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Abstract 

Recently, imputation techniques have been adapted to predict activity values among sparse bioactivity matrices, 
showing improvements in predictive performance over traditional QSAR models. These models are able to use experi-
mental activity values for auxiliary assays when predicting the activity of a test compound on a specific assay. In this 
study, we tested three different multi-task imputation techniques on three classification-based toxicity datasets: two 
of small scale (12 assays each) and one large scale with 417 assays. Moreover, we analyzed in detail the improvements 
shown by the imputation models. We found that test compounds that were dissimilar to training compounds, as well 
as test compounds with a large number of experimental values for other assays, showed the largest improvements. 
We also investigated the impact of sparsity on the improvements seen as well as the relatedness of the assays being 
considered. Our results show that even a small amount of additional information can provide imputation methods 
with a strong boost in predictive performance over traditional single task and multi-task predictive models.
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Introduction
There has been a surge of interest in applications of 
multi-task prediction methods in the chemoinformat-
ics field during the last few years. Their main advantage 
is the ability to predict multiple biological endpoints of 
interest using a single model. Early work on multi-task 
learning showed that training a model on several tasks 
(sometimes even unrelated tasks) simultaneously can 
lead to improved performance compared to single task 
learning [1]. Multi-task modelling gained attention in 
the chemoinformatics field in the context of deep learn-
ing for QSAR modelling. In both the Tox21 challenge 
and the Kaggle challenge organized by Merck, the win-
ning approaches were based on multi-task deep neural 

networks (DNNs) [2, 3], highlighting the potential of 
these approaches. The inputs to the DNNs were chemical 
features and the outputs bioactivity profiles. In the work 
by Ma et al., a comparison was made of single task and 
multi-task DNNs on the Merck Kaggle dataset with the 
multi-task DNNs outperforming the single task DNNs, 
except for the two largest of the 15 assays. Similar find-
ings were reported by Mayr et  al. who compared single 
task and multi-task DNNs on the Tox21 dataset and 
found that the multi-task DNNs resulted in higher ROC-
AUCs for nine of the 12 assays. A significant benefit of 
multi-task DNNs, over more traditional method such 
as random forests  (RF), is their ability to be trained on 
sparse activity datasets. Sparse datasets are those where 
not all compounds have been tested on all targets, and 
they are a common occurrence in bioactivity databases. 
Macau is another technique recently introduced in QSAR 
that is also able to train on sparse datasets [4–6].
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Imputation is a technique for filling gaps in a dataset 
based on the existing data and is widely used to substi-
tute empty attribute or descriptor values. Perhaps the 
simplest imputation method is to use the mean value 
of the available data. More sophisticated techniques 
include the use of machine learning models to pre-
dict the missing values, where the models are trained 
using all the other attributes. Varnek et  al. introduced 
imputation to fill missing bioactivity values in multi-
task QSAR modelling in 2009 [7]. They compared the 
performance of single task artificial neural networks 
(ANNs) with multi-task ANNs and Feature Nets  (FN). 
The multi-task ANNs used only chemical descriptors 
as inputs, whereas, in the FN models, the activities of 
compounds in related tasks were used as features in 
addition to the chemical descriptors. The FN involved 
two training steps. First, an ANN model was built for 
each task independently and used to predict the activity 
values for that task for the compounds of the test set. 
Second, the models were retrained using both chemical 
features and activity values, which were the predicted 
values generated in the first step. Thus, the predicted 
value of property B was used explicitly as an addi-
tional feature when predicting property A. The tasks 
considered by Varnek et  al. were tissue-air partition 
coefficients for different tissues. They found that both 
multi-task ANNs and FN ANNs improved the perfor-
mance over single task ANNs in most of the cases. In 
a more recent study, Sosnin et al. found FN to perform 
better than single task models, but slightly worse than 
multi-task ANNs when predicting acute toxicity [8]. In 
related work, Norinder et al. have used a method com-
parable to FN (i.e., using predicted bioactivity profiles 
as additional inputs to a QSAR model) in combination 
with conformal prediction for predicting several cyto-
toxicity and bioactivity datasets and they also found 
improved performance compared to single task models 
[9].

Two other imputation approaches have been described 
more recently for regression problems: pQSAR and 
Alchemite. pQSAR [10] is similar in concept to FN and 
consists of a two-step procedure. In the first step, a RF 
regression model is trained for each assay based on 
chemical fingerprints as features and the models are used 
to fill the gaps in the sparse dataset. In the second step, 
a partial least squares model is trained for each assay 
on the profile of the remaining assays as obtained in the 
first step. To reduce the number of features, only assays 
related to the target assay are included. The algorithm 
was tested on a proprietary Novartis dataset (11805 
assays) and a public ChEMBL dataset (4276 assays). The 
pQSAR model clearly outperformed RF models on both 
datasets. For the Novartis dataset, pQSAR achieved a 

median R2 (across all the assays) of 0.53 compared to 0.05 
achieved by RF.

Alchemite is based on DNNs and was developed in a 
collaboration between Optibrium and Intellegens [11, 
12]. The neural network uses chemical descriptors and 
the bioactivities of the assays as inputs. Missing input 
data is initially replaced by the mean value for the respec-
tive assay and predictions made by the network are used 
to update the missing values iteratively. The cycle con-
tinues until no further improvement in the predictions 
is observed. On a kinase dataset, the Alchemite method 
clearly outperformed RF models, a collective matrix fac-
torization method (similar to Macau) and a multi-task 
DNN, and achieved approximately the same performance 
as pQSAR 2.0 [13]. A notable feature of Alchemite is its 
capability to express confidence in single predictions. 
This is achieved by training the network with several 
random initializations and using the standard deviation 
across different runs of the model as a measure of uncer-
tainty. The confidence in the predictions is correlated 
with the accuracy and the performance can be increased 
by keeping only the most confident predictions.

Both of these recent imputation methods clearly out-
performed single task and standard multi-task mod-
els. The benefit in performance of the models seems to 
come from the relations between different assays and the 
models’ capability to leverage these patterns. However, 
it is unclear what characteristics of a dataset cause this 
behavior and hence under which circumstances imputa-
tion approaches will be particularly effective.

In this study, we focus on FN as an imputation method 
and compare its performance with Macau and DNNs 
on single task and multi-task classification problems 
applied to sparse toxicity datasets. The focus on classifi-
cation is motivated by common practice in the toxicity 
field whereby QSAR models are often used to establish 
whether compounds are potentially reactive towards 
measurable toxicity endpoints (hazard identification) 
[14]. Following an initial comparison of the performance 
of the methods, we seek to determine the factors that 
contribute to good performance in the imputation meth-
ods by examining different subsets of test predictions to 
assess which improved the most. We also tested whether 
the contribution of individual assays to the performance 
of imputation models could be modelled using informa-
tion theory metrics. Our results confirm that imputa-
tion methods provide benefits over single and multi-task 
methods and are a very promising approach in chemo-
informatics. In addition, we found the benefits of impu-
tation techniques to be particularly high for compounds 
that had been measured in many of the assays and for 
compounds that were chemically dissimilar to com-
pounds in the training set, where conventional QSAR 
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models frequently fail to make reliable predictions. Fur-
thermore, we show that information theory metrics can 
be used to identify auxiliary assays that are particularly 
useful for imputing data for a given target assay.

Methods
Datasets
Three in  vitro toxicity datasets were used: the ISSSTY 
(Istituto Superiore di Sanità Salmonella Typhimurium) 
database containing data for the Ames test for mutagen-
icity, generated by the Italian National Institute of Health; 
the Tox21 dataset, generated by the Tox21 consortium; 
and the ToxCast dataset, generated by the EPA (U.S. 
Environmental Protection Agency).

The ISSSTY database [15] contains data for six different 
bacteria strains, designed to detect different mechanisms 
of mutagenicity, such as substitutions of DNA bases or 
deletions and insertions leading to a frameshift in the tri-
plet code of the DNA. The Ames test is a well-established 
in vitro test for mutagenicity used in regulatory contexts 
[16]. Each of the six strains was tested with and without 
the addition of S9 mix to mimic metabolism of higher 
organisms, which leads to a dataset of 12 different toxic-
ity assays. The outcome for a compound in each of the 
assays is either ‘active’, ‘inactive’ or ‘equivocal’ [17], due to 
the fact that the database may contain repetitions of the 
same experiment. In the original dataset, a compound 
was considered ‘active’ if it was active in more than 60% 
of repeated experiments for a given strain and ‘inactive’ 
if it was active in less than 40% of the experiments. Oth-
erwise, the result was considered ‘equivocal’. To obtain a 
binary dataset, ‘equivocal’ activity values were removed 
from the data table.

Within the Ames dataset, each assay has an associ-
ated assay pair based on the presence or absence of the 
S9 matrix. A toxic outcome with S9 and a non-toxic 
outcome without, indicates that it is a metabolite of the 
tested compound that is the cause of the toxicity. Positive 
values with and without S9 indicate that metabolism is 
not required for toxicity, however, metabolism may also 
result in the loss of toxicity indicated by a positive result 
without S9 and a negative result with S9.

Different Ames strains can identify different types and 
mechanisms of mutation, for example, TA98 identifies 
frameshift mutations whereas TA100 identifies base-
pair substitutions [18]. Understanding which strains are 
positive may reveal insights into the toxicity mechanism, 
which is not gained from a prediction of the overall call 
alone. There is some overlap between the types of muta-
tion different assays measure that may be leveraged 
under a multi-task or imputation modelling strategy.

The Tox21 dataset [19] consists of three separate data-
sets named ‘training’, ‘testing’ and ‘final evaluation’, as 

used in the Tox21 QSAR modelling challenge (which is 
a subset of the total Tox21 dataset). For this study, the 
three datasets were combined to a single dataset. The 
dataset contains binary data (active or inactive) for 12 
toxicity assays. Seven of these measure the activation of 
various nuclear receptors related to toxic effects, while 
the remaining five measure the activation of cellular 
stress pathways. These are assays that are typically con-
ducted in preclinical toxicity screening of chemicals [20]. 
The Tox21 dataset contains two sets of matched assays: 
NR-AR with NR-AR-LBD; and NR-ER with NR-ER-LBD. 
These matched pairs contain the full receptor (NR-AR 
and NR-ER) or only the ligand binding domain of the 
receptor (NR-AR-LBD and NR-ER-LBD).

Table 1 describes the number of molecules and the pro-
portion of actives for each assay in the Ames and Tox21 
dataset.

The ToxCast dataset [21] was downloaded from the 
MoleculeNet platform where it is provided with binary 
labels [22]. The ToxCast dataset represents a large-scale 
in vitro toxicity dataset, containing 8615 compounds and 
617 assays (reduced to 7787 compounds and 416 assay 
in this study after the standardization and filtering steps 
described below were applied). The dataset comprises a 
wide range of in vitro toxicity endpoints including recep-
tor interaction, enzyme inhibition, developmental defects 
and cell viability. Notably, it includes the assays from the 
Tox21 dataset.

All three datasets are sparse, i.e., not all compounds 
were tested on all assays. The ToxCast dataset is the 
sparsest followed by the Ames dataset and then the 
Tox21 dataset (35.5, 40.5 and 83.4 percent of the matrix 
cells are filled, respectively). The ToxCast dataset has very 
large differences in data completeness across the assays 
with values ranging from 1.4% to 92.1% complete. For 
the Ames dataset, the assays range from 12.4% to 75.0% 
complete, whereas, for the Tox21 assays the percentages 
of filled cells range from 74.3% to 92.2%. Another impor-
tant characteristic of the data is the imbalance between 
toxic and non-toxic labels. For the smaller datasets (see 
Table  1), Tox21 contains a larger imbalance of toxic vs 
non-toxic values compared to Ames (6.9% vs 21.3% of 
toxic values) with the values ranging from 3% to 15.6% 
for individual Tox21 assays and from 11.4% to 31.8% for 
individual Ames assays. For the ToxCast dataset, on aver-
age 9.4% of labels are toxic, with the percentages for indi-
vidual assays ranging between 0.9% and 82.4%.

Data processing
Chemical structures were standardized using the 
Python packages RDKit [23] (2019.09.03) and MolVS 
[24] (0.1.1). First, molecules with SMILES [25] strings 
from which no valid molecules could be generated were 
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discarded. Then, bonds to metal atoms were discon-
nected and the charge was removed where possible. In 
the next step, inorganic fragments and solvents were 
removed. Next, certain chemotypes (e.g. nitro groups) 
and tautomers were transformed into a canonical form. 
Duplicate molecules were identified by calculating their 
standard InChI [26] and then transforming the InChI 
back to SMILES so that two molecules which share the 
same InChI, are guaranteed to be represented by the 
same SMILES. Finally, mixtures of different organic 
components were discarded.

At this point, the datasets contained some duplicate 
molecules represented by identical SMILES strings. The 
duplicates were aggregated to obtain a single set of data 
labels for each unique SMILES in the dataset. This was 
done by keeping the majority label (toxic or non-toxic) 
for each assay for identical SMILES. No data label (i.e., 
a data gap) was assigned to a SMILES-assay pair if toxic 
and non-toxic labels were of equal number. For each 
molecule, Morgan fingerprints of radius 2 (equivalent 
to ECFP4 [27]) hashed to 2048 bits were calculated 
with RDKit and were used as the chemical features in 
the models.

For the ToxCast dataset, assay filtering was per-
formed to remove assays having insufficient data labels 
for robust model training and evaluation. Following 
chemical standardization and aggregation, only assays 
with at least 50 toxic and 50 non-toxic labels were kept, 
which reduced the size of the dataset from 617 to 416 
assays and from 8615 to 7787 compounds.

Data split into training and testing
Each dataset was split into a training set and a test set. 
The training sets were used to optimize hyperparameters 
and train the final models, and the test sets were used to 
evaluate the performance of the final models. Two differ-
ent splitting methods were employed: compound-based 
and assay-based splits.

The compound-based splits were used to compare the 
performance of multi-task models with single task mod-
els. This scenario was only tested on the Ames and Tox21 
datasets due to the manageable numbers of assays. 20% 
of the compounds in each dataset (Ames or Tox21) were 
selected at random for the test set and the remaining 80% 
formed the training set (Fig. 1). This means that the train-
ing and test sets are the same for all the assays in each 
dataset.

Compound-based splits represent the established way 
to assess the performance of QSAR models and is the 
approach used, for example, in the Tox21 QSAR mod-
eling challenge. However, the imputation techniques 
describe above, namely Alchemite and pQSAR, have 
been evaluated primarily in a different scenario, appro-
priate for sparse activity matrices. In this scenario, the 
imputation model is created using training data and 
applied to fill the missing values in the activity matrix. 
This scenario can be considered a form of repurposing, 
where imputation is used to search for novel activities 
among compounds already present in sparse databases. 
We implemented this testing scenario with what we call 
the assay-based splits (Fig. 1). Each assay was considered 

Table 1  The Ames and Tox21 datasets

Each row contains the total number of molecules with an experimental label for the assay as well the proportion of active labels for the given assay. The last row 
(‘overall’) reports the number of unique compounds across all the assays (after the data processing steps described in ‘Data processing’). The proportion of labels 
in the last row indicates the completeness of the data table across all assays. The proportion of actives in the last row reports the proportion of actives among all 
available labels.

Ames Tox21

Assay name Number labels 
(proportion)

Proportion actives Assay name Number labels 
(proportion)

Proportion 
actives

TA100 4627 (0.75) 0.26 NR-AhR 6810 (0.84) 0.12

TA100_S9 4350 (0.71) 0.32 NR-AR 7460 (0.92) 0.03

TA102 880 (0.14) 0.17 NR-AR-LBD 6991 (0.86) 0.03

TA102_S9 763 (0.12) 0.21 NR-Aromatase 6009 (0.74) 0.05

TA1535 2489 (0.40) 0.11 NR-ER 6367 (0.79) 0.11

TA1535_S9 2347 (0.38) 0.12 NR-ER-LBD 7199 (0.89) 0.04

TA1537 2081 (0.34) 0.12 NR-PPAR-gamma 6752 (0.83) 0.03

TA1537_S9 1998 (0.32) 0.12 SR-ARE 6121 (0.76) 0.16

TA97 1049 (0.17) 0.14 SR-ATAD5 7326 (0.91) 0.04

TA97_S9 1010 (0.16) 0.17 SR-HSE 6794 (0.84) 0.05

TA98 4345 (0.70) 0.24 SR-MMP 6074 (0.75) 0.15

TA98_S9 4055 (0.66) 0.29 SR-p53 7049 (0.87) 0.06

overall 6168 (0.41) 0.21 overall 8090 (0.83) 0.07
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independently and 20% of the compounds for which the 
toxicity labels are known were selected at random and 
placed in the test set with the remaining compounds 
being added to the training set. Some compounds there-
fore appear in both the training data and the test data, 
however, the assay labels are split so that none of the 
same compound/assay label pairs appear in both the 
training and the test data. Thus, a compound may be in 
the test set for assay A, but in the training set for assay 
B with the toxicity label of the compound from assay B 
given as input to the imputation model. Due to the low 
number of overall labels for some of the assays, the split-
ting for the ToxCast dataset was done in a stratified man-
ner (according to toxicity labels).

Only assay-based splits were used for the ToxCast data-
set since the aim was to validate and extend the findings 
of the assay-based experiments carried out on the smaller 
Ames and Tox21 datasets.

Single task models
Various single task and multi-task techniques were used 
to train models as described below. The hyperparameter 
optimization was only applied for models on the smaller 
datasets (Ames and Tox21). For the ToxCast dataset, 
identical hyperparameters were selected for all assays. 
These were values that occurred frequently across the 

assays following hyperparameter optimization on the 
Ames and Tox21 datasets.

Random Forest
Random forest (RF) is a well-established algorithm for 
QSAR modelling that has achieved good performance 
in a variety of tasks [28]. RF is an ensemble method, 
where different decision trees are trained on different 
bootstrapped subsets of the training data and different 
random subsets of features. For this work, the implemen-
tation of RF in the Python [29] scikit-learn [30] package 
(0.22.1) was used. The hyperparameters considered for 
optimization in the grid search are given in the Support-
ing Information (Additional file 1: Table S1).

XGBoost
Another ensemble technique is so-called boosting, which 
generally refers to the sequential combination of several 
weak (i.e., perform slightly better than random) learners 
in order to learn from the mistakes of previous learners 
[31]. In gradient tree boosting, decision trees are learned 
sequentially to predict the residuals (i.e., mistakes) of the 
previous tree, and eventually the predictions of all single 
trees are combined [32]. XGBoost (XGB) is a popular 
open-source implementation of gradient tree boosting 
which scales well to very large datasets [33]. The Python 
package XGBoost (1.0.1) was used in this study. The 
hyperparameters considered for optimization in the grid 
search are given in the Supporting Information (Addi-
tional file 1: Table S2).

Deep Neural Network
Deep Neural Networks (DNN) are combinations of arti-
ficial neurons organized in layers [34]. Each layer can be 
considered a simple non-linear machine learning model, 
but they can become increasingly complex by adding 
additional layers. The DNNs used in this project are feed 
forward ANNs using the Python package Tensorflow [35] 
(2.1.0) with the Keras API [36]. 2048 nodes were used in 
the input layer (one node for each bit of the chemical fin-
gerprint) and the output layer consisted of a single node 
to which the sigmoid function was applied to obtain a 
binary output for classification (using 0.5 as the classifi-
cation threshold). The DNNs for different assays contain 
between one and four hidden layers (number of hidden 
layers is a hyperparameter considered for optimization). 
The ReLU activation function was applied to all nodes in 
the hidden layers. Binary cross-entropy was used as the 
loss function and the Adam algorithm was used for fitting 
the network’s weights and biases. The hyperparameters 
considered for optimization are given in the Supporting 
Information (Additional file 1: Table S3).

Fig. 1  Comparison of data splitting strategies. For the 
compound-based split, 20% of the compounds were randomly 
selected for the test set. These compounds were used for testing 
across all the assays. For the assay-based split, each assay was 
considered independently and 20% of the compounds were selected 
at random and placed in the test set. This resulted in a different set 
of test compounds for each assay. A assay, C compound, 0 non-toxic, 
1 toxic
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Multi‑task models
Multi‑task Deep Neural Network
As for the single task DNN models, the multi-task DNN 
models were trained using the Python package Tensor-
flow with the Keras API. A multi-task DNN is trained 
to predict several assays at the same time with the out-
put layer of the network consisting of one node for each 
task. The sigmoid function was applied to each node in 
the output layer and the obtained output was binarized 
(using 0.5 as the classification threshold) to obtain a pre-
dicted class for each assay. The loss for a single data point 
(a single compound with up to 12 assay labels for Ames 
and Tox21 dataset) during training is its binary cross-
entropy averaged across all assays. For partially complete 
data points (i.e., molecules for which the label is known 
only for some of the assays) the assays without avail-
able labels were excluded when the loss was computed. 
This enables training on sparse datasets. The DNN was 
trained using the 2048 chemical features as inputs, as for 
the single task models. When the multi-task model was 
used for prediction, a test compound was input as chemi-
cal features and the output was a vector of predicted val-
ues, one for each assay.

For the assay-based split, the multi-task DNN was 
trained on all compounds assigned to the training set 
(all of which had at least one assay label as shown in the 
assay-split in Fig. 1) and, for a given compound, only the 
labels that were assigned to the training set (green cells of 
the matrix in Fig. 1) were used to compute the loss dur-
ing training.

Macau
Macau is a Bayesian probabilistic matrix factorization 
technique that is able to analyze sparse matrices. Proba-
bilistic matrix factorization gained attention for recom-
mender systems, following the 2009 Netflix competition 
where it was used to make predictions using the data 
matrix only, i.e., the ratings for viewer-movie pairs. The 
Macau method has recently been used for multi-task 
modelling in QSAR [4] and is also able to use descrip-
tors of the entities being analysed, which are referred to 
as side information [5]. In the Macau models developed 
here, the sparse data matrix consists of compound-assay 
label pairs and Morgan fingerprints are used as side 
information for the compounds, with no side information 
being used for the assays. The hyperparameters consid-
ered for optimization are given in the Supporting Infor-
mation (Additional file 1: Table S4). The Python package 
Macau (version 0.5.2) was used in this study.

Feature Net
The Feature Net (FN) [37] technique combines mul-
tiple single task predictors into a net-like structure and 

can be used with any supervised machine learning algo-
rithm. In the first step, a single task model was trained 
for each assay separately using the chemical features and 
the models were used to predict the unknown toxicity 
labels for the whole dataset. In the second step, the final 
model for each assay was obtained by retraining the sin-
gle task model using the labels of the other assays explic-
itly as features, in addition to the chemical features. In 
this setting, each modelled assay is called the target assay 
and the other assays, used as features, are called aux-
iliary assays. For a given target assay, the second model 
is trained using compounds with experimental labels for 
this assay (i.e., no predicted labels), however, the labels of 
the auxiliary assays are either experimentally determined 
labels, or the predicted labels from the models in the first 
step, when no experimentally determined label is avail-
able. A schematic depiction of the FN models is given in 
Fig. 2. The FN models were trained using all of the single 
task methods described above using the same hyperpa-
rameters as for the single task models, that is, no addi-
tional optimization was performed.

When a FN model is used for prediction, each assay 
value is predicted sequentially with the test compound 
input as chemical features and assay labels for all other 
assays, that is, the auxiliary labels. The auxiliary assay 
labels can be predicted values or experimental values. 
We investigated two different scenarios that mimic how 
QSAR is used in practice. One common application is 
making predictions for virtual compounds, that is, com-
pounds which have not yet been synthesized. In this case, 
we discarded any experimental values so that all the input 
labels for the test compounds were predicted values. This 
application was tested in the compound-based splits. The 
second application is the prediction of assay outcomes 
for compounds that have already been characterized for 
some toxicity endpoints. To simulate this case, we used 
experimental values for the auxiliary assays in the test set, 
when these were available, otherwise we used predicted 
values as determined in the first step of the FN method. 
This application was tested both in the compound-based 
splits (with experimental test labels) and in the assay-
based splits.

Model training
For each technique, a fivefold cross validation grid search 
was performed on the training set for hyperparameter 
optimization, except for Macau, where the grid search 
was performed using a single validation set containing 
20% of the labels in the training set for each assay. This 
difference is due to the assay-based splits better reflecting 
the typical use of Macau and the complexity of setting up 
cross validation in this scenario. Furthermore, prelimi-
nary experimentation suggested that Macau is relatively 
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insensitive to the specific hyperparameter settings. All of 
the models used Morgan fingerprints hashed to 2048 bits 
as chemical features, generated using the Python package 
RDKit.

Evaluation of models
The overall performances of the models were evaluated 
first. Following this, the characteristics of the datasets 
were investigated in order to gain insights on when impu-
tation is likely to lead to the most benefit. The different 
evaluation measures are described below.

Sensitivity to random seed
All the modelling techniques used in this study involve 
stochastic processes, e.g., the random initialization of 
weights in the neural networks or the generation of boot-
strap samples in the RF models. The random behavior 
of these methods can be made reproducible by setting a 
random seed, however, the result will represent only one 
from a distribution of potential results. For a rigorous 
comparison of the different techniques, all of the final 
models for the Ames and Tox21 datasets were trained 
using 20 different random seeds and the range of results 
was examined. This follows the approach of Xu et al. in 
their comparison of multi-task DNNs with single task 
DNNs [38]. Due to its larger scale, evaluation on the Tox-
Cast dataset was limited to one model instance resulting 
from a single random seed.

Overall performance
Matthews Correlation Coefficient (MCC) was chosen as 
the primary metric to evaluate model performance, due 
to its suitability for imbalanced datasets. In addition, 
the F1 scores and ROC-AUCs are reported in the code 
repository. When reporting the performance of a tech-
nique across different assays and different random seeds, 
the average of all assays for each seed was computed first, 
and the average across all seeds is reported.

MCC scores are sensitive to the selected classifica-
tion threshold (0.5 by default) applied to the raw model 
output. For imbalanced datasets this threshold may be 
inappropriate and lead to poor MCC scores. Recently, 
GHOST (generalized threshold shifting procedure) was 
proposed as a method to automatically find an ideal deci-
sion threshold for classifier models using merely training 
instances [39]. In GHOST, a classifier is trained using all 
training examples and probability scores are determined 
for each training instance. N bootstrap samples are then 
drawn from all training instances and the optimal thresh-
old is found for each sample by trying a range of differ-
ent thresholds. The chosen decision threshold is taken as 
the median of the individual optimal thresholds. Two dif-
ferent approaches were used to find the optimal thresh-
old for a bootstrap sample. In this project, we used the 
method originally described elsewhere [40], which deter-
mines the point of the ROC curve closest to the upper 
left corner (0,1). The GHOST method was applied on 

Fig. 2  Schematic depiction of Feature Net (FN) models. In Step 1, a single task QSAR model is trained to predict the labels of missing values for 
each toxicity assay in turn (y1, y2, y3). In Step 2, the models are retrained using both chemical descriptors (x) and auxiliary assay labels as features. 
The labels for the auxiliary assay are either experimentally determined assay labels or the predictions from Step 1 where experimental values are not 
available
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the models trained on the ToxCast dataset and, as in the 
original paper, the thresholds considered were: 0.05, 0.1, 
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55. In the multi-
task settings, thresholds were optimized for each task 
separately.

Dataset characteristics
Further analyses were carried out to gain an understand-
ing of the characteristics that lead to performance gains 
when using imputation techniques. These included inves-
tigations of the role of chemical similarity, the amount 
of experimental data available, and correlations between 
assays.

For the chemical similarity experiments (conducted 
for the Ames and Tox21 dataset), the test sets used in the 
assay-based splits were divided into three bins, depend-
ing on the chemical similarity of each test compound to 
the training compounds of the respective assay. Chemical 
similarity was evaluated as the average Tanimoto similar-
ity to the five nearest neighbors in the training set based 
on Morgan fingerprints and bins were defined with simi-
larity ranges: 0–0.4, 0.4–0.6, 0.6–1. Results are reported 
for assays with at least 100 test compounds in each of the 
three bins. The performance of each model was evaluated 
on each of the bins independently and, in each case, the 
results were averaged over the 20 models obtained using 
different random seeds.

The impact of data sparsity was investigated in two 
different ways. For the Ames dataset, sparsity in terms 
of available experimental labels for test compounds was 
measured. The test sets used in the assay-based splits 
were divided into three bins according to the number of 
experimentally determined toxicity labels for each test 
compound in the training set data. The bins were: 0–1 
labels, 2–3 labels; and > 3 labels. Results are reported for 
assays with at least 100 test compounds in each of the 
three bins. The performance of each model was evaluated 
on each of the bins independently and, in each case, the 
results were averaged over the 20 models obtained using 
different random seeds. This analysis was not possible for 
the Tox21 dataset, as this dataset contains very few com-
pounds that were tested in only a few of the assays.

An investigation of the effect of overall dataset sparsity 
on imputation model performance was conducted on 
the ToxCast dataset. In particular, sparsity in the train-
ing set was artificially increased by randomly sampling 
1000 labels per assay for model training with all other 
labels removed. For assays with fewer labels in the train-
ing set, all labels were kept. The overall completeness of 
the training set was reduced from 29.4% to 10.9% in this 
scheme. Models were evaluated on the same test set as 
for the models trained using all available labels to enable 
comparison of model performances.

To examine the importance of single assays on the 
overall success of FN models, pairwise FN models were 
trained, where just one auxiliary assay was used as an 
additional feature. For each target assay, the remaining 
auxiliary assays were tested in turn in pairwise FN models 
and the scores of the models were compared to the score 
of a single task QSAR model for the target assay. Similar 
to the full FN models and the single task QSAR models, 
each pairwise FN model was trained using 20 different 
random seeds and the median MCC score across the 20 
models was used to represent each particular model. A 
large improvement in performance would suggest a high 
importance of the respective auxiliary assay for the full 
FN model.

The importance of a single auxiliary assay to the over-
all success of the full FN model was also examined using 
information theory [41]. The entropy of an assay is com-
puted as:

where PA is the probability of a randomly selected 
compound being active in the assay, computed by the 
ratio of compounds with the label ‘toxic’ to all labelled 
compounds, and Pa the proportion of non-toxic com-
pounds, given by 1-PA. The mutual information of two 
assays is computed by taking the sum of the entropies 
of each assay and subtracting the entropy of the joint 
distribution:

The entropy of the joint distribution is computed as:

where PAB is the proportion of compounds labelled as 
toxic in both assay A and B, Pab is the proportion of com-
pounds that are non-toxic in both assay A and assay B, 
and PAb and PaB are the proportions of compounds toxic 
only in assay A or only in assay B, respectively. The pro-
portions were only computed for compounds that are 
labelled for both assay A and assay B.

The relatedness between a target assay and an auxil-
iary assay was measured by the ratio of mutual infor-
mation (MI) between two assays to the entropy of the 
target assay. This measure of relatedness, called here MI-
entropy ratio, describes how much of the total entropy 
(or amount of information) of the target assay (here assay 
A) is contained in the auxiliary assay.

H(A) = −(PA × log2PA + Pa × log2Pa)

MI(A,B) = H(A)+H(B)−H(A,B)

H(A,B) = −(PAB × log2PAB + PAb × log2PAb

+ PaB × log2PaB + Pab × log2Pab)

MI − entropy ratio (A,B) =
MI(A,B)

H(A)
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Observed differences of pairwise FN models to the 
respective single task models were analyzed with respect 
to the MI-entropy ratio of the involved assay pair. Pair-
wise FN models were only obtained for the Ames and 
Tox21 datasets and this full analysis was not conducted 
on the larger ToxCast dataset due to the much larger 
number of assays. However, the usefulness of the MI-
entropy ratio to select auxiliary assays from a large data-
set was tested using one exemplary target assay from the 
ToxCast dataset. This is the assay ‘TOX21-Aromatase-
Inhibition’ as it showed a large increase in performance 
when using multi-task imputation models compared 
to single task models. In addition, the assay possesses a 
relatively large number of experimental labels in the test 
set (1431 in total with 221 of these toxic:), which enables 
a robust evaluation of model performance. Increasing 
numbers of auxiliary assays (1, 3, 5, 10, 20) were selected 
either randomly in an additive approach (i.e., the 3 sam-
pled auxiliary assays include the assay that was sampled 
for 1 auxiliary assay, and so on) or according to the MI-
entropy ratio in descending order. For this experiment, 
20 different random seeds were used during model train-
ing for a more robust evaluation.

Results
Traditional single task and multi‑task models
In the first step, single task and multi-task models were 
compared using traditional compound-based train-test 
splits. The performances of the single task and multi-task 
models are reported in Table 2 as median (and interquar-
tile range) MCC scores over the 20 independent runs 
for each assay using different random seeds. FN models 
were trained using RF, XGB and DNN but only XGB-
FN is shown as this was the best performing method. Of 
the single task methods, XGB provided the best average 
MCC score for both the Ames and the Tox21 dataset, 
albeit the differences were quite small. The multi-task 
methods showed reduced performance when averaged 

over the Ames assays. The best multi-task method for the 
Ames dataset was multi-task DNN which performed bet-
ter than RF and single task DNN, however, it was worse 
than the single task XGB. Overall, while the differences 
are quite small, this shows that multi-task methods are 
not guaranteed to improve on single task performance. 
For the Tox21 assays, the FN models and multi-task DNN 
provided a slight benefit over the single task models. The 
Macau technique was outperformed by the other meth-
ods on both datasets based on MCC with this difference 
being more pronounced for the Tox21 data compared to 
the Ames data.

The relative performances using ROC-AUC are shown 
in Additional file 1: Table S5. Both multi-task DNN and 
Macau outperformed the single task approaches on both 
the datasets using this metric. For the FN models, no 
consistent improvements were found for the multi-task 
methods over the single task models for either metric.

Figure 3 compares the performances of the multi-task 
models to XGB as the best single task model for the indi-
vidual assays where it can be seen that single task mod-
els performed better for some assays whereas multi-task 
models performed better for others. Therefore, although 
the multi-task models were beneficial for some assays, 
they did not outperform single task models consistently 
in these datasets.

It is notable that the variance between different runs 
(with identical hyperparameters but different random 
seeds) was quite large in some cases. Among the multi-
task techniques, multi-task DNN showed the largest 
variances. In addition, it appears that regardless of model 
type some assays are more prone to large variance than 
others, for example, TA102 (Fig.  3A) and NR-PPAR-
gamma (Fig.  3B). Notably, the variance is consistently 
smaller when evaluating the models using ROC-AUC as 
metric (see Additional file  1: Fig. S1). While the ROC-
AUC metric evaluates the capability to rank compounds 
according to their probability of being toxic, the MCC 
metric is sensitive to the classification of compounds 
based on a decision threshold. This may have caused the 
relatively large variances in MCC scores, especially on 
very imbalanced assays.

As mentioned in the methods, the FN  models use 
auxiliary assay values as inputs. In the results pre-
sented above, the auxiliary values used for the test sets 
were predicted values. This simulates the case when no 
experimental values are available for the compounds 
for which predictions are made. The performances 
of the FNs were re-evaluated by using experimental 
values for the test set compounds, where these were 
available, in place of the predicted values. Figure  4 
reports the MCC scores for these models (called FN 
with experimental test labels) compared to the single 

Table 2  Median MCC scores of single task and multi-task QSAR 
models

Median MCC scores and interquartile range for each technique and dataset 
on the test set across the 20 random seeds. Before computing the median, the 
mean across the different assays for a single run was calculated. The best model 
for each dataset in bold

Ames Tox21

Single task RF 0.526 (0.523–0.527) 0.402 (0.400–0.405)

XGB 0.547 (0.545–0.550) 0.427 (0.422–0.430)

ST-DNN 0.519 (0.508–0.527) 0.417 (0.410–0.426)

Multi-task XGB-FN 0.529 (0.527–0.531) 0.435 (0.432–0.438)

MT-DNN 0.540 (0.527–0.549) 0.430 (0.423–0.437)

Macau 0.490 (0.484–0.499) 0.321 (0.319–0.323)
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task models and the FN with predicted test labels for 
the Ames and the Tox21 dataset, respectively. The FN 
models with experimental test labels outperformed 
both the single task and the FN models with pre-
dicted test labels consistently across all the assays and 
methods, in many cases by a wide margin (e.g. TA97 
in Fig. 4A). The only two exceptions were NR-AR and 
NR-Aromatase (Fig.  4B), where there was no benefit. 
Generally, the increases in performance were larger 
for the Ames dataset compared to the Tox21 dataset 
(Table  3). For instance, the RF-FN models provided 
an average MCC score exceeding the single task RF by 

nearly 0.2 (0.723 vs. 0.528), whereas the corresponding 
difference for the Tox21 dataset was smaller than 0.1 
(0.490 vs. 0.402). Overall, RF-FN performed best on 
the Ames dataset, while XGB-FN achieved the high-
est average score on the Tox21 dataset. The FN models 
using experimental test labels as inputs clearly outper-
formed both single task and conventional multi-task 
QSAR models. 

Single task and multi‑task imputation models
The assay-based data splits were used to investigate 
the underlying reasons for the improved performance 

Fig. 3  Performance of multi-task QSAR models. A Ames dataset. B Tox21 dataset. Each box summarizes the MCC scores of 20 independent runs of 
the model on the test set with identical hyperparameters but differing random seeds. The XGB models (best performing single task QSAR model) 
are shown as a baseline model. Only the best performing Feature Net model (XGB-FN) is included.
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of the FN models with experimental test labels, follow-
ing a similar approach reported by Martin et  al. and 
Whitehead et al. in their studies on imputation [10, 11]. 
Here, this approach is referred to as assay-based splits 
and resembles the challenge of filling gaps in a sparse 
matrix (see Fig. 1). Thus, for a given compound, some 
of the assay labels may be assigned to the training set, 
while others may be assigned to the test set. When the 
FN model predicts the label of a particular assay-com-
pound pair, other assay labels for that compound may 
have been used as training data in addition to that com-
pound’s chemical features. In contrast to the studies by 

Martin et al. and Whitehead et al., a random split of the 
data was made instead of a cluster-based split, as this 
enabled the performance of the different imputation 
models on test compounds with low, medium and high 
chemical similarity to compounds in the training set to 
be investigated separately.

Figure 5 compares the MCC scores for the FN models, 
the multi-task DNN models and Macau models on the 
Ames and the Tox21 datasets. As before, although the 
FNs were trained using XGB, RF and DNN, only the best 
performing FN model (XGB-FN) is included. The results 

Fig. 4  Performance of FN models. A Ames. B Tox21. The plots compare the MCC scores of XGB-FN models to single task XGB models. The first 
FN model in each plot corresponds to the situation where predicted values are used for the labels of the auxiliary assays of test set compounds, 
whereas in the second case experimental labels are used in place of the predicted values for the auxiliary assays, when these are available. Each box 
summarizes the MCC scores of 20 independent runs of the model on the test set with identical hyperparameters but different random seeds.
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of the best single task model (XGB) on the assay-based 
splits are included as baseline models.

All of the multi-task methods outperformed the XGB 
single task models on the Ames dataset (Fig. 5A). In fact, 
the margin between the XGB models and all of the multi-
task models was remarkably large (more than 0.1 differ-
ence in median MCC scores) for many of the assays (e.g. 
TA97, TA1535). Exceptions were TA102 and TA1537, 
where the benefits of the multi-task methods were com-
paratively small. Table 4 reports the median MCC scores 
for the different imputation techniques across different 
random seeds for both datasets. Macau achieved the 
highest average score on the Ames dataset (0.679), how-
ever, the differences compared to XGB-FN (0.677) and 
multi-task DNN (0.676) were marginal.

For the Tox21 dataset, the highest average MCC scores 
were achieved for XGB-FN (0.521) and multi-task DNN 
(0.503), however, the benefits of the multi-task methods 
were smaller compared to the Ames dataset. There were 
a few cases where the difference in median MCC score 
between the FN model and the XGB models was above 
0.1 (e.g. XGB-FN for NR-ER). Overall, in contrast to the 
Ames dataset, Macau performed worse than the single 
task models. Consistent with the findings in the previous 
section, the multi-task DNN models showed a compara-
tively large variability in performance across different 
runs of a particular model.

The imputation experiments were then extended to 
the much larger ToxCast dataset consisting of 416 tox-
icity assays (after preprocessing) to investigate the gen-
erality of the results obtained on the Ames and Tox21 
datasets. Figure 6 shows the MCC scores of the different 
multi-task imputation models together with XGB as a 
single task technique. For each technique, the assays are 
sorted on descending MCC score, as done previously for 
pQSAR [10].

A wide range of MCC scores is obtained for the differ-
ent models and the different assays. XGB as single task 
approach is clearly outperformed by XGB-FN and Macau 
models across the whole range of assays. The multi-task 
DNN models outperformed XGB on some assays, but did 
not perform nearly as well as Macau or XGB-FN. These 
results confirm those found on the smaller datasets (Ames 
and Tox21) and show that multi-task imputation mod-
els can provide a large benefit on the ToxCast dataset, 
with Macau and XGB-FN models achieving MCC scores 
above 0.8 for some of the assays. While XGB-FN models 
achieved higher MCC scores than Macau, observed ROC-
AUC scores are very similar (Additional file 1: Fig. S2).

It is notable that MCC scores of 0 or even below were 
found for some of the assays for all of the modelling 
methods, with this occurring most frequently for multi-
task DNN models where more than 150 assays had very 
low scores. Very low MCC scores may be the result of an 
inappropriate classification threshold and the GHOST 
approach [39] was used to investigate the impact of 
adjusting the classification threshold on MCC scores. 
In Fig.  7A, MCC scores based on GHOST-optimized 
thresholds for all models are shown, while in B the MCC 
scores for the individual assays with and without GHOST 
are shown as a scatter plot for the Macau models. Similar 
plots for the other modelling methods are included in the 
supplementary information (Additional file  1: Fig. S3). 
The distributions of MCC scores for Macau can be seen 
in Fig. 7C as box plots.

Applying the GHOST methodology had a particularly 
strong effect on those assays where the original models 
achieved MCC scores of around 0, as is shown clearly in 
Fig. 7B. In contrast, for assays where a score larger than 
0.6 was obtained without GHOST, GHOST mainly seems 
to decrease the performance. Overall, the median MCC 
score was not improved (Fig.  7C). Similar observations 

Table 3  Median MCC scores of Feature Net models

Median MCC scores and interquartile range for each technique and dataset on the test set across the 20 random seeds. Before computing the median, the mean 
across the different assays for a single run was calculated. The best model of each base algorithm (RF, XGB and DNN) for each dataset is in bold.

Ames Tox21

RF Single task 0.526 (0.523–0.527) 0.402 (0.400–0.405)

FN with predicted test labels 0.509 (0.507–0.513) 0.376 (0.374–0.378)

FN with experimental test labels 0.723 (0.721–0.726) 0.490 (0.487–0.494)

XGB Single task 0.547 (0.545–0.550) 0.427 (0.422–0.430)

FN with predicted test labels 0.529 (0.527–0.531) 0.435 (0.432–0.438)

FN with experimental test labels 0.710 (0.704–0.713) 0.541 (0.538–0.543)

DNN Single task 0.519 (0.508–0.527) 0.417 (0.410–0.426)

FN with predicted test labels 0.526 (0.516–0.529) 0.408 (0.397–0.413)

FN with experimental test labels 0.677 (0.675–0.682) 0.500 (0.488–0.504)
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can be made for the other model types (see Additional 
file 1: Fig. S3). It can be concluded that GHOST may be 
helpful to find a suitable classification threshold for poorly 
performing models. However, for well-performing models 
attempts to adjust the threshold may actually decrease the 
MCC scores. Since no clear improvement was observed 
overall, GHOST was not used in the subsequent analyses 
on the ToxCast dataset.

Role of chemical similarity on imputation models
This section investigates the role of chemical similar-
ity on the effectiveness of single task and multi-task 

Fig. 5  Performance of imputation models. A Ames dataset. B Tox21 dataset. Each box summarizes the MCC scores of 20 independent runs of the 
model on the test set with identical hyperparameters but different random seeds. The XGB models (best performing single task model) are included 
as a benchmark. Only the best performing Feature Net model (XGB-FN) is included in this plot.

Table 4  Median MCC scores of imputation models

Single task models are included as a benchmark. Median scores and interquartile 
ranges for each technique and dataset on the test set across 20 different random 
seeds. Before computing the median, the mean across the different assays for a 
single run was calculated. The best model for each dataset is in bold.

Ames Tox21

Single task RF 0.520 (0.517–0.523) 0.406 (0.404–0.412)

XGB 0.540 (0.537–0.543) 0.415 (0.412–0.421)

ST-DNN 0.500 (0.495–0.507) 0.415 (0.406–0.419)

Multi-task XGB-FN 0.677 (0.675–0.682) 0.521 (0.516–0.525)

MT-DNN 0.676 (0.667–0.688) 0.503 (0.493–0.512)

Macau 0.679 (0.677–0.681) 0.385 (0.379–0.388)
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imputation models based on test set predicted val-
ues reported in the previous section for the Ames and 
Tox21 datasets. The test compounds were assigned to 
similarity bins as described in the data section and the 
performance of the models was evaluated on each bin 
independently. Figure 8 shows the MCC scores for the 
different bins for the Ames assays TA100 (8A), TA100_
S9 (8B), TA98 (8C), TA98_S9 (8D) and the average 
across those four assays (8E). The remaining assays 
had fewer than 100 compounds in each bin and were 
therefore excluded from this analysis. The single task 
XGB models achieved progressively higher scores with 
increasing similarity, which are in the range from 0.5 to 
0.6 for the second bin (0.4–0.6 similarity) and 0.65 to 
0.75 for the third bin (0.6–1 similarity). However, the 
performance of the XGB models was particularly poor 
for the most dissimilar compounds (0–0.4 bin) with, 
for example, median MCC scores between 0.2 and 
0.3 for TA98 and TA98_S9, respectively (8C and 8D). 
In contrast, all of the multi-task techniques achieved 
much higher scores for this bin. Most notably, Macau 
achieved MCC scores in the range 0.65–0.7 for these 
two assays, but the multi-task DNNs (0.6–0.65) and 
XGB-FN (0.5–0.55) models also outperformed the XGB 
models by a wide margin. Similar trends were observed 
for the TA100 (8A) and the TA100_S9 (8B) assays. 
However, given the improved performance of the XGB 
models on these assays (medians around 0.4–0.5), 
smaller margins were observed.

The multi-task models also consistently outperformed 
the XGB models on the bins of more similar compounds 
(similarity values between 0.4–0.6 and between 0.6–1) 

and, similarly to the XGB models, the performance of 
the multi-task models tended to increase for more simi-
lar compounds. However, the margins between the single 
task XGB model and the multi-task models were much 
smaller.

These observations on the relative performance of the 
single task and the multi-task methods at low similarity 
values are supported by considering the averages across 
the assays in Fig. 8E. Clearly, the largest numerical ben-
efit of the multi-task imputation techniques was found 
for the bin containing the most dissimilar compounds, 
where XGB as a conventional QSAR model performed 
relatively badly. Generally, the different multi-task impu-
tation methods achieved comparable MCC scores on 
the different bins, with the exception that XGB-FN per-
formed somewhat worse on the dissimilar compounds 
than the other techniques. These results show that the 
multi-task imputation models were less beneficial on the 
test compounds which are highly similar to compounds 
in the training set, but this is likely due to the higher 
scores overall.

Figure  9 shows the MCC scores of four representa-
tive assays (A: NR-Aromatase, B: NR-ER, C: SR-ARE, 
D:SR-p53) of the Tox21 dataset for the different chemi-
cal similarity bins, as well as the average across all assays 
(E). Similar to the Ames dataset, the MCC scores of the 
XGB models were consistently higher for bins of higher 
chemical similarity. This effect was particularly strong for 
the NR-ER and the SR-p53 datasets. Likewise, the MCC 
scores of the multi-task models tended to increase for 
more similar compounds. An exception is the SR-p53 
assay, where Macau achieved a MCC score of zero in the 

Fig. 6  Performance of the imputation models on the ToxCast dataset. MCC scores obtained for test set of the individual assays are sorted in 
descending order and plotted as a line.
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bin of highest chemical similarity. Generally, the results 
on this bin seem out of line, as the variability for all of 
the other models was very high (in the most extreme case 
ranging from − 0.01 to 0.864 for multi-task DNN). This 
is explained by the very low number of true positives in 
this bin (four out of 195 (2.1%), whereas the 0.4–0.6 bin 
contains 34 toxic compounds (4.9%) and the 0–0.4 bin 
contains 48 toxic compounds (9.3%)), such that small 
changes in predictions made by the model have a very 
large effect on the MCC score.

Overall, the multi-task methods (except Macau) 
achieved higher scores than the XGB models on the 

Tox21 dataset. For the assays NR-ER and SR-ARE, the 
largest benefit was found for the bin representing the 
chemically most dissimilar compounds, as was the case 
for the Ames dataset. For this bin and these assays, the 
XGB model performed particularly poorly with an MCC 
of around 0.1, while some multi-task models achieved 
MCC values up to 0.5. In the NR-Aromatase assay, both 
the XGB-FN (0.863) and the multi-task DNN (0.703) 
model achieved remarkably high median scores com-
pared to the XGB models (0.495). However, similarly 
to SR-p53, the variance for the multi-task DNN was 
extremely large, which complicates the interpretation. 

Fig. 7  Performance of the imputation models using the GHOST approach. A line plots showing performance on the test set for all algorithms as 
in Fig. 6. B scatter plot contrasting MCC scores of Macau model for all individual assays. C box plots contrasting distribution of MCC scores for all 
assays.
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When considering the average values across all assays, 
both XGB-FN and multi-task DNN outperformed the 
XGB models on all of the bins. On average, the highest 
benefit of the multi-task models was found for the most 
dissimilar compounds, but this trend is less clear com-
pared to the Ames dataset.

Role of data sparsity on imputation models
The role of data availability on the effectiveness of sin-
gle task and multi-task imputation models was inves-
tigated. As for the analysis on chemical similarity, the 
analysis was done on predicted values from the previ-
ous evaluation of single task and multi-task imputation 

Fig. 8  Performance of imputation models depending on test compound chemical similarity: Ames dataset. A–D show the MCC scores obtained in 
20 independent runs (same hyperparameters, different random seeds) of the models on the different bins of the test set for TA100, TA100_S9, TA98 
and TA98_S9. The number (n = x) written next to each bin indicates the number of compounds placed in the bin. E shows the median MCC scores 
and interquartile ranges across the different runs after computing the mean across the assays for a single run.
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models. The test set for each assay was divided into 
three bins according to the number of experimentally 
determined data labels (0–1, 2–3, and > 3 available 
labels) each compound has for the 11 remaining assays 
in the training set. The multi-task imputation models 
incorporate information about the remaining assays 
whereas the XGB models (single task models) do not. 

This analysis was only performed for the Ames dataset, 
as the lower sparsity of the Tox21 dataset was such that 
the bins of low data availability were not sufficiently 
populated. The analysis for the Ames dataset was lim-
ited to assays for which at least 100 compounds could 
be placed in each of the bins and these are the same 
assays as considered for the chemical similarity studies. 

Fig. 9  Performance of imputation models depending on test compound chemical similarity: Tox21. A–D show the MCC scores obtained in 20 
independent runs (same hyperparameters, different random seeds) of the models on the different bins of the test set for NR-Aromatase, NR-ER, 
SR-ARE, SR-p53 (representative assays). The number (n = x) written next to each bin indicates the number of compounds placed in the bin. E shows 
the median MCC scores and interquartile ranges across the different runs after computing the mean across all the assays for a single run.
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The MCC scores for these assays (TA100, TA100_S9, 
TA98, TA98_S9) for the different bins and the average 
scores across these assays are reported in Fig. 10.

For the first bin (0–1 available labels), the MCC scores 
of the multi-task models tended to be only slightly higher 
than those for the XGB models. The multi-task DNN 
models were the only imputation models with higher 

median MCC score than the XGB model across all the 
assays. The other multi-task models achieved lower 
median scores than the XGB models for this bin in one 
of the assays (Macau for TA100: 0.515 vs. 0.541 and XGB-
FN for TA98-S9: 0.380 vs. 0.512). For the remaining two 
bins, which represent a higher number of available tox-
icity labels for the test compounds (2–3 and > 3 available 

Fig. 10  Performance of imputation models according to test compound label availability. A–D show the MCC scores obtained in 20 independent 
runs (same hyperparameters, different random seeds) of the models on the different bins of the test set for TA100, TA100_S9, TA98 and TA98_S9. The 
number (n = x) written next to each bin indicates the number of compounds placed in the bin. E shows the median MCC scores and interquartile 
ranges across the different runs after computing the mean across the assays for a single run.
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labels), the XGB models were outperformed by all of the 
multi-task techniques for all of the assays. The differences 
in MCC score between the multi-task models and the 
XGB models were largest for the third bin (> 3 available 
labels), with the highest uplift occurring for the Macau 
model on the TA98_S9 assay (0.829 vs. 0.520). Generally, 
all of the multi-task imputation models achieved simi-
lar scores for the second and third bin, but Macau per-
formed better than the other imputation techniques for 
the third bin.

The observations for the single assays are supported 
when considering the averages across the assays as 
depicted in Fig.  10E. For the first bin, the XGB model 
was outperformed by all the multi-task models, albeit 
by a comparatively small margin. The margin between 
single task and multi-task models increased with more 
available data labels for test compounds. Notably, Macau 
outperformed the other multi-task approaches on the bin 
with > 3 test data labels.

This analysis shows that the number of available experi-
mentally determined assay labels for test compounds 
strongly affected the performance of the imputation 
models. For the Ames dataset, the multi-task models 
clearly performed better on compounds with a high num-
ber of available assay labels.

The larger size of the ToxCast dataset enabled a more 
detailed study of the effect of sparsity on imputation. 
Labels in the ToxCast training set were removed to artifi-
cially increase sparsity in the dataset. As discussed above, 
the number of training labels was reduced to 1000 for all 
assays, with no changes made for assays with fewer labels 
in the original dataset. Figure  11A shows the perfor-
mance of Macau, XGB-FN and XGB models on the data-
set with increased sparsity. In Fig. 11B and c assay-wise 
performances are contrasted for XGB-FN and Macau, 
respectively, whereby assays with unchanged number of 
training labels (see above) are colored in red.

The performance across the assays was decreased for 
both single task and multi-task imputation approaches 
on the data with increased sparsity, however, the multi-
task approaches remain clearly superior to XGB. Macau 
seems more robust towards increased sparsity compared 
to XGB-FN, as the decrease in MCC scores is less pro-
nounced for this technique. Decreases in performance 
were more pronounced for assays where training labels 
were removed (the blue dots in 11B and C), whereas 
there was less impact on the scores for assays with fewer 
labels in the original dataset. This may be due to the 
overall structure of the ToxCast dataset whereby some 
compounds were tested in the majority of assays [21]. 
This means that assays with only a few labels are likely 
to contain mostly compounds that were tested in a large 
number of assays and therefore test compounds for those 

assays will have many experimental labels to use. Even if 
the overall sparsity is increased, the test compounds of 
these assays will still have a high number of experimen-
tal labels, so that little or no decrease in performance 
was observed. In particular, it may be that those auxil-
iary assays most closely related to the target assays (with 
fewer than 1000 labels) also had fewer than 1000 labels 
and hence the most important source of information 
would not have been removed. For a single assay, overall 
sparsity of the dataset may not be the main determinant 
for the success of multi-task imputation approaches and 
it could be that having information from at least some 
related assays may be crucial instead. This is explored 
further below.

Role of assay relatedness on imputation models
The contributions of single assays to the overall success 
of the multi-task imputation were determined using pair-
wise FN models which were trained for each target assay 
with each of the remaining assays as auxiliary, in turn. 
Figure 12 reports the performance of the pairwise XGB-
FN models compared to the single task models as differ-
ence heatmaps. The relationship between the difference 
in performance between pairwise XGB-FN and single 
task models and the relatedness of the assays, measured 
as the MI-entropy ratio, is also shown. The MI-entropy 
ratios for all assay pairs of the small datasets are given in 
Additional file 1: Fig. S4 as a heatmap.

For the Ames dataset, the pairwise XGB-FN models 
achieved a higher MCC score than the single task XGB 
models in many cases (as shown by the green cells in the 
heatmap outside the diagonal, Fig.  12A). The diagonal 
of the heatmap shows the difference between the MCC 
scores for the full FN models compared to single task 
models. Generally, the pairwise models did not achieve 
as high scores as the full FN models, with the exception 
of TA1535 with TA1535_S9. However, in a few cases, the 
pairwise FN model approximated the performance of 
the full FN model quite well (e.g. the MCC of the TA97 
full model was 0.279 higher than the MCC of the single 
task model, whereas, the improvement of the pairwise 
model comprising TA97 and TA97_S9 was 0.230). In 
many cases, the pairwise FN model provided a substan-
tial benefit (improvement over 0.05) compared to the sin-
gle task model, even if this was smaller than that achieved 
for the full FN model. There were also many cases where 
the pairwise FN model showed very small differences 
compared to the single task models (shown by the white 
and very pale cells in the heatmap). Red cells indicate 
reduced performance of the pairwise models compared 
to the single task models. These cases were fairly rare 
overall, but occurred frequently in the assays with the 
fewest data points which also showed a high variance 
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between different runs of a model (TA102, TA102_S9, 
TA97, TA97_S9). Unsurprisingly, the Ames strain results 
with and without S9 are highly correlated (for details see 
Additional file 1: Fig. S4) and this is reflected in the con-
sistent increase in performance compared to the single 
task models for the pairs of the same bacteria strain, rep-
resented by the accumulation of green cells adjacent to 
the diagonal. Another key finding is that the four assays 
with the most data points (TA100, TA100_S9, TA98, 
TA98_S9) as auxiliary assays resulted in at least a mod-
erate increase in performance in most cases, suggesting 
that the number of available experimentally determined 
data points impacts on the performance of the pairwise 
FN models.

The performances of the pairwise XGB-FN mod-
els on the Tox21 dataset are shown in Fig.  12C. Simi-
lar to the Ames dataset, the pairwise XGB-FN models 
achieved a higher MCC score than the single task XGB 
models in many cases. In two of the cases (NR-AR with 
NR-AR-LBD and with NR-PPAR-gamma) the pairwise 
model achieved a higher score than the full FN model. 
However, for most of the target assays the full FN 
model clearly performed better than any pairwise FN 
model. The Tox21 dataset contains two pairs of assays 
that measure the same target in a different test system 
(NR-AR/NR-AR-LBD and NR-ER/NR-ER-LBD) and 
it was therefore expected that these pairs would yield 
the best performing pairwise FN models. For NR-ER 

Fig. 11  Performance of models trained on training sets of increased sparsity. A line plot comparing performances of different techniques on the 
test set. Dotted lines indicate performances of models on original datasets (sparsity not increased). B scatter plot contrasting MCC scores of XGB-FN 
model for all individual assays. C scatter plot contrasting MCC scores of Macau model for all individual assays. Assays whose number of training 
points was unchanged (≤ 1000 data points originally) are colored red, those with reduced number of training points (> 1000 data points originally) 
are colored blue.
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and NR-ER-LBD this was indeed the case, although 
other auxiliary assays yielded models of comparable 
performance (SR-ATAD5 for NR-ER and SR-ARE for 
NR-ER-LBD). NR-AR-LBD was the best auxiliary assay 
for NR-AR, but the same was not true for the opposite 
case (NR-PPAR-gamma was the best auxiliary assay for 
NR-AR-LBD). Some of the pairwise models performed 
worse than the respective single task models (red cells 
in Fig. 12B). For the target assays NR-PPAR-gamma and 
SR-HSE this occurred for many of the pairs, yet the full 
FN model performed better than the single task mod-
els, which can be attributed to the few auxiliary assays 
that resulted in improved models (SR-p53 and NR-AR-
LBD for NR-PPAR-gamma, and SR-p53 for SR-HSE).

The pairwise FN model results showed that a single 
assay could have a large influence on the success of FN 
models, however, different auxiliary assays had very dif-
ferent effects. Figure  12B and D plot the relationship 
between a target assay and an auxiliary assay measured 
using the MI-entropy ratio, against the change in perfor-
mance of the pairwise FN models over single task models 
for the Ames and Tox21 dataset, respectively.

For the Ames dataset, the improvements of pairwise 
FN models over single task models were not strongly cor-
related to the metric for assay relationships (Pearson cor-
relation coefficient: 0.48) (Fig. 12B). Nonetheless, strong 
increases for pairwise models (improvements in MCC of 
over 0.1) only occurred for pairs where the MI-entropy 

Fig. 12  Results of the pairwise XGB-FN models and the assay relatedness analysis. A, C pairwise FN models for the Ames dataset (A) and Tox21 
dataset (C). For each assay, pairwise FN models were trained with each of the remaining assays and, for each pair, 20 independent runs of the 
model were conducted using different random seeds and evaluated on the test set. To obtain the heatmap, the median MCC score was computed 
for each pair and the median MCC of the single task model for respective target assay was subtracted. The diagonals represent the differences in 
MCC score between the full FN model and the single task XGB model as a reference. B, D For each target assay-auxiliary assay pair the difference 
between MCC of pairwise FN model and single task model are plotted against the MI-entropy ratio of the two assays for the Ames dataset (B) and 
the Tox21 dataset (D).



Page 22 of 27Walter et al. Journal of Cheminformatics           (2022) 14:32 

ratio is above 0.3. Hence, it seems that a close related-
ness between the target assay and the auxiliary assay was 
necessary but not sufficient for a strong effect of that 
auxiliary assay on the FN model. The pair TA1537 with 
TA1537_S9 represents a case where a strong relatedness 
of the assays resulted in an apparently small effect, how-
ever, the performance of single task XGB on TA1537 was 
already very high (median MCC: 0.691, Fig.  5A) and a 
larger MCC score on this dataset may be limited by the 
uncertainty in the toxicity labels.

Similar to the Ames dataset, an increase in the MI-
entropy ratio tended to correspond with improvements 
of pairwise FN models over single task models on the 
Tox21 dataset, but the correlation was not very strong 
(Pearson correlation coefficient: 0.50). A striking excep-
tion from these trends was presented by the pair NR-
AR-LBD with NR-AR where the MI-entropy ratio was 
very large (almost 0.4) but the change in MCC was very 
small (less than 0.02). However, the other pairs with 
high MI-entropy ratios (e.g. NR-ER with NR-ER-LBD) 
were amongst the pairs where the auxiliary assay had the 
strongest effects on the FN model. Overall, the values for 
the MI-entropy ratio were lower on the Tox21 dataset 
than for the Ames dataset, which could explain why the 
imputation models provided a larger numerical benefit 
on performance for the Ames dataset. The findings on 
both datasets suggest that the MI-entropy ratio might be 
a useful metric to estimate which auxiliary assays could 
provide the strongest benefit in a FN model. However, 
clearly a high value does not guarantee a strong benefit.

For the larger ToxCast dataset, a detailed analysis of 
a single target assay, ‘TOX21-Aromatase-Inhibition’, 
was conducted. Auxiliary assays were selected either 
randomly or using the MI-entropy ratio and the per-
formance of the resulting models was compared. MCC 
score ranges of models are shown for XGB-FN models 
and Macau models in Fig. 13A and C, respectively.

For both XGB-FN and Macau, those models trained 
with auxiliary assays selected with the MI-entropy ratio 
criterion clearly outperformed those trained with ran-
domly selected auxiliary assays. Macau models trained 
with the 20 most similar assays even performed slightly 
better than the models with all assays. For both XGB-
FN and Macau, adding just one auxiliary assay provides 
a clear improvement over XGB models with a further 
strong increase after two more assays (three in total) were 
added. For the random assay selection, clear improve-
ments were only observed after at least 10 assays were 
added.

Additional file 1: Table S7 provides an overview for all 
selected auxiliary assays in this experiment. For assays 
selected using the MI-entropy ratio the values for the 
metric range between 0.369 and 0.256, while those for 

the randomly selected ones range between 0.261 (one of 
the Top-20 assays was randomly selected) and 0.003. Rel-
atively high MI-entropy values for some of the randomly 
selected assays may explain why clear improvements 
occurred also under this assay selection scheme.

Discussion
Comparison of traditional single task and multi‑task 
models
For both the small-scale datasets, no significant differ-
ence in performance was found between single task and 
multi-task methods in terms of MCC. On the Tox21 
dataset, both multi-task DNN and XGB-FN slightly out-
performed the best single task approach, XGB. However, 
the opposite was found for the Ames dataset. The small 
differences in performance between the methods suggest 
that neither single task nor multi-task models are gener-
ally superior on these datasets.

An insightful feature of this study is the analysis of 
model performance across different runs of a model with 
different random initializations, but otherwise identi-
cal hyperparameters. Our results show that stochastic 
effects can have a large influence on the performance 
of machine learning models. For some of the assays and 
methods the variance in performance was larger than for 
others. Assays with relatively few data points or strongly 
imbalanced assays were found to have comparatively high 
variances. This can be explained by the fact that seem-
ingly small variation in predictions made by a model can 
have a quite large impact on the MCC scores. Regarding 
different algorithms, DNNs (both single task and multi-
task) were found to have relatively large variance across 
different assays. In our experience, limiting the compari-
son of different machine learning methods to a single 
score could lead to the occurrence of seemingly large dif-
ferences in performance between models which are the 
result of pure chance, rather than meaningful differences. 
The repeated runs with different random seeds demon-
strate that the observed differences between the single 
task and multi-task models are not significant when con-
sidering the variances of the models’ performances on 
the single assays.

FNs based on XGB models achieved the highest scores 
on the Tox21 dataset. However, the FN models based on 
RF and DNN performed slightly worse than their single 
task counterparts (see scores in the code repository). An 
explanation for this could be the poor performance of 
the single task models which can lead to inaccurate pre-
dicted labels in the first step of the FN approach which 
are then propagated into inaccurate predictions for the 
target assays. A clear improvement in performance was 
observed when experimentally determined toxicity labels 
for test compounds were used as inputs to the FN models. 
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Experimentally determined labels indicate the true label 
of a compound with higher confidence than predictions, 
which may explain the surge in performance. These types 
of models are comparable to multi-task imputation mod-
els which are discussed further below, as they also use 
experimental information about test compounds.

To some extent, our findings seem to contradict reports 
on the superiority of multi-task models over single task 
models in the literature. The Merck Kaggle Challenge was 
won by an approach largely based on multi-task DNNs 
[2] with the results being further investigated by Xu et al. 
[38]. However, a direct comparison with our results is 

not possible due to differences in the datasets and the 
nature of the learning tasks which are classification here 
and were regression in the study by Xu et al. Neverthe-
less, even though on average multi-task DNNs outper-
formed single task DNNs in that study, the differences 
between the two approaches were also small. Mayr et al. 
found multi-task DNNs to outperform several single task 
algorithms, based on average performance, on the Tox21 
dataset [], yet the differences were small and comparable 
to our findings (Table 2). Moreover, the selection of the 
metric for model evaluation may influence the conclu-
sions. When using ROC-AUC instead of MCC as metric, 

Fig. 13  Auxiliary assay selection for the assay ‘TOX21-Aromatase-Inhibition’. Auxiliary assays were selected according to the MI-entropy ratio 
(‘similarity_added’) or randomly (‘random_added’). As a comparison, performance of XGB as a single task model and the respective multi-task 
model using all remaining auxiliary assays were included. Plotted are the MCC scores for the test set across 20 runs with different random seeds. A 
XGB-FN models. B Macau models
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both multi-task DNN and Macau outperformed the sin-
gle task approaches on both the Ames and Tox21 dataset 
(Additional file 1: Table S5). For FN models using solely 
predicted activities as features in the test set, we found 
no consistent improvements over single task models 
(for MCC and ROC-AUC as metric), which is in con-
trast to previous reports on FNs [7, 8] and on the related 
approach using predicted bioactivity profiles by Norinder 
et al. [9].

Comparison of single task and multi‑task imputation 
models
For both the Ames and the Tox21 datasets, the best single 
task imputation model was outperformed by multi-task 
imputation models across all the assays. Numerically, the 
increases in MCC scores over single task models were 
larger for the Ames dataset than for the Tox21 dataset. 
The best three multi-task methods (Macau, XGB-FN, 
and multi-task DNN) achieved virtually the same average 
MCC scores on the Ames dataset. RF-FN and DNN-FN 
performed somewhat worse but were still clearly better 
than the single task models. On the Tox21 dataset, XGB-
FN was the best method followed by multi-task DNN 
and the other FN methods also performed better than 
the single task models. However, Macau achieved lower 
MCC scores than the single task models, which is dis-
cussed below.

On the ToxCast dataset, XGB-FN and Macau were 
found to clearly outperform XGB models, whereas the 
multi-task DNN achieved higher scores than XGB for 
some assays and lower scores for others. In particular, for 
many assays a MCC score of 0 was obtained which hinted 
at the decision threshold being inappropriate as the 
result of imbalanced training data. The GHOST meth-
odology was therefore applied to the models in order to 
optimize the thresholds individually for each assay and 
method. The optimized multi-task DNN model outper-
formed the single task XGB, however, it did not perform 
as well as XGB-FN and Macau. Across the different tech-
niques, the GHOST approach was successful in improv-
ing MCC scores for assays that performed very poorly 
(MCC in many cases 0) when the default threshold was 
inappropriate. However, for assays performing well with 
the default threshold a slight decrease in MCC score was 
found for some assays. We conclude that the GHOST 
approach may be helpful when applied to imputation 
models, yet it should not necessarily be applied to all the 
assays. Situations where the GHOST approach seems 
useful are when assays have a poor MCC score, and the 
ROC-AUC score indicates reasonably good performance 
in ranking toxic compounds higher than non-toxic ones.

An advantage of FN models is the simplicity of imple-
mentation since they are based on existing single task 

QSAR architectures applied to multi-target datasets. 
However, the computational cost of FN models may be 
a limitation for very large datasets (i.e., many assays) as 
two models have to be trained for each assay. The FN 
approach as used in this study is somewhat reminiscent 
of the pQSAR approach [10]. Both approaches consist 
of two training steps, with the first step filling gaps in 
the dataset using single task models. The second step of 
the pQSAR model uses only the assay labels (known or 
predicted) as features rather than combining them with 
chemical descriptors as was done here.

The multi-task DNN used as an imputation method 
(i.e., on the assay-based splits) yielded competitive MCC 
scores on both the Ames and Tox21 datasets. In contrast 
to a multi-task DNN in its conventional use, the network 
is trained on all the compounds in the dataset (provided 
there is at least one label for the compound in the train-
ing set). An advantage of this technique compared to FN 
is that only a single model needs to be trained for the 
whole dataset rather than two for each assay. However, 
while the multi-task DNNs achieved high scores, the 
variance in performance due to changes in the random 
seed was relatively large. This behavior is undesirable as 
a single run may lead to a poorly performing model. This 
could be addressed by using ensembles of multiple runs, 
although this would increase the computational cost 
of the method. On the ToxCast dataset, the multi-task 
DNN achieved lower scores than FN and Macau models, 
even after applying GHOST. It could be that a more care-
ful selection of hyperparameters including architecture 
may be required for better scores. In general, it may be 
challenging for a multi-task DNN to achieve competitive 
scores on a large number of assays with widely different 
numbers of training instances.

The Macau method achieved the highest average MCC 
score on the Ames dataset, but a poor average MCC 
score on the Tox21 dataset. Additional file  1: Figure S1 
and Table  S6 report ROC-AUC scores for the different 
imputation models where it can be seen that Macau per-
formed best on both the Ames and Tox21 dataset using 
this metric. This suggests that an inappropriate decision 
threshold caused the low MCC scores for Macau on the 
Tox21 dataset, which might be remedied by using the 
GHOST approach. Macau was also found to perform 
well on the larger ToxCast dataset. An advantage of 
Macau compared to FN models is that less training time 
is required, as only a single model needs to be trained.

The findings of this study agree with previous studies 
reporting substantial benefits in performance of impu-
tation models over single task models for regression, 
namely Alchemite and pQSAR [10, 11, 42]. Intrigu-
ingly, Alchemite and pQSAR are based on two concep-
tually different imputation techniques, and achieved 
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approximately the same average score on the Novartis 
benchmark set [42]. Here, we used FN models as another 
imputation method and demonstrated its utility for clas-
sification tasks, both for datasets of small scale (Ames 
and Tox21 each having 12 assays) and a dataset of 
medium-large scale (ToxCast with 416 assays). The suita-
bility of FN models for datasets of even larger dimensions 
(thousands of assays and millions of compounds) would 
need to be tested.

Having demonstrated the superior performance of 
multi-task techniques for imputation, investigations were 
then carried out that aimed to characterize the factors 
that contributed to the improvements. The investigations 
explored the effects of chemical similarity, the amount 
of data labels available, and the relatedness of the assays 
included in the imputation models. Similar detailed 
investigations have not been reported in the literature to 
our knowledge.

The multi-task models achieved higher scores than sin-
gle task models for test compounds in all similarity bins 
(representing different degrees of chemical similarity to 
training compounds). The largest increase was observed 
for compounds with low chemical similarity to the train-
ing compounds, on which the single task models per-
formed poorly. This effect was stronger for the Ames 
dataset, but was also observed for the Tox21 dataset for 
assays where the single task QSAR model performed par-
ticularly poorly on chemically dissimilar compounds. We 
therefore conclude that not only do multi-task imputation 
models perform better than single task imputation mod-
els, but by leveraging known auxiliary assay data even in 
less represented chemical space they may also possess a 
wider applicability domain and increase the chemical 
space for which a model makes reliable predictions.

Perhaps unsurprisingly, our results showed that multi-
task models outperformed single task models by a wider 
margin for compounds with many toxicity labels. Never-
theless, both multi-task DNN and Macau outperformed 
XGB models on the Ames dataset for compounds with 
no or just one toxicity label present in the training set, 
indicating that very little information may be sufficient 
to observe improvement over single task QSAR models. 
On the ToxCast dataset it was confirmed that increas-
ing sparsity (by removing labels from the training set) 
decreases performance of multi-task imputation models, 
yet the same is true for single task models and hence the 
multi-task techniques still provided a clear benefit over 
single task models. The experiments on pairwise FN 
models demonstrated that knowing the label of just a sec-
ond toxicity assay can improve the predictions substan-
tially, although this depends on which assay is used as 
auxiliary assay. Using the assay ‘TOX21-Aromatase-Inhi-
bition’ from the ToxCast dataset, it was demonstrated 

that the MI-entropy ratio can be used to successfully 
identify auxiliary assays yielding large benefits for a 
given target assay. Clearly, both the type and amount of 
information in the form of experimental labels for auxil-
iary assays determine the success of imputation models. 
Having many auxiliary labels and, in particular, labels of 
closely related assays leads to the largest improvements 
in model performance. The MI-entropy ratio introduced 
in this work provides a useful means to formalize and 
quantify the concept of relatedness between different 
toxicity assays.

Conclusions
This study found little difference in performance between 
single task and multi-task QSAR models in classical QSAR 
settings using traditional compound-based splits. How-
ever, multi-task models clearly outperformed the single 
task models when imputation was used, as demonstrated 
using the assay-based splits, so that the inclusion of data 
from other toxicity endpoints for test compounds may 
yield superior QSAR models. The study also suggests that 
multi-task imputation models may be able to make reliable 
predictions for a wider chemical space when compared 
to traditional QSAR models. Hence, multi-task imputa-
tion models may be particularly useful in situations where 
the use of traditional QSAR models is limited due to test 
compounds falling outside of the applicability domain of 
a single model. However, it is important to acknowledge 
that imputation is fundamentally different from the more 
conventional approach since it uses experimentally deter-
mined information about toxicity endpoints for the test 
compounds. This is likely the reason why these models can 
achieve much better performance scores.

Naturally, imputation approaches are restricted to pre-
dict toxicity for compounds where toxicity has already 
been measured for other endpoints. The FN models that 
used predicted activities as features for the test compounds 
were not found to outperform single task models on the 
datasets studied here, therefore, when no experimental 
data about test compounds is available multi-task DNNs 
may be the best choice. Depending on the dataset, these 
models might provide a slight benefit in performance over 
single task models. Furthermore, the use of a multi-task 
DNN can save computation time compared to the training 
of single task QSAR models for each individual endpoint.

Although our datasets have focused on toxicity end-
points, we believe the results are applicable to other bio-
logical endpoints of interest. In conclusion, multi-task 
imputation models have the potential to improve the per-
formance of QSAR models used in practice and to extend 
their domain of applicability to make predictions for dis-
similar molecules.
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