3, and MCF7
in vitro (102) and PC12 (106). Human colon cancer xenografts
HCT116 and LS174T, as well as breast adenocarcinoma
T47D, demonstrated high sensitivity to L-lysine α-oxidase
(102). Ophiophagus hannah venom-derived L-lysine α-oxidase
inhibited the growth and proliferation of PC-3 prostate cancer
xenografts (107). Depending on the dosage, the enzyme from
Agkistrodon acutus suppressed the development of hepatoma
22, sarcoma 180, and Ehrlich carcinoma (108). In many species,
L-lysine α-oxidase from Trichoderma harzianum Rifai and Tr.
viride Y244-2 reduced malignant properties of solid tumors
(105, 109). The most susceptible murine transplantable tumors
were melanoma B16, breast adenocarcinoma Ca755, ascitic
hepatoma 22, cervical cancer RSHM5, and colon carcinoma
AKATOL (110). It may be hypothesized that the susceptibility
is linked to the L-lysine-dependent induction of specific
metabolism of these cancer cells by protein glutarylation. In
this case, expression of the enzymes determining the levels
of glutaryl-CoA, i.e., the proteins encoded by the DHTKD1
and GCDH genes, and protein deglutarylation, i.e., SIRT5

protein, may comprise the markers of efficiency of the L-lysine-
depleting therapies.

Conclusion

Recent discoveries of the molecular pathways of amino
acid metabolism and their regulation in tumor cells highlight
specific features of tumor metabolism that may be used
for prediction of efficacies of therapeutic strategies based
on depletion of amino acids. An increased need for amino
acids caused by rapid proliferation of cancer cells, contributes
to metabolic abnormalities of these cells. In comparison to
traditional anticancer treatments, those involving the amino-
acid-degrading enzymes offer several advantages: (1) potent
effects on specific amino acids indispensable for cancer cells; (2)
low toxicity; (3) usage for combinatorial therapies; (4) existence
of biochemical markers to predict the treatment responses. The
predictors are expression of genes, such as ASNS for asparagine
depletion therapy; ASL, ASS, and OTC for arginine depletion
therapy; MTR for methionine depletion therapy. More clinical
research is necessary to extend the list of such biomarkers and
assess their prognostic value demonstrated in pilot studies.
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