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ABSTRACT: Manipulation and navigation of micro and nanoswimmers in different fluid
environments can be achieved by chemicals, external fields, or even motile cells. Many
researchers have selected magnetic fields as the active external actuation source based on the
advantageous features of this actuation strategy such as remote and spatiotemporal control,
fuel-free, high degree of reconfigurability, programmability, recyclability, and versatility. This
review introduces fundamental concepts and advantages of magnetic micro/nanorobots
(termed here as “MagRobots”) as well as basic knowledge of magnetic fields and magnetic
materials, setups for magnetic manipulation, magnetic field configurations, and symmetry-
breaking strategies for effective movement. These concepts are discussed to describe the
interactions between micro/nanorobots and magnetic fields. Actuation mechanisms of
flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave locomotion/
ciliary stroke motion) and surface walkers (i.e., surface-assisted motion), applications of
magnetic fields in other propulsion approaches, and magnetic stimulation of micro/
nanorobots beyond motion are provided followed by fabrication techniques for (quasi-
)spherical, helical, flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots in targeted drug/gene delivery, cell
manipulation, minimally invasive surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery, pollution
removal for environmental remediation, and (bio)sensing are also reviewed. Finally, current challenges and future perspectives for
the development of magnetically powered miniaturized motors are discussed.
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1. INTRODUCTION

Many species in nature, such as magnetotactic bacteria, birds,
bats, butterflies, lobsters, and salmon, can fly or swim over a
long distance by perceiving navigation cues from geomagnetic
fields. Some species (e.g., Amitermes meridionalis) even have
the ability to (re)orient their bodies or nests according to
geomagnetic information. Similarly, the locomotion of nano-
scale and microscale objects in a predefined path by the
navigation of magnetic fields,1−4 which are mainly generated
by moving charges (i.e., electric currents) and magnetic
materials (such as permanent magnets), has drawn extensive
attention owing to their tremendous potential for applications
in biomedicine and environmental remediation. Such mini-
aturized objects are normally termed as “magnetically driven
micro/nanorobots” (called “MagRobots” for short in this
review), which is an important branch of micro and
nanorobots.
Micro/nanorobots are locomotive artificial machines with

size in the micro or nanoscale and rationally designed to
execute tasks on command via self-propulsion or an externally
controlled propulsion mechanism. Ideally, micro/nanorobots
should have the ability to undertake tasks via encapsulation/
functionalization with diagnostic or therapeutic agents,
decoration with functional materials, or being fabricated into
special micro/nano architectures; “delivery tasks” by moving
toward targeted sites in a user-defined path or a theoretically
and experimental optimized path; “execute tasks”, for example,
killing diseased cells/tissues, removing environmental pollu-
tants as required; and “exit tasks” after the task accomplish-
ment via recycling or in situ degradation. During task
implementation, locomotion behavior is of great importance
for micro and nanorobots. The migration of micro and
nanorobots can be powered by multiple strategies including
chemical catalysis (e.g., O2 or H2 generation) or chemical
gradients,5−11 external energy sources (e.g., magnetic
field,12−14 light,15−21 acoustic wave,22−25 or electrical
field26−28), and even motile cells (e.g., sperm cell, bacterial
cell).29−37 According to the power source, micro/nanorobots
can be classified as chemically driven (or fuel-driven),
magnetically driven, light-driven, ultrasound-driven, electrically
driven. The word “driven” can be replaced by “powered”,
“actuated”, or “propelled”. According to their functionalities,
micro/nanorobots can be named as micro/nanogrippers,38−40

micro/nanodrillers,41 micro/nanocleaners,42,43 micro/nano-
scavengers,44 etc. Readers can refer to our latest review45 to
obtain a more detailed classification of micro/nanorobots
based on geometric shapes, motion modes, and functionalities.
Chemically propelled micro/nanorobots are faster than

those with other propulsion methods, but their locomotion
lacks directionality. Moreover, they require toxic fuels such as
H2O2, N2H4, HCl, urea, and NaBH4.

46,47 In comparison, those
micro/nanorobots powered by external physical fields (such as
magnetic, ultrasound, light, and electric fields) do not need
toxic chemical fuels for propulsion, but their motion is
relatively slow.48−52 Light-propelled micro/nanorobots can
move in water; however, depending on their composition, they
need H2O2 and a high-intensity light source, which could
compromise their biocompatibility. On the other hand, micro/
nanomotors propelled by ultrasound are biocompatible but
lack directionality control, making it difficult for them to
perform specific tasks. Finally, micro/nanomotors propelled by
electric field are very promising for fuel-free locomotion;

however, its biological application is still limited and not yet
fully demonstrated. Magnetically driven micro/nanomotors
address most disadvantages presented by others propulsion
principles and, until now, have been the more explored and
used in many biomedical applications as well as for
environmental control and remediation. Furthermore, mag-
netic medical microrobots can be driven by magnetic
resonance imaging (MRI) systems, thus utilizing existing
clinical MRI equipment for dual purposes, namely the imaging
and tracking of microrobots, and their propulsion and motion
control.53,54 Likewise, clinical ultrasonography systems hold
great potential to actuate ultrasonically driven microrobots.45

In addition, among all the actuation strategies, the utilization
of a magnetic field for manipulating miniaturized robots has
unparalleled advantages, which are summarized as follows. (i)
Remote maneuverability: magnetic fields provide a noninvasive
way to manipulate matter owing to the inherent contactless
characteristics of magnetic forces. Such a wireless actuation
method allows for micro and nano agents to move in an
untethered manner while keeping their local chemical
environment intact. (ii) Fuel-Free: using a magnetic field for
propulsion is a clean process that does not consume liquid fuel
(unlike for chemically and photochemically propelled swim-
mers). This feature eliminates the harmful effects of toxic
chemicals (e.g., hydrogen peroxide) on cells and tissues during
their biological application processes. In addition, magnetic
fields exhibit insignificant dependence on features and
properties of surrounding environments and cause negligible
damage to cells at low frequencies. (iii) Reconfigurability and
programmability of magnetic materials: reconfigurability refers
to the rearrangement of the swimmer’s features such as the
morphology, locomotion mode, or other motion parameters
upon the application of magnetic fields or other external
stimuli. Examples of reconfigurable structures are magnetically
driven particulate swarms,55−57 stimuli-responsive magnetic
materials (i.e., ferromagnetic shape-memory alloys), or
composite structures (i.e., smart magneto-polymer compo-
sites58,59 or complex origami-like architectures60). This type of
structure can readily change its shape by changing the
conditions of the applied magnetic fields (i.e., frequency or
magnitude). Programmability refers to the ability to manipu-
late the components of the MagRobots in terms of their shape,
magnetic shape, magnetic anisotropy,61 and crystalline
anisotropy to achieve a specific motion mode, position, or
orientation when magnetic fields are applied.62,63 For example,
the orientation of a magnetic composite-based structure can be
programmed by suitably aligning the particles within the
composite matrix.60 Specific shape-morphing small-scale
systems can also be designed to exhibit both reconfigurability
and programmability.64 (iv) Recyclability of magnetic materi-
als: after micro/nanorobots have completed their tasks, the
separation and recycling of introduced foreign matter from
water, biological fluids, or even tissues might be necessary in
terms of biosafety and biocompatibility. Magnetic nano/
microrobots, as they are composed of magnetic building
blocks (i.e., coating, segment, particulates), allow for a feasible
and convenient magnetically assisted retrieval and recycling
process. (v) Versatility: by combining a magnetic field with
other actuation sources, the transport and delivery of
functional cargos (e.g., drugs or a single cell at the nanosize
level) can be achieved with high maneuverability and
sensitivity.65 Currently, various hybrid power sources, such as
magneto-acoustic,22,23,66 magneto-optical,67 and magneto-
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chemotaxis,68 have been reported, which provide dual
propulsion modes in response to multiple stimuli.
Molecular machines are molecular components capable of

implementing mechanical locomotion (as output) in response
to particular external stimuli (as input).69−72 Stimuli can be
various energy inputs such as chemical energy, electric energy,
light, photochemical, electrochemical energy, or pH gra-
dient.73−77 Although molecular machines can perform very
complicated functions, most functions are limited to conforma-
tional movements.78−82 In terms of practical uses, particularly
for biomedical applications, the operator’s real-time imaging
and tracking of the tiny robots are required when they are
carrying out specific tasks inside the human body.10,83 This
requirement may limit the applicability of molecular machines
due to their nanoscale (<10 nm) size being too small to be
readily visualized using traditional imaging techniques. By
contrast, larger micro- and nanorobots can provide greater
feasibility for bioimaging for the applications in medical
fields.53,84−86 To this end, swarms of micro/nanorobots can
also be used for their imaging and positioning abilities.87−89

Recent reviews about micro and nanorobots that focus on
fabrication techniques,51 geometric shapes (e.g., active
particles,90 Janus,91 tubular,92 hybrid actuators81,93), actuation
sources (e.g., light,48,49 magnetic field94), propulsion mecha-
nisms,82 and potential applications (e.g., cancer therapy95)
provide us with a basic understanding and up-to-date
developments in this multidisciplinary and interdisciplinary
area. A comprehensive understanding of how tiny machines
behave under magnetic fields will inspire and trigger
interdisciplinary and cross-disciplinary scientific and techno-
logical innovation for multiple applications. The goal of this
review is to provide a general view of the locomotion behaviors
of nano and microscale motors under the manipulation of a
magnetic field and guidance for their rational design by
describing the interaction of MagRobots and magnetic fields as
well as actuation and movement mechanisms, and reporting
state-of-the-art fabrication techniques. After demonstrating
current applications in biological and environmental fields, a
further outlook of this new and exciting field is presented.

2. INTERATIONS BETWEEN MICRO/NANOROBOTS
AND MAGNETIC FIELDS

2.1. Magnetic Fields and Magnetic Materials

Magnetic fields, as vector-valued functions of the position,
originate from the movement of electric charge. Magnetic
fields can be generated by two distinct sources: freely moving
electric currents and magnetic materials. Typically, the former
source is generated by the coil of an electromagnet that is
externally controllable. The setups of a triaxial orthorhombic
Helmholtz coil and eight electromagnetic coils (e.g., MiniMag,
OctoMag) are representative and widely employed to generate
magnetic fields for driving and steering MagRobots (see
Section 2.2). The latter source is generated from the intrinsic
magnetization of magnetic materials, specifically permanent
ferromagnets, which can retain a large remnant magnetization.
To manipulate micro- and nanomachines by magnetic fields, a
conventional strategy consists of incorporating magnetic
components into nano/microstructures. Magnetic materials
can be classified as a function of the magnetic susceptibility
(xm), a parameter that reflects how easy a magnetic material is
magnetized. As such, magnetic materials are categorized as
ferromagnetic (and ferrimagnetic) materials (xm ≫ 0),

paramagnetic materials (xm > 0), and diamagnetic materials
(xm < 0). Paramagnets and diamagnets are weakly attracted or
repelled, respectively, to magnetic fields. Additionally, they
cannot retain any magnetization once the magnetic field is
removed. Ferro- and ferrimagnets are all strongly attracted to
magnetic fields. Specifically, ferro- and ferrimagnets can retain
magnetization, (i.e., exhibit remnant magnetization or
remanence) after being subjected to a magnetic field. Usually,
high remanence is a feature of hard-ferromagnetic materials,
otherwise known as permanent magnets. Soft-ferromagnets, in
contrast, exhibit low remanence. Both soft- and hard-magnets
exhibit a hysteretic behavior, which means that to demagnetize
these materials, a coercive magnetic field is necessary. This
coercivity is large for hard-magnets and small for soft-magnets.
Superparamagnets are a special class of materials in which
features of both ferromagnets and paramagnets converge such
as high susceptibility, no remanence, and no coercivity. While a
few examples exist of micro/nanorobots constructed of
paramagnets and diamagnets,96,97 the majority of magnetic
small-scale robots have been made of ferromagnetic,
ferrimagnetic, and superparamagnetic compounds. For ex-
tended details on types of magnetic materials, we suggest the
reader to review the hereby indicated references.98−100

When placing a magnetic small-scale robot with a volume v
in an external magnetic field B, the device will display a
magnetization M. If the device is subject to a magnetic field
gradient ΔB, it will experience an attractive force (or repulsive
if it is a diamagnet) as expressed in eq 1. If the device is
subjected to a magnetic field, to minimize its energy, it will
experience a torque as expressed in eq 2, which will cause the
magnetic robot to orient in such a way that its easy
magnetization axis is parallel to the direction of the applied
magnetic field. The easy magnetization axis is usually governed
by the shape (shape anisotropy) but can also be ruled by
specific crystal orientations of the materials (crystalline
anisotropy). Additionally, the easy magnetization axis can be
programmed, for instance, by orienting magnetic nanostruc-
tures with a matrix of a composite component or by
premagnetizing a material in a specific direction:

ν= × ∇F M B( ) (1)

ν= ×T M B (2)

Both magnetic forces generated in gradient fields and
magnetic torque induced by spatially homogeneous or
heterogeneous dynamic fields can function as “fuel” to actuate
microscopic and nanoscopic motors in various environments.
In terms of magnetic torque, weak homogeneous rotating or
oscillating fields (see Section 2.3), which display higher
efficiency in transforming magnetic energy into kinetic energy,
are highly preferable. Magnetic fields offer a maximum of six
degrees of freedom (DoFs) (i.e., three translational DoFs and
three rotational DoFs) for absolute spatial manipulation of
micro/nanorobots, depending on the setup of electromagnetic
actuation systems (see Section 2.2). For instance, the widely
used uniform rotating magnetic field with triaxial Helmholtz
coil can supply three rotational DoFs, while MiniMag and
OctoMag have five DoFs: two rotational and three transla-
tional DoFs.
2.2. Magnetic Manipulation Systems

A typical setup platform for monitoring and actuating
magnetically driven micro- and nanorobots consists of a
sample stage, an optical microscope (eventually, coupled with a
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high-resolution camera), a magnetic manipulation system, and
a computer system with video capture and analysis (Figure
1A). The magnetic manipulation system consists of a set of

either permanent magnets or electromagnets107−110 as the
source of the magnetic field. Recent contributions97,111,112

provide a systematic review of configurations of magnetic
manipulation systems that can be applied to magnetic small-
scale robots with sizes ranging from nanometers to millimeters.
In this review, we will only focus on the commonly used
magnetic systems employed for the manipulation of nanoscale
and microscale robots.
One of the main differences between systems using

permanent magnets and electromagnets is the fact that the
magnetic field from a permanent magnet is persistent and its
magnitude cannot be quickly changed. The distribution and

strength of a magnet’s field depend on its geometrical shape
and size. For a magnetized object with a given geometry shape
and magnetization, large magnets can project their field further
into space. However, large magnets produce smaller magnetic
forces as demonstrated in eq 1 because the change of field in
space (i.e., spatial derivatives in the field) is less pronounced.
By manually or automatically adjusting the position or
orientation of a magnet, a translatory or rotational movement
of MagRobots can be triggered. Direct utilization of portable
magnet provides an easy-to-operate way to drive the motion of
MagRobots by simply adjusting the position and orientation of
a magnet (Figure 1B). Although many researchers have
reported the locomotion of magnetic micro/nanorobots by
using single permanent magnets, the experimental reproduci-
bility and accuracy are challenging aspects because the
movement of magnets largely depends on their operator.
Given the drawbacks of manual handling, many automatically
operable magnet systems have been designed by integrating a
magnet with a commercial robotic arm such as the LBR Med
robotic arm from KUKA Robotics Corporation (Figure 1C)
and MH5 robotic arm from Yaskawa Motoman. Such an
integrated system is more reliable and precise. Besides
magnetic field gradients, magnetic torque can also be exerted
on small-scale devices when the magnet rotates (Figure 1D),
which allows for rotational actuation mechanisms.
In magnetic actuation systems based on electromagnets,

magnetic fields are generated from flowing currents through
coils. A typical electromagnet is formed by wrapping insulated
copper wires around a ferromagnetic core, which can
concentrate and amplify the magnetic field and field gradient.
An ideal soft magnetic material is often used as the core in
order to avoid effects of hysteresis. On-demand setting of
current in each coil can result in the required configuration of
magnetic fields, such as rotating field, oscillating field,
alternating fields, and conical fields, which will be discussed
in Section 2.3. Different arrangements of coils constitute
specialized electromagnet systems such as the Helmholtz coil,
the Maxwell coil, the saddle coil, and the double-saddle Golay
coil (detailed information can be found in ref 113). Helmholtz
coil, containing two circular and coaxial coils with equal radius
and same handedness of flowing current, is the first and most
important arrangement. Because the field generated from the
Helmholtz coil is near-uniform at the center of the coils, such a
magnetic actuation system is appropriate for magnetic torque
control.114−116 Arbitrary uniform magnetic fields in a 2D plane
or 3D space can be generated by two pairs of Helmholtz coils
or triaxial Helmholtz coils, respectively. Triaxial circular
Helmholtz coils are the most commonly used for actuating
magnetic small-scale robots (Figure 1E). The combination of
Helmholtz coils with other types of coils can engender systems
with multi-DOF capabilities. Maxwell coil is also composed of
two circular coaxial coils with equal radius, but the current
flowing through different coils coil has the opposite handed-
ness. Maxwell coils can create uniform magnetic field gradients,
saddle coils can generate a uniform field or a gradient field, and
double-saddle Golay coils can produce a transverse gradient. A
magnetic manipulation system with a stationary Helmholtz−
Maxwell coil and a rotational Helmholtz−Maxwell coil has the
capacity of 3D locomotion of a magnetic small-scale robot
through the control of both magnetic forces and torques
(Figure 1F).104 Its upgraded system using four different coil
pairs (i.e., a Helmholtz coil, a Maxwell coil, a rotatory uniform
saddle coil, and a rotatory gradient saddle coil) occupies a

Figure 1. Experimental setup for magnetically driven micro/
nanorobots and various magnetic actuation systems. (A) Diagram
of the typical experimental workplace for actuating and visualizing
MagRobots. (B) Magnetic actuation system consists of only a single
permanent magnet. (C) Permanent magnet actuation system using
cylindrical NdFeB permanent magnet fixed to its end-effector and a
robotic arm. Reproduced with permission from ref 101. Copyright
2017 IEEE. (D) Rotating permanent magnet system consists of a
magnet, a robotic arm, and a motor. Reproduced with permission
from ref 102. Copyright 2013 IEEE. (E) Electromagnetic actuation
system using triaxial circular Helmholtz coils. Reproduced with
permission from ref 103. Copyright Springer Science + Business
Media, LLC 2013. (F) Electromagnetic actuation system using a
stationary Helmholtz−Maxwell coil and a rotational Helmholtz−
Maxwell coil. Reproduced with permission from ref 104. Copyright
2009 Elsevier B.V. (G) Electromagnetic actuation system using
multiply coils including a Helmholtz coil, Maxwell coil, uniform
saddle coil, and gradient saddle coil. Reproduced with permission
from ref 105. Copyright 2010 Elsevier B.V. (H) MiniMag electro-
magnetic system. Reproduced with permission from ref 106.
Copyright 2014 Springer-Verlag GmbH Berlin Heidelberg.
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smaller volume and consumes less driving energy (Figure
1G).105 Given the practical clinical application of biomedical
micro/nanorobots, saddle coil and Golay coil with tubular
construction are preferable because they have high space
efficiency and, hence, are capable of accommodating the
human body. For example, a widely used magnetic resonance
imaging (MRI) scanner in clinical practice incorporates a
Maxwell coil and two orthogonal Golay coils.117

A drawback of magnetic actuation systems consisting of
paired coils lies in their restrictions on the shape and size of the
workspace. In contrast, electromagnetic systems using several
nonorthogonally distributed electromagnets, usually made of
columnar coils with soft-iron cores, can break this limitation by
arranging the electromagnets so that their generated dipoles
keep their respective axes pointing to a common point in the
given workspace. The first example of such configuration was
the OctoMag, an electromagnet comprising a total of eight
electromagnets. OctoMag is a system capable of generating
magnetic forces and torques in three dimensions and allows for
a 5-DOF magnetic control (3-DOF position and 2-DOF
orientation).118 OctMag is composed of four evenly dis-
tributed electromagnets in a plane with the orientation of 90°
from a central axis and four evenly distributed electromagnets
with the orientation of 45° from a central axis. MiniMag is the
scaled-down compact version of the OctoMag (Figure 1H).
Utilization of OctMag and MiniMag has been reported to
remotely manipulate micro- and nanorobots for targeted drug
delivery,119 minimally invasive ophthalmic surgery,120 and
stem cell transplantation in a rat brain.121 Other configurations
of electromagnets, such as square antiprism, cubic, open
asymmetric, and so on, were summarized in a recent review.113

2.3. Actuation Configurations for MagRobots

According to changes of the magnetic field vector with time,
magnetic fields can be classified as static, dynamic (including a
rotating magnetic field whose direction varies with time, an
oscillating magnetic field whose strength varies with time), or
on−off fields. Both static and dynamic magnetic fields can be
homogeneous fields where the field vector modulus remains
constant in space, or inhomogeneous magnetic fields where the
field strength varies with position, that is, field gradient.122

Rotating magnetic fields are widely adopted to induce
rotational motion. For some micro and nanomachines with
specific shapes (e.g., helical structure), such temporal−periodic
rotational motion can be converted into translational cork-
screw motion (see Sections 3.1 and 4.2), which leads to a net
spatial displacement. In contrast, oscillating magnetic fields can
be utilized to activate traveling undulatory locomotion for
some MagRobots such as those with soft tails (see Section 3.2)
and those consisting of solid segments linked with soft hinges
(see Section 4.4). Rotational magnetic fields can also induce
thermophoretic motion for ferromagnetic materials by
generating heat energy123 (see Section 3.4). Figure 2
summarizes different categories of magnetic fields and their
corresponding field diagrams.124

2.4. Effective Movements in MagRobots:
“Symmetry-Breaking Strategies”

To begin this section, we would like to briefly introduce the
hydrodynamic laws to understand how small-scale robots swim
in a fluid. The Navier−Stokes equation, arising from Newton’s
second law, describes the motion of a Newtonian fluid as
follows (eq 3):

ρ η∂
∂

+ ∇ = ∇ − ∇i
k
jjj

y
{
zzz

v
v v v p

t
( ) 2

(3)

where vector ν and vector p (both of which are a function of
position and time) are the flow velocity and pressure,
respectively; ρ and η are the density and viscosity of the
flow, respectively. The left-hand of the Navier−Stokes
equation comprises the inertial forces, while the right-hand
corresponds to the viscous forces. Here, we introduce an
important dimensionless quantity called the Reynolds number
(Re, expressed in eq 4), which is the ratio of inertial and
viscous forces:

ρν
η

= =Re
Linertial forces

viscous forces (4)

where L is the characteristic length of an object moving in a
fluid.
For small-scale devices and organisms (i.e., motile cells,

bacteria), L is very small (Re ≈ 10−4), which means that
viscous forces rule their motion. A typical analogy of swimming
at low Re is that a bacteria swimming in water is similar to a
person swimming in honey. Considering that inertia forces are
negligible in the low Re regimes, the Navier−Stokes equation
can be simplified as an expression known as the Stokes
equation:

νη∇ = ∇P (5)

Note that this hydrodynamic equation is time-independent,
meaning that no net displacement will occur after completing a
cyclic process no matter if the speed of the swimmer is fast or
slow. In other words, the resultant fluid flow exhibits
instantaneous and time-reversible features. This is the so-
called “Scallop Theorem,” as introduced by the Nobel laureate
Purcell (Figure 3A). At low Reynolds number, a microscopic
scallop can only perform back and forward movement (i.e.,
reciprocal motion). Once the actuation energy (such as a
magnetic field) is removed, its motion is immediately halted
due to the lack of inertial forces. Importantly, to generate a
nonreciprocal translatory movement to execute tasks such as
cargo delivery, Figure 3B summarizes some strategies
employed to break Purcell’s Scallop Theorem. The first

Figure 2. Classifications and configurations of magnetic fields in
relation to the motion of MagRobots.
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method involves fabricating a small-scale robot with an
asymmetric shape such as a tubular,125 helical,60,126,127 fish-
like,128 annelid-worm-like,129 tadpole-like,130 bullet-shaped,22

star-shaped,131 or even random-shaped132,133 structure. In
addition, an asymmetric shape (e.g., carpet,134 ribbon56) can
also be formed by self-assembling colloid particles with a
symmetric shape based on collective behavior.90 A second
approach consists of creating a micro- or nanostructure
containing a flexible component, for example, a flexible tail,
which can mimic the flagellum of a microorganism.81,135

Velocity distribution (indexed by frame number of a video
sequence) of a single beating flagellum or cilium from a cell or
a microorganism during one cycle136 indicated the generated
traveling-wave motion (see Section 3.2) is nonreciprocal.
Incorporating flexible components in between rigid structures
to create multilink micro or nanoassemblies is also another
possibility, which will be further discussed in Section 4.4. A
recent strategy consists of integrating motile flagellated
microorganisms and cells with magnetic micro and nanostruc-
tures to create biohybrid MagRobots (see Section 4.5). A third
approach entails the use of a nonsymmetric actuation magnetic
field. For example, a symmetric small structure can exhibit a
translational motion by means of a traveling-wave137 or a cilia-
beating motion mechanism138 under a nonsymmetric actuation

field. The fourth approach is based on actuating magnetic
small-scale devices in the proximity of a boundary (e.g., wall,
interface) to break the spatial symmetry. The motion
mechanism based on this method is called “surface-assisted
propulsion”, which will be discussed in Section 3.3. All these
symmetry-breaking strategies evade the constraints of the
famous Scallop Theorem.100 Note that the Scallop Theorem
only applies to Newtonian fluids. Time-reversible reciprocal
locomotion can still generate an effective propulsion in non-
Newtonian fluids (e.g., blood, saliva, mucus).139

3. ACTUATION AND MECHANISMS OF MAGNETIC
ROBOTS

Compared with macroscale motile robots, micro and nanoscale
robots experience totally distinctive hydrodynamics. Hence,
they exhibit distinctive assorted motion behaviors. A good
understanding of various propulsion mechanisms is the basis
for the design of propulsion microsystems including the shape
and architecture of micro and nanorobots as well as the
configuration of the magnetic field. The designed propulsion
system must be able to overcome various resistive forces in the
micro and nanodomains to realize the motion of small-scale
robots effectively. The translational mechanisms of magnetic
miniaturized machines could be broadly divided into three

Figure 3. (A) Schematic image of Purcell’s scallop presenting a nonreciprocal motion in a high Reynolds number fluid and reciprocal motion in a
low Reynolds number fluid with no net replacement (so-called “Scallop Theorem”140). (B) Summary of five strategies (S1−S6) to break the
Scallop Theorem to produce an effective movement. S2 is reproduced with permission from refs 136 and 139. Copyright 2014, Brumley et al. This
article is distributed under the terms of the Creative Commons Attribution License. S4 is reproduced with permission from ref 141. Copyright 2015
The authors. S5 is reproduced with permission from refs 136 and 139. Copyright 2014 Macmillan Publishers Limited. This is an open access article
distributed under the terms of the Creative Commons CC BY license.
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types: (a) corkscrew motion, (b) undulatory motion (i.e.,
traveling-wave motion), and (c) surface-assisted propulsion
(i.e., surface walker).

3.1. Corkscrew-like Motion

In nature, many microorganisms can coordinate their
propulsion and orientation behaviors according to external
stimuli with a motile appendage called a flagellum. Eukaryotic
cells (e.g., spermatozoa) can produce a traveling-wave motion
by making use of a flexible beating flagellum. In contrast,
prokaryotic cells can perform a corkscrew-type motion by
rotating their helical flagella. Bacteria (e.g., E. coli), as a
representative of prokaryotic organisms, rely on the rotation of
flagella for swimming. The flagellum, containing a basal body, a
hook, and a filament, is the fundamental organelle for bacterial
motion. There is a reversible motor inside the basal body
controlling the rotation of the flagellum. The flagellum can not
only trigger reorientation of the organism but also make them
move forward and back. When the flagellum rotates in one
direction with an action frequency ω1, the cell body counter-
rotates with the reaction frequency ω2 (ω2 and ω1 are not

equal) to balance the produced torque (Figure 4A). Inspired
by the bacterial flagellum for efficient movement, man-made
helical micronanomachines, known as artificial bacterial flagella
(ABF),142−145 have been developed and investigated. Although
there is no motor in the ABF system, external rotating
magnetic fields provide a similar function for generating the
rotation.
As discussed earlier, a MagRobot will align its easy

magnetization axis parallel with the direction of a local
homogeneous field upon experiencing a magnetic torque in
that magnetic field. A continuously applied torque to a micro/
nanoobject under an external rotating field gives rise to the
rotational movement of the body. For artificial magnetic
micromachines containing chiral helices, a steady rotation
around their helical axis can be effectively converted into
nonreciprocal translational motion, with the direction parallel
with the rotating axis of a two-dimensional planar rotating
field. At the same time, the tail and head (sometimes it has no
head) of ABF perform the same (clockwise or counter-
clockwise) orientation. This is distinct from bacteria, whose
head and tail rotate in the opposite orientation. If the ABF

Figure 4. Flagellar-based propulsion mechanisms. (A) Rotation of bacterial flagellum at frequency ω1 through rotary motor inside and a counter-
rotation of the head at frequency ω2, while head and tail of ABF rotate in the same direction. (B) Typical types of magnetic ABFs. Reproduced with
permission from ref 148. Copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (C) Field frequency-dependent ABF movement:
ABF wobbles with a wobbling angle at low frequency; wobbling movement transforms into corkscrew-like swimming; then the wobbling decreases
to zero at high rotational frequencies. Example of frequency-dependent propulsion of MOF-based helical swimmers. Reproduced with permission
from ref 154. Copyright 2019 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim.
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consists of a single rigid body, then the head and tail will rotate
with the same frequency (ωh = ωt). Moreover, the progression
direction (forward or backward) can be easily inverted by
reversing the direction of rotation (i.e., clockwise or counter-
clockwise) of an applied magnetic field. In the magnetically
actuated ABF system, similar to other magnetically controlled
systems, magnetic materials are required in order to respond to
the external field. Widely used ferromagnetic materials include
Ni, Co, and Fe, while the frequently applied superparamagnetic
materials include Fe2O3 and Fe3O4. Up to now, various types
of ABF systems have been investigated.146,147 Some typical
examples are shown in Figure 4B.148

Many factors play a critical role in the movement of
magnetic helical microswimmers such as solution properties

(e.g., fluid viscosity, ion strength), geometrical parameters
(e.g., helix pitch), surface characteristics (e.g., surface
wettability,149,150 roughness), magnetic field properties (e.g.,
frequency, intensity, rotating, or oscillating field), magnet-
ization properties of magnetic materials, head/tail shapes,
mechanical properties (e.g., rigid or flexible), and boundary
condition (e.g., wall). The simulation demonstrates that helical
swimmers exhibit the highest propulsion efficiency when the
pitch angle is about 45°.151 The optimal magnetization
direction for helical microrobots is perpendicular to the helical
axis in order to maximize the applicable magnetic torque
around the axis. The motion mode and velocity of ABF are
strongly associated with the applied field frequency. As shown
in Figure 4C, at low frequency rotating magnetic fields

Figure 5. Flagellum-based locomotion of magnetically actuated robots. (A) Motion of Au−Ag−Ni−Ag−Ni−Ag−Au multilink nanowires with
flexible silver hinges under a planar oscillating magnetic field. Reproduced with permission from ref 128. Copyright 2016 WILEY-VCH Verlag
GmbH and Co. KGaA, Weinheim. (B) Multiple locomotion modes of millipede-like soft robots. Reproduced with permission from ref 159.
Copyright 2020 The Authors. (C) Ciliary stroke motion of artificial micromotors. Reproduced with permission from ref 138. Copyright 2016 The
Authors.
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(typically below several Hertz), a wobbling motion occurs
when the axis of the helical MagRobot cannot align with the
direction of the local field.152,153 As the rotating field frequency
is enlarged, the wobbling angle decreases from 90° to zero,
where a wobbling angle of zero corresponds to the rotation
along the long axis with a direct corkscrew-like thrust. (Ratio of
viscous to magnetic torque (i.e., Mason number), helix angle,
and helical size can also bring about shrinkage of the wobbling
angle of helical MagRobots under temporal−periodic
torques.49 In the corkscrew-like motion region (also denoted
as “synchronous” region), the translational velocity of helical

MagRobots increases with the increased applied rotation
frequency of an external magnetic field, performing a
synchronous and linear relationship. Further increase with
respect to a critical field frequency results in a decrease of the
swimming velocity, which is attributed to the fact that the
magnetic torque is not sufficient to maintain a synchronous
relationship between the magnetic moment and the applied
rotating magnetic field. The critical frequency is called the
“step-out frequency”.154

Surface chemistry also influences the motion of helical
MagRobots. Recently, it has been reported that magnetically

Figure 6. Propulsion mechanisms for surface walkers. (A). Surface-assisted motion of an Au−Ag−Ni nanowire. Reproduced with permission from
ref 172. Copyright 2020 American Chemical Society. (B) Motion mode transformation of hematite peanut-shaped microrobots among rolling
mode under a yz-planar rotating field, spinning mode under an xy-planar rotating field, and tumbling mode under a conical rotating field; Swarming
patterns of chain, vortex, and ribbon morphologies, respectively. Reproduced with permission from ref 56. Copyright 2019 The Authors, some
rights reserved; exclusive licensee American Association for the Advancement of Science. (C) Magnetic coil arrangement and advection of Au/Ni/
Au nanowire in kayak motion mode. Reproduced with permission from ref 167. Copyright 2017 The Royal Society of Chemistry. (D) Smooth
translation motion of square-wheeled bicycles on bumpy roads and separation of diamond and square μwheels on the textured surface. Reproduced
with permission from ref 168. Copyright 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of
Science. (E) Schemes of a peanut-shaped motor climbing up a steep slope with the height of 8 μm via a wobbling mode and trajectory of the
MagRobot climbing up and down a steep slope. Reproduced with permission from ref 169. Copyright 2018 American Chemical Society. (F) SEM
image of a microdimer and its motion in bulk liquid and near a boundary. Reproduced with permission from ref 171. Copyright 2018 WILEY-VCH
Verlag GmbH and Co. KGaA, Weinheim.
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driven helical microswimmers with hydrophobic surfaces
possess larger step-out frequencies and higher maximum
translatory velocities at low Reynolds numbers in comparison
with those with hydrophilic surfaces.155 The increase in
hydrophobicity of the swimmer surface causes an increase in
both the step-out frequency and the maximum forward velocity
in a nonlinear mode due to the interfacial slippage.
Importantly, the forward velocity of ABF is independent of
their surface wettability when MagRobots are manipulated
below their critical frequency. A 3D oscillating magnetic field,
created by the combination of DC magnetic field Bxy and
oscillating Bz field, can only cause the reciprocal back-and-forth
motion of a helical microswimmer. When symmetry is broken
by placing the microswimmer near a surface, the rocking
motion results in a net displacement. Moreover, the
asymmetric helix (with polystyrene head and helical Co/SiO2
tail) exhibits much larger displacement than a nearly
symmetric helix without a head under similar experimental
conditions.156 The viscosity disturbance in different solutions
results in the difference of precession angle (i.e., wobbling
angle) of helical MagRobots when the applied frequency of the
rotating field is smaller than the step-out frequency. Taking
advantage of this feature, the detection of instantaneous
orientations (i.e., wobbling angle) of MagRobots provides an
innovative approach to evaluate the viscosity of the local
medium with high spatial and temporal accuracy, which makes
ABF a novel prototype for mobile viscometers.157

3.2. Traveling-Wave Locomotion/Ciliary Stroke Motion

Both traveling-wave propulsion and metachronal-wave pro-
pulsion, inspired by the flagella and cilia of eukaryotic cells,
respectively, are capable of breaking temporal symmetry to
overcome the Scallop Theorem and generate an effective net
displacement. Because short and rigid nano/microrobots can
only generate very limited net propulsion due to the reciprocal
nature of an oscillating movement, the presence of an elastic
component is crucial for achieving traveling-wave propulsion.
However, net displacement can also be hampered if the motor
is too long and flexible due to the increase of drag force.
Hence, the size and elasticity must be taken into consideration
in terms of design. Traveling-wave propellers have been
created either by incorporating elastic tails (e.g., a chain of
paramagnetic beads using DNA as the soft hinge158) to a rigid
head or by utilizing multilink nanowires connected by flexible
segments (e.g., soft silver nanowire,3 elastic polymeric
nanocylinders composed of multiple bilayers of polyallylamine
chloride and polystyrenesulfonate97). The thrust from the
backward-traveling wave generated by the undulatory motion
of multilink artificial microswimmer, consisting of two
magnetic nickel segments, two gold segments, and three soft
silver, hinges upon the application of an oscillating magnetic
field. Periodic mechanical deformation triggered fish-like
locomotion at the microscopic level (Figure 5A).128 Other
traveling-wave motion of wire-like MagRobots driven by an
oscillating field can be found in Section 4.4.
Although the metachronal wave, which is produced by the

oscillatory locomotion of ciliated protozoa through hydro-
dynamic interactions, can also drive an effective nonreciprocal
movement. Because of the complexity of manufacturing these
structures at micro- and nanoscale, only millimeter-scale (not
nanoscale or microscale) robot systems that mimic the
metachronal-wave movement of cilia have been reported
(Figure 5B).159 To date, one artificial cilia-like magnetic

microarchitecture, as the exclusive example with regard to the
simple ciliary stroke motion, has been fabricated by means of a
3D laser lithography method.138 The efficient movement of
this microrobot in a fluid environment with a low Reynolds
number was powered by the net propulsive force from the
beating locomotion of cilia and its position and orientation can
be precisely controlled by on−off fields with designated angle
(Figure 5C).

3.3. Surface-Assisted Motion

Apart from breaking the symmetry from the geometrical point
of view, another strategy to overcome the Scallop Theorem
and induce translational movement is to introduce a physical
boundary to break the spatial symmetry. Such locomotion can
be achieved by magnetically actuating a magnetic micro- or
nanostructure when it lies in the proximity of a surface/
interface160 or a wall in a liquid at low Reynolds number, or
even a dry surface.161 The micro and nanorobots based on this
“surface-assisted locomotion” mechanism are called “surface
walkers” or “surface rollers.” Figure 6A exhibits a typical
forward locomotion mode of a surface walker. Many magnetic
micro and nanostructures have demonstrated such surface-
assisted propulsion including (but not limited to) nanorods,
dimers, assembled colloids, microtubes, and Janus particles.
Simulations and experiments have confirmed that the dynamics
and motion mechanism of surface walkers are governed by the
boundary features (slip or nonslip), the degree of confinement
(e.g., single or multiple confining boundaries, the distance of a
MagRobot from the nearby boundary), fluid properties (e.g.,
finite inertia162), magnetic fields (e.g., configurations, fre-
quency, strength), and others. The presence of a boundary
modifies the hydrodynamic stresses on self-propelled nano/
microrobots, resulting in a change in their orientation, velocity,
trajectory, and even hydrodynamic bound states.163 Stronger
frictional forces near a nonslip confining boundary (wall or
surface) can drive microdevices to move forward, resulting in a
larger net displacement compared with those in proximity to a
smooth boundary. Hydrodynamic interactions can create
stable finite clusters (“critters”) from an unstable front that is
generated from the press of fingers.164

Motion modes of surface walkers are frequency- and field
type-dependent. CoPt semihard magnetic nanowires experi-
ence the motion transformation from tumbling to precession
and then to almost rolling near a surface boundary by raising
the frequency of the applied planar rotating field. In the
tumbling region, the y-axial translational velocity of nanowires
synchronously increases with the field frequency regardless of
the applied magnetic moment. In the procession region, the
velocity still slowly increases and then decreases after reaching
the maximum. The decrease of speed is ascribed to a decline of
the precession angle, resulting from the change of motion
configuration.165 Transformation of the motion mode can also
occur in hematite peanut-shaped microrobots by using
different magnetic fields, including a 1D oscillating magnetic
fields (oscillating mode), yz-planar rotating magnetic field
(rolling mode), xy-planar rotating magnetic field (spinning
mode), and conical magnetic field (tumbling mode)
corresponding to the collective configuration of liquid, chain,
vortex, and ribbon, respectively (Figure 6B). A 2D vortex can
be self-assembled by rotating magnetic colloids in a plane
parallel to the interface; however, such a vortex cannot produce
net displacement. On the contrary, net displacement occurs in
rolling mode and tumbling mode once a boundary is present.
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Taking the chains with rolling mode as an example, net
displacement along the x axis can be generated when the
assembled magnetic chains are subjected to a yz-plane rotating
field. In other words, the rotational motion of microrobots in a
plane perpendicular to a nearby boundary can lead to
nonreciprocal propulsion. Similar to the artificial bacterial
flagella, the velocity of the individual peanut-shaped micro-
robots as well as that assembled chains (e.g., trimer and
pentamer) linearly increases with applied frequency when the
actuation frequency is below the step-out frequency. Above the
step-out frequency, the increase of the rotating field’s
frequency causes a decrease of the microrobots’ velocity

owing to the considerable rise of liquid-induced viscous torque.
In addition, the velocity of assembled chains is dependent on
the number of microrobots composing the chains. Most
importantly, collective formations and locomotion can be
manipulated by a magnetic field in a programmable and
reconfigurable fashion, providing versatile collective modes to
meet multitasking requirements in complicated biological
systems.56,124,166 Magnetic microkayaks demonstrate process-
ing motion in a double-cone rotating way, similar to the
movement of a paddle, when placed in proximity to a solid
surface under the rotating fields with kilohertz frequency
(Figure 6C).167

Figure 7. Representative examples of applying magnetic fields to micro/nanorobots actuated by other propulsion sources. (A) Propulsion of a
TiO2−PtPd−Ni tubular nanomotor by bubbles from the decomposition of chemical fuel, magnetic field, or both. Reproduced with permission from
ref 173. Copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (B) Boost of propulsion velocity of a Janus micromotor propelled
by dual mode or ternary mode. Reproduced with permission from ref 179. Copyright 2020 American Chemical Society. (C) ON−OFF feature and
direction control capacity of the magnetic field for ultrasound-powered Janus micromotors: (a) Propulsion of a single microrobot without and with
the application of a static magnetic field; (b) Magnetic navigation of a single acoustic-powered microrobot. Reproduced with permission from ref
180. Copyright 2020 WILEY-VCH GmbH and Co. KGaA, Weinheim.
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In comparison with flat surfaces, research of magnetic nano/
microrobots on topographic surfaces is more challenging but
more intriguing. Inspired by smooth-riding bicycles containing
square-shaped wheels, utilization of a microroad with periodic
bumps lead to 4-fold intensification in forward velocity of
microwheels (μwheels) owing to the nonslip rotation of entire
wheels. Because of the velocity difference between diamond
μwheels and square μwheels on topographic surfaces, the
separation of isomeric μwheels by symmetry can be fulfilled
(Figure 6D).168 For surface walkers, climbing over a barrier is
also possible by taking advantage of surface physics. A peanut-
shaped hematite micromotor with its magnetic moment
vertical-aligning with the long axis can achieve rolling
movement under a rotating magnetic field and wobbling
movement under a conical rotating field. The magnetically
actuated MagRobot can climb up and down a steep slope with
a height of 8 μm through the wobbling motion mode. By
combining rolling motion mode and wobbling motion mode,
the MagRobots can be utilized to deliver and release cells to an
appointed place and form complex cell patterns under the
control of a magnetic field in a contactless fashion (Figure
6E).169 Except for these artificial barriers, magnetic actuation
of MagRobots on the uneven surface of biological tissue (i.e.,

ex vivo swine bladder) was investigated by Zhang’s group.170 In
addition to a rotating field, an oscillating magnetic field can
also be adopted to actuate the translational movement of a
surface walker. Under an oscillating field, microdimers
consisting of Ni-SiO2 magnetic Janus microspheres are able
to roll on the solid surface after sedimentation treatment. In
contrast, no net displacement can be produced when Janus
microspheres are returned to the bulk of the liquid by acoustic
levitation (Figure 6F).171

3.4. Application of Magnetic Fields in Other Propulsion
Approaches

Approaches such as chemically or photochemically induced
propulsion lack the level of control of magnetically driven
micro and nanoswimmers, especially in terms of directionality,
control over the speed, and ON/OFF motion features.
However, chemically and photochemically driven swimmers
are very useful for chemistry-on-the-fly applications such as
water remediation applications. To provide better controll-
ability on the motion aspects of these chemical and
photochemical swimmers, the integration of magnetic
components has been widely adopted. For example, a single
TiO2−PtPd−Ni nanotube173 performed autonomous motion
through the bubbles generated from the decomposition of

Figure 8.Magnetic stimulation of micro/nanorobots for hyperthermia, thermophoresis, and magnetoelectric applications. (A) Schematic process of
removing cholesterol plaque in the blood artery via the magnetic hyperthermia of nanorobots. Reproduced with permission from ref 185. Copyright
2020 Elsevier B.V. (B) Experimental setup of Janus nanorobots for magnetically induced thermophoresis. Thermophoretic force, triggered by the
temperature difference, causes the self-propulsion of a Janus particle. Reproduced with permission from ref 123. Copyright 2012 American
Chemical Society. (C) Underlying physics of the magnetoelectrically triggered drug (i.e., AZTTP) release process. Reproduced with permission
from ref 200. Copyright 2013 Macmillan Publishers Limited.
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hydrogen peroxide (Figure 7A). To control the directionality
of bubble-propelled small-scale machines along any predeter-
mined paths, the assistance of other power sources is
necessary. After the application of a static magnetic field, the
motion direction of those self-propelled nanodevices is
controllable. A similar function of orientation control was
found in fuel-free light-driven small-size robot systems,174

urease-powered nano/micromotors,175 cell-powered nano-
micromachines,176 and acoustically actuated micronanoscale
vehicles.97,177 Furthermore, the combination strategy can
amplify the propulsive thrust by harvesting energies from
different sources,178 resulting in more efficient task processing
capabilities. A Janus microrobot, using three types of
nanomaterials as engines, was capable of swimming by bubble
propulsion, light-powered propulsion, and magnetic-actuated
motion (Figure 7B).179 Compared with only bubble-
propulsion, the bubble−magnetic dual propulsion mode
boosted the velocity of microrobots up to 3 times, while the
bubble−light dual mode could increase it up to 1.5 times.
Because of the synergetic effect of the three energy sources
(i.e., chemical energy, light, and magnetic field), the ternary
bubble−light−magnetic mode exhibited a much higher speed
than binary bubble-light mode.179 By switching on and off a
magnetic field, the on-demand control of nanoand microscale
robotic systems via braking or accelerating the propulsion
process was demonstrated. Obvious growth of velocity was
observed in an ultrasound-powered Janus micromotor when a
static magnetic field switched from “OFF state” to “ON state”
as shown in Figures 7C.180 Moreover, the use of external
magnetic fields allowed for controlling the directionality to the
acoustically driven microrobots.

3.5. Magnetic Stimulation of Micro/Nanorobots beyond
Motion

In addition to direct motion control, magnetic fields can be
used as the energy source for triggering hyperthermia,181

thermophoresis, and magnetoelectricity. Magnetic hyper-
thermia refers to the heating of cells, tissues, tumors, or
systems to temperatures up to 42 °C by converting magnetic
energy into heat radiation.182,183 Such function is preferable for
treating cancer cells while minimizing damage to surrounding
healthy tissues as nanoscale and microscale robots can be
externally delivered to the infection site with the assistance of
real-time image guidance (e.g., clinical MRI scanner, magnetic
particle imaging scanner184) and subsequent hyperthermia
treatment is localized by only focusing on the tumor tissue.
Recently, an approach that combined hyperthermia features
with the propulsion force of nanoswimmers has been utilized
to clear away plaques in a clogged blood artery. The
nanorobots consisted of cellulose nanocrystals, Fe2O3 NPs,
and Pd NPs.185 As demonstrated in Figure 8A, the flow of the
bloodstream went back to its normal state after the blockage
site from animal fat was fully melted and removed. Magneti-
cally induced thermophoresis refers to a self-diffusive motion
generated by the local temperature gradient induced by the
nano/microrobot itself under an external field. An alternating
(AC) magnetic field has been used to heat the spherical Janus
robot half-capped with magnetic material (i.e., Fe19Ni81 alloy),
giving rise to self-thermophoretic motion123 as shown in Figure
8B. Besides, the high heating power generated by the magnetic
field was also reported to trigger a Fischer−Tropsch syn-
thesis.186 In this process, the magnetic nanoparticles acted as
magnetically induced heterogeneous catalysts.

Magnetic fields can also be used to trigger electric
polarization if magnetoelectric materials are incorporated in
small-scale motile devices.187,188 Magnetoelectric materials are
single-phase or composite materials, which become electrically
polarized when subjected to an external magnetic field.187,189

To operate at room temperature, magnetoelectric materials are
usually made by intimately coupling magnetostrictive and
piezoelectric components, although certain single compounds,
such as bismuth ferrite (BiFeO3), exhibit magnetoelectric
features at room temperature. When a magnetic field is applied
to these materials, the magnetostrictive part changes its
dimensions. In turn, the magnetostrictive part stresses the
piezoelectric part, which subsequently becomes electrically
polarized. Magnetoelectric composites can be processed as
bilayered or multilayered composite structures, core−shell
architectures, or as particulate matrix composite films.190

Because of their ability to generate electric fields in a wireless
fashion (i.e., external magnetic fields), magnetoelectric
materials integrated into small-scale robots can serve at least
two purposes: (a) magnetic navigation due to the responsive-
ness of the magnetostrictive component to magnetic fields and
(b) application of an electric field to the surrounding
environment (i.e., electrolytes, cells, tissues) due to the
piezoelectric block. Switching between these two capabilities
is managed by changing the conditions in which the magnetic
fields are applied, for example, by changing the frequency of an
oscillating magnetic field or by swapping between gradients
(for motion) and oscillating magnetic fields (for triggering the
magnetoelectric effect). The delivery of electric fields is
interesting for a wealth of applications, especially in the
biomedical domain such as cell electrostimulation and
differentiation,191 electroendocytosis-mediated drug deliv-
ery,192 irreversible electroporation for cancer treatment,193

cell fusion,194 or even cell destruction.195,196 Magnetoelectric
nanorobots or microrobots, despite being less investigated,
have been utilized for targeted cell manipulation,197 neuronal-
like cell differentiation,13 and targeted drug delivery.198 For
instance, a helical microswimmer, incorporating core−shell
magnetoelectric nanoparticles (i.e., CoFe2O4 as the core and
BiFeO3 as the shell) into a hydrogel matrix was able to induce
the differentiation of neuronal cells due to the generation of
charges upon magnetic stimulation.13 On-demand drug release
for killing cancer cells was demonstrated by FeGa@P(VDF-
TrFE) core−shell nanowires upon the application of an AC
magnetic field because of the magnetoelectric coupling
effect.198 It is believed that magnetoelectrically induced drug
release is caused by the rupture of drug−carrier bonds when
the dipole moment triggered by a magnetic field goes beyond
the threshold value (i.e., drug−carrier bond strength) and
breaks the intrinsic charge distribution on atoms199,200 as
suggested by Khizroev’s group (Figure 8C).

4. MAGNETIC ROBOTS IN THE MAKING:
FABRICATION APPROACHES

4.1. (Quasi-)Spherical MagRobots

Colloidal magnetic particles have attracted scientists’ attention
not only because of their individual properties but also due to
an emergently investigated phenomenon called “swarm” or
“collective behavior”,57,201−208 which is a term inspired by
many phenomena in nature such as flocking of birds or team-
work behaviors of insects. How to manipulate and actuate a
large number of tiny robots with collective behaviors for
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potential in vivo applications, particularly in complex biological
media and in a precisely controllable and programmable
fashion, is the ultimate objective of scientists. The self-
assembled MagRobots not only are capable of loading or
unloading defined cargos on command but also transport them
to a defined site (e.g., microfluidic system or biological
environment), providing great potential for localized therapy
and targeted drug delivery209 owing to their easy synthesis and
versatile multifunctionalities by material design, structure
optimization, and surface modification. The collective behavior
via colloidal self-assembly presents a rapid, reversible, and
programmable bottom-up approach to fabricate MagRobots by
employing simple colloidal particles as building blocks. In the
presence of a magnetic field, both commercially purchased
paramagnetic materials (e.g., μm-sized Dynabeads134,210) and
experimentally synthesized magnetic colloidal particles can be
self-assembled into desired sizes and shapes (such as carpet,134

wire,211 lasso210). Yang et al.210 recently reported on
superparamagnetic PVA-linked colloidal chains by applying a
one-dimensional DC magnetic field with a strength of around
20 mT in the vertical direction to a diluted epoxy-
functionalized Dynabeads solution. After the formation of
linear chains, a circularly planar rotating magnetic field was
operated to transform the chains into a lasso shape. By steering

the magnetic field strength and phase lag, lassos can capture
cargo through curling behavior and precisely transport it on
the ground of a wheel-type mechanism at high velocities.
Inspired by ants’ cooperative behavior to create a bridge with
their bodies when encountering a vanished or nonexistent road
(Figure 9A), Zhang’s group used a self-organized magnetic
swarm robotic system as building blocks to form a microswitch
to repair broken microcircuits. Each component of the system
was made of a conductive gold-coated superparamagnetic
Fe3O4 nanoparticle. Under a programmed oscillating field,
these magnetic nanoparticles can self-reconfigure into a
ribbon-like microswarm to act as a conductive bridge between
two disconnected electrodes. The patterns and behaviors of the
swarming MagRobots depend on the amplitude ratio and input
oscillating frequency. Moreover, the elongation of the
microswarm is reversible by altering the amplitude
ratio.211,212 By applying an xy-plane rotating magnetic field
with a few milli-Tesla (mT), microwheels of superparamag-
netic beads can be self-assembled (Figure 9B).213 For
microwheels lying on a surface, magnetic torque generated
by a 2D rotating field can only induce a spinning movement of
the micromachines without net displacement. After inputting a
3D oscillating field by adding a varied component vertical to
the plane of the rotating field, that is, the microwheels were

Figure 9. Schematic illustrations of the representative fabrication processes of (quasi-)spherical MagRobots. (A) Fabrication steps of Fe3O4@
PDA@Au MagRobots and formation process of an ant bridge, corresponding to conceptual steps for a reconfigurable microswarm to repair an
electrical circuit. Reproduced with permission from ref 211. Copyright 2019 American Chemical Society. (B) Microwheel prepared from the self-
assembly of superparamagnetic Dynabeads M-450 Epoxy by rotating field and its field-dependent motion modes: planar rotating magnetic field
makes colloids assemble and microwheels spin, whereas 3D oscillating magnetic field makes microwheels roll along the surface. Reproduced with
permission from ref 213. Copyright 2019 The Authors. (C) Fabrication steps of the burr-like microrobots. Reproduced with permission from ref
214. Copyright 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. (E) Fabricating
process of PM/Pt Janus microrobots for cell manipulation, DOX drug loading, and delivery. Reproduced with permission from ref 209. Copyright
2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim.
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reoriented until they tilted to a surface, they began to translate
with a velocity of around 100 μm s−1.213 Inspired by the rolling
motion of neutrophiles on the vasculature walls, super-
paramagnetic beads can accumulate and roll on the surface
of confined boundaries using a combination of magnetic and
acoustic fields.66

3D laser lithography is among the most popular techniques
used to fabricate small-scale robots with desired architecture.
Burr-like spherical porous MagRobots were prepared by using
a direct laser writing system followed by depositing Ni thin

films for magnetic actuation and Ti thin films for
biocompatibility via a sputtering system (Figure 9C).214 The
fabricated microrobots can carry and deliver targeted cells to a
predetermined location in vitro and in vivo under the control of
a field gradient. In vitro experiments conducted in a
microfluidic chip showed that cell-loaded microbots could be
transferred along the blood vessel-like microchannel to a
predefined area to release cells (i.e., MC3T3-E1 preosteo-
blasts). These free cells moved toward the tissue chamber
through migration channels. In vivo experiments conducted on

Figure 10. Schematic illustrations of representative synthetic methods for helical MagRobots. (A) Fabrication process of piezoelectric magnetic
microswimmers by laser ablation. Reproduced with permission from ref 216. Copyright 2019 The Royal Society of Chemistry. (B) Fabrication of
biodegradable helical MagRobots using two-photon polymerization. Reproduced with permission from ref 237. Copyright 2018 WILEY-VCH
Verlag GmbH and Co. KGaA, Weinheim. (C) Preparation process of platelet-membrane-cloaked MagRobots by TAED method including (i) Pd/
Cu coelectrodeposition, (ii) etching of Cu and collection of helical structures, (iii) deposition of Ni and Au layers, (iv) collection of helical
nanostructures, (v) surface modification, and (vi) fusion of platelet-membrane-derived vesicles to the modified surface. Reproduced with
permission from ref 215. Copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (D) Preparation steps of acid-stable enzyme-
functionalized MagRobots by GLAD. Reproduced with permission from ref 221. Copyright 2015 The Authors, some rights reserved; exclusive
licensee American Association for the Advancement of Science. (E) Origami-inspired approach to prepare microswimmers by one-step
photolithography. Reproduced with permission from ref 244. Copyright 2019 The Authors, some rights reserved; exclusive licensee American
Association for the Advancement of Science. (F) Fabrication of helical microrobots with hollow structures with the assistance of coiled flow
template. Reproduced with permission from ref 222. Copyright 2018 American Chemical Society. (G) Fabrication process of biohybrid
microswimmers based on Spirulina platensis. Reproduced with permission from ref 225. Copyright 2020 American Chemical Society.
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nude mice also confirmed that burr-like magnetic microrobots
exhibited excellent cell loading, carrying, and release
capabilities. In a similar fashion, Jeon et al. used 3D laser
lithography and sputtering to fabricate cylindrical, hexahedral,
helical, and spherical MagRobots.121 The use of a magnetic
field gradient induced the pulling motion of cylindrical and
hexahedral MagRobots, while the rotating field caused
corkscrew motion for helical MagRobots and rolling motion
for spherical microrobots.121

Spherical microrobots with Janus structure were fabricated
by Martin Pumera’s group (Figure 9D).209 The Janus
structure, formed by half-covering superparamagnetic polymer
particles with catalytic Pt layer, can self-propel due to the
catalytic decomposition of hydrogen peroxide and can be
steered by an external magnetic field. Polymer particles with a
tosyl group-rich surface provided the chance to bind anticancer
drugs. In addition to drug loading and delivery, the
microrobots could also manipulate cells when they assembled
into a chain under magnetic guidance.

4.2. Helical MagRobots

Helical architectures, inspired by the flagella of bacteria, enable
micronanomachines to convert rotational motion to a
translational corkscrew motion by using a low-strength
magnetic field in low Reynolds number liquids. Various
micro- and nanofabrication techniques have been used to
prepare helical micro/nanostructures, including template-
assisted electrochemical deposition (TAED),215 laser abla-
tion,216 direct laser writing and 3D printing,127,155,217−220

glancing angle deposition,126,221 coiled flow template,222,223

biotemplate,224,225 and origami-based self-scrolling techni-
que.60,226

Laser micromachining allows the creation of arbitrary 3D
structures. Piezoelectric soft MagRobots, which can deliver
PC12 cells by employing a rotating magnetic field to induce
neuronal differentiation under the stimulus of acoustic waves,
were fabricated by Salvador Pane ́’s group.216 Helical
MagRobots consisting of piezoelectric polymer matrix and
CoFe2O4 magnetic component were formed by laser ablation
of composite film coated on the surface of copper wire by dip-
coating method, followed by etching copper wire with acidic
ferric nitrate solution (Figure 10A). Steering of helical
parameters such as pitch, pitch angle, and the ratio can be
achieved by altering the laser spot size, laser motion speed, and
rotating speed of copper wire. The helix microstructure can
move in a corkscrew manner along its long axis by a rotating
field.
3D/4D printing provides a feasible approach to fabricate soft

micro/nanorobots with predesigned shapes.227−235 Recent
reviews give a summary of functional soft robots created by
3D printing45 and 4D printing236 technique. 3D-printed
enzymatically biodegradable soft helical microswimmers have
been designed by Pane ́ and co-workers.237 Two-photon
polymerization (a type of 3D printing technique) was adopted
to print photo-cross-linkable gelatin methacryloyl (GelMA)
helical microswimmer. To decorate GelMA architecture with
Fe3O4 nanoparticles for magnetic actuation, GelMA micro-
structures were immersed in a water suspension of PVP-coated
Fe3O4 nanoparticles (Figure 10B). Another work about
hydrogel-based biodegradable helical microswimmers with
length of 20 μm and diameter of 6 μm was reported by
Metin Sitti’s group.127 3D printing of double-helical
architecture was realized by two-photon polymerization

technique from a precursor mixture of GelMA, photoinitiator,
and biofunctionalized superparamagnetic Fe3O4 nanoparticles.
Such double-helical architecture allows these micromachines to
host high therapeutic cargo loading and swimming abilities
under a rotating magnetic field.
Although template-assisted electrochemical deposition

(TAED) has been widely used to fabricate tubular micro-
motors, this method can also be employed to generate helical
architectures.238−240 A representative example was demon-
strated by fabricating platelet−membrane-cloaked magnetic
helical nanomotors in Joseph Wang’s group.215 Pd helical
microstructures with a length of 3−5 μm were synthesized by
coelectrodepositing a Pd/Cu bilayer on an electrochemical
platform using a polycarbonate template and followed by
selectively etching the Cu with nitric acid. Afterward, Ni/Au
thin films were deposited on the surface of the helical
nanostructure via the electron beam evaporation method. To
make the gold surface negatively charged, surface modification
of the magnetic helical microstructures was carried out by
overnight incubation of the microrobots with 3-mercaptopro-
pionic acid. Then, platelet-membrane-derived vesicles were
adsorbed, bound, and fused onto the negatively charged gold
surface by ultrasonic mixing (Figure 10C).
Helical MagRobots can also be produced by glancing angle

deposition (GLAD).241−243 In this approach, a seed layer,
normally created by spreading a monolayer of silica beads on
the substrate, is required to function as the nucleation site.
Prior to deposition, the seed layer is fixed at a glancing angle
with respect to the input vapor flux of a specific material.
During the deposition process, a helical silica structure grows
starting from an individual seed particle by continuously
rotating the substrate. The pitch and chirality of asymmetric
helical structures are changeable by adjusting the speed and
direction of rotation. Finally, a layer of magnetic material is
deposited in the resulting silica helical tail. While this method
can batch-produce uniform helical nanostructures, this process
is still limited in terms of material selection and shape. To
make the magnetic section (i.e., Ni) of helical microstructure
stable in acidic solution, helices were covered with an 8 nm
Al2O3 thin film by atomic layer deposition. The stabilized
helical micropropellers can be further functionalized with
urease (Figure 10D).221

Inspired by origami designs, Huang et al.244 exploited
thermoresponsive gel composites reinforced with magnetic
nanoparticles to fabricate microswimmers with various 3D
architectures by using a one-step photolithography technique
and capitalizing on the self-folding of the hydrogel upon
hydration (Figure 10E). During the gel polymerization process,
a static uniform field was used to align the encapsulated
magnetic nanoparticles. The folding axis direction of the
MagRobots was consistent with the alignment direction of the
magnetic particles as the swelling was constrained along the
reinforcement direction. The produced microswimmers could
change their shapes to adapt to local environmental variations
in mechanical constraints and osmotic pressure.244

Hollow helical microstructures can be obtained by first
synthesizing magnetic helical microfibers composed of calcium
alginate hydrogel and Fe3O4 nanoparticles from coiled flow
templates in glass-capillary microfluidic devices, followed by
biosilicification and dicing process (Figure 10F). The
produced microswimmer containing inflexible alginate/prot-
amine/silica shell exhibited good mechanical performance for
cargo transport.222 Utilization of bevel-tip capillary and syringe
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pump, heterogeneous core−shell hydrogel microsprings with
calcium alginate hydrogel as shell components and functional
materials (e.g., magnetic particles, agarose, cell-suspended
collagen) as core components were produced.245

Because nature provides us with plenty of helical micro- and
nanoarchitectures, preliminary attempts to extract the helical
xylem vasculature of plants224 and Spirulina cyanobacterial
green−blue microalgae246−248 as templates to fabricate
biohybrid helical micro- and nanomachines open a new insight
into strategic designs. The advantage of biohybrid small-scale
robots is in the biocompatibility and biodegradability
characteristics of the biotemplates. Cell-based helical micro-
swimmers can be acquired from multicellular Spirulina via a
single cost-effective dip-coating process in superparamagnetic
Fe3O4 solution.248 Because of the intrinsic properties of
microalgae, the prepared microswimmers allowed for in vivo
fluorescence imaging without additional fluorescent markers.
Moreover, large swarms of microswimmers can be accom-

plished inside the rat stomach by an external rotating magnetic
field with the assistance of imaging.248 Model small molecules,
as well as biomacromolecules, can be loaded into Spirulina
cells by controlling their dehydration and rehydration.246 The
micromachine loaded with molecular cargo can be magneti-
cally driven in an intestinal tract phantom, thus providing the
possibility of targeted molecular delivery for gastrointestinal
diseases. By modifying their surface with polydopamine via
dopamine self-polymerization (Figure 10G), Spirulina-based
magnetic helical microswimmers exhibit an enhanced photo-
acoustic signal and photothermal effect.225 In addition to the
above-mentioned helical MagRobots, many other helical
architectures have been created.144,242,249−255

4.3. Flexible MagRobots

Flexible or soft small-sized robots refer to a nanoscale and
microscale robotic system completely or partially comprising
soft components or architectures that function as carriers,
templates, hinges, joints, actuators, sensors, or reser-

Figure 11. Schematic illustrations of the representative fabrication processes of flexible MagRobots. (A) (a) Fabrication process of temperature-
sensitive microgripper including (i) depositing metal alignment markers and spin-coating sacrificial layer and PPF/DEF solution, (ii) cross-linking
PPF segments by UV light through a mask, (iii) coating pNIPAM-AAc layer on top of the wafer, (iv) photopatterning the pNIPAM-AAc layer by
UV light through a mask, (v) removing uncross-linked chemicals, and (vi) releasing microgrippers from the wafer by dissolving the underlying
sacrificial layer in water; (b) Cell capture and excision due to the reversible folding/unfolding behavior of microgrippers in response to temperature.
Reproduced with permission from ref 39. Copyright 2015 American Chemical Society. (B) Fabrication procedure of pH-sensitive soft MagRobot.
Reproduced with permission from ref 265. Copyright 2016 IOP Publishing Ltd. (C) Formation of hairbots by sectioning a bundle of hair by
ultramicrotome and then loading hairbots with magnetic particles and drugs. Reproduced with permission from ref 267. Copyright 2019 Elsevier
Ltd. (D) Preparation of liquid metal MagRobots. Reproduced with permission from ref 268. Copyright 2019 WILEY-VCH Verlag GmbH and Co.
KGaA, Weinheim. (E) DNA-based flexible MagRobots: (a) Preparation of a hybrid MagRobot with flexible DNA flagella via DNA self-assembly
method. Reproduced with permission from ref 269. Copyright 2016 American Chemical Society. (b) Fabrication of a flexible magnetic filament by
binding magnetic particles with double-stranded DNA via the specific biotin−streptavidin interaction under a magnetic field. Reproduced with
permission from ref 158. Copyright 2005 Nature Publishing Group. (F) Origami-like MagRobots with various shape-morphing modes, mimicking
the flapping, hovering, turning, and side-slipping of birds. Reproduced with permission from ref 64. Copyright 2019, The Authors, under exclusive
license to Springer Nature Limited.
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voirs.256−261 The utilization of flexible microorganisms to
create MagRobots will be discussed in Section 4.5. The
advantages of flexible MagRobots are reflected in the following
aspects: First, as described in Section 2.4, the integration of a
soft segment as a hinge261 (see Section 4.4) or as a tail (see
Section 3.2), into nano/microrobots can break spatial and
temporal symmetries and generate a forward thrust. Second,
flexible MagRobots are capable of transforming their
configurations/architectures to execute special tasks under
the magnetic actuation, such as grasp and release (similar to
the function of a hand) of a small-scale object.262,263 Third,
flexible and soft small-scale robots are more desirable for
biomedical applications as these devices are more adaptive in
complex biological scenarios, especially in confined, hard-to-
reach tissues and vessels of the body when compared with
swimmers made from rigid and hard parts.
Soft robots can be constructed with stimuli-responsive

polymer materials that enable shape transformations and the

realization of other tasks depending on environmental changes
(i.e., pH,264,265 temperature). For example, PPF/pNIPAM-
AAc magnetic microgrippers with pNIPAM-AAc serving as a
thermoresponsive swelling hydrogel segment, polypropylene
fumarate (PPF) as a nonswellable stiff segment, and Fe3O4
nanoparticles for the magnetic actuation were prepared by
serial photolithographic method (Figure 11A). The thermor-
esponsive soft self-folding microgrippers could be directed or
retrieved to the desired location under the magnetic field to
execute their tasks (e.g., to load or release therapeutics) in
response to temperature stimulus at around physiological
temperature without the need of wires, batteries, or other
sources.39 Similarly, another thermoresponsive soft microrobot
was manufactured and employed for pick-up/release applica-
tions due to the temperature-sensitive P(OEGMA-DSDMA)
layer.266 Because of the pH-responsive property of 2-
hydroxyethyl methacrylate (PHEMA), the PHEMA/PEGDA-
Fe3O4 bilayer soft microrobot formed via photolithography

Figure 12. Fabrication of magnetic nanowires by TAED and some examples. (A) Synthesis process of CoPt nanowires and (B) magnetization angle
of hard-magnetic CoPt nanowire and soft-magnetic CoNi nanowire. Yellow indicates the direction of the short axis while red indicates the direction
of the magnetic field. Reproduced with permission from ref 165. Copyright 2019 American Chemical Society. (C) Dumbbell-shaped MagRobot
consisting of a Ni NW and two PS microbeads. Reproduced with permission from ref 285. Copyright 2016 WILEY-VCH Verlag GmbH and Co.
KGaA, Weinheim. (D) Traveling-wave motion of a fish-like nanoswimmer under an oscillating magnetic field. Reproduced with permission from
ref 128. Copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (E) Freestyle swimming of two-arm nanoswimmer. Reproduced
with permission from ref 3. Copyright 2017 American Chemical Society. (F) SEM images of 1-, 2-, and 3-link microswimmers and traveling-wave
propulsion of 3-link microswimmer under an oscillating magnetic field. Reproduced with permission from ref 97. Copyright 2015 American
Chemical Society. (G) Three motion modes and SEM image of PVDF-Ppy-Ni nanoeels. Reproduced with permission from ref 286. Copyright
2019 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim.
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(Figure 11B) performed the trapping of drug microbeads at
about pH 9.58 by full folding motion and the release of drugs
by unfolding motion at about pH 2.6.265

Biocompatible magnetic “hairbots,” derived from function-
alized hair (Figure 11C), can display heightened osteogenic
differentiation capacities of mesenchymal stem cells under
magnetic actuation compared with nonmagnetic hairbots.
Moreover, a magnetic field with repulsion mode endowed
stem cells with higher osteogenic activity compared with the
attraction equilibrium or nonequilibrium mode.267 Liquid
metals (LM) have also been recently used to create shape-
morphing flexible microrobots. An ice-assisted transfer printing
method was used to fabricate Fe3O4NPs-incorporated EGaIn
LM micromotors (Figure 11D). Because ice can be easily
removed, this method provides great convenience for trans-
ferring LM-based micromotors to arbitrary desired substrates.
Irradiation from an alternating magnetic field could cause the
dramatic morphological transformation of LM-based micro-
motors in an aqueous environment. Moreover, the resulting
LM-based microswimmer exhibited high propulsion velocity
(over 60 μm s−1) under an elliptically polarized magnetic field
as compared with its rigid counterparts.268

The utilization of DNA as a flexible component is another
method to create soft micro/nanorobots is shown in Figure
11E. Artificial flagella with a length of several micrometers
were generated using a self-assembled DNA bundle.269 After
attaching the soft DNA flagella to a magnetic microbead via
biotin−streptavidin coupling interaction, a hybrid microrobot
was constructed. The fabricated magnetic microrobots can be
propelled like peritrichous bacteria under a homogeneous
rotating magnetic field. Similarly, Reḿi Dreyfus and co-
workers158 used biotinylated double-stranded DNA as “soft”
hinges to link red blood cells decorated with streptavidin-
modified superparamagnetic particles. In this way, another type
of flexible artificial flagella was prepared via the specific biotin−
streptavidin interaction.
Origami as a self-folding process provides a top−down

approach to fabricate soft robots with transformable
morphologies. A complete origami robotic system normally
comprises power, sensing, actuation, and computation
subcomponents.270−273 Readers are suggested to read the
review article written by Daniela Rus and Michael T. Tolley to
obtain more information about the design, fabrication, and
control of origami robots.274 Self-folding origami MagRobots
with various body designs (i.e., tubular body and helical tail,
tubular body and spiral tail, helical body and planar tail, etc.)
were created by Nelson’s group.60,63 The micro-origami
swimmers were endowed with reconfigurable morphologies,
controllable mobility, and even programmable magnetic
anisotropy by embedding magnetic nanoparticles into self-
folding hydrogel bilayers (i.e., one supporting layer and one
thermally responsive layer). Because of the programmable
shape-morphing feature of the origami-based microrobots, an
artificial microsized “bird” was created to mimic the different
flying modes of a real bird, including “flapping,” “hovering”,
“turning”, and “side-slipping” (Figure 11F).64

4.4. Wire-like MagRobots

Most rod-like MagRobots are fabricated by template-assisted
electrochemical deposition (TAED).275−279 In general, anodic
aluminum oxide (AAO) or polycarbonate porous membranes
are employed as templates. These membranes are commer-
cially available and are usually composed of cylindrical pores,

although sophisticated designs and complicated fabrication of
porous membranes with different pore geometries or with
variable pore diameter can be realized.280,281 Because of the
nonconductive nature of these templates, prior to the
electrodeposition of material, a layer of a conductive thin
film (usually gold) is deposited on one side of the membranes
by electron beam evaporation or other physical vapor
deposition methods. The length of the nanostructures (i.e.,
nanorods, nanowires) is adjustable by regulating the electro-
deposition time. After deposition, metal-based nanowires are
released by dissolving the membrane template. Usually, ferro-
and ferrimagnetic nanowires and nanorods align with their
long axis parallel with the direction of the applied magnetic
fields. Two main strategies exist to align cylindrical magnetic
nanostructures perpendicular to their long axis: (a) by placing
segments of magnetic material sufficiently separated along a
nonmagnetic structure (in order to minimize dipolar
interactions) and (b) premagnetizing the nanowires/nanorods
along their short axis. The first case can be achieved by
synthesizing multisegmented nanowires/nanorods using
pulsed plating electrodeposition or sequential deposition by
alternating different electrolytes.282,283 In the second approach,
a nanowire/nanorod has to be made from hard-magnetic
materials so that it can preserve a sufficiently large remanence
after being premagnetizing in a specific direction. Figure 12A
shows the fabrication of electrodeposited hard-magnetic CoPt
nanowires and the procedure for their premagnetization along
their short axis.165 Figure 12B shows a comparison between a
soft-magnetic CoNi and a hard-magnetic CoPt nanowire and
their alignment upon the application of a magnetic field. While
the premagnetized hard-magnetic nanowire aligns with its
short axis to the applied field, the soft-magnetic is aligned along
its long axis. In a rotational magnetic field, a nanowire/
nanorod that aligns with its long axis with the applied magnetic
field can only exhibit a tumbling motion.284 However, a
nanowire-like MagRobot that is premagnetized along its short
axis can display a richer variety of motion mechanisms such as
tumbling, rolling, precession, or wobbling locomotion as a
function of the magnetic field frequency. Another strategy to
possess multiple motion modes is to integrate premagnetized
nanowires into nonmagnetic structures. For instance, a single
Ni nanowire only shows a sole tumbling motion.284 After
assembling two polystyrene beads into a Ni nanowire to
construct a dumbbell-like MagRobot, the fabricated micro-
structure possesses three motion modes (i.e., rolling, wobbling,
and tumbling) (Figure 12C).285

When adding flexible segments such as hinges or tails to
nanowires, the assembled MagRobots display traveling-wave
motion under the steering of an oscillating magnetic field. A
multiple section microstructure of Au−Ag−Ni−Ag−Ni−Ag−
Au, using three elastic Ag nanowires as hinges and fabricated
by sequential electrochemical deposition, can mimic the
swimming of a fish with a speed as high as 30 μm s−1 (Figure
12D).128 In a similar fashion, the two arms of a Ni−Ag−Au−
Ag−Ni MagRobot are capable of executing an out-of-phase
wobbling motion by a planar 2D oscillating field and propel the
movement of the body with a velocity of around 30 μm s−1

(Figure 12E).3 A Ni-hinge-Ni-hinge-Ppy nanorobot involving a
flexible polypyrrole (Ppy) tail has the ability to break the
reciprocal motion at the temporal dimension, exhibiting an S-
like motion mode by making use of its eukaryote-like tail with
the assistance of an oscillating field, leading to maximum
propulsion speed of 0.93 body-lengths s−1 (Figure 12F).97
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Inspired by the electric field, a knifefish, which can produce
electricity through its electrocytes, was developed as a
multifunctional Ni-Ppy-PVDF MagRobot containing a soft
polyvinylidene fluoride (PVDF) tail. Taking advantage of the
intrinsic piezoelectric performance of the PVDF tail, the
surface of the fabricated MagRobots exhibits an enhanced
release of cargo owing to the electrostatic repulsion generated
by the magnetically induced piezoelectric effect. By changing
the magnitude and rotational frequencies of the applied
rotating magnetic field, three different locomotion modes (i.e.,
tumbling, wobbling, and corkscrew-like motion) with different
translation speeds and drug release behaviors were observed
(Figure 12G). Interestingly, the application of an on−off
magnetic field can actuate the release of drugs in a pulsatile
approach.286

4.5. Biohybrid MagRobots

Because of their excellent biocompatibility and extremely low
toxicity, biohybrid mineralized motors, which often integrate

synthetic nanostructures/nanoparticles with natural nonmobile
cells (e.g., pollen, spores) or motile cells (e.g., bacteria, sperm),
are currently of great interest.135,287 Four methods are
commonly used to produce biohybrid micro/nanorobots.
The first method consists of directly using nonmotile cells as
templates and then integrating magnetic nanomaterials and
other functional building blocks such as inorganic nanostruc-
tures or molecules. Capitalizing on this approach, several
pollen-based,288−290 spore-based,291 microalgae-based,292,293

sperm-based294 magnetic micromotors have been fabricated.
In general, pollen and spores have the merits of excellent
biocompatibility characteristics and structural uniformity.
Some even have unique architecture (e.g., hollow cavity),
which can facilitate specific applications. For instance,
researchers have loaded drugs into two hollow air sacs of
pine pollen grains via vacuum loading technique (Figure 13A).
The experiments demonstrated that pollen-based biohybrid
MagRobots not only exhibit efficient drug-encapsulation ability
but also can release them on demand.288 By altering the

Figure 13. Representative examples of biohybrid MagRobots fabricated by four methods. Method 1: MagRobots prepared using (A) pollen, (B)
spore, (C) microalgae, or (D) sperm as templates. Method 2: MagRobots prepared by cloaking functionalized nanomaterials with cell membrane of
(E) red blood cells or (F) platelets. Method 3: MagRobots prepared by combining active flagella-containing cells such as (G) bacterium, (H) RGB-
cloaked bacterium, (I) microalgae, or (J) sperm. Method 4: MagRobots prepared by utilizing the phagocytosis function of immune cells, for
example, (K) macrophage. (A) Reproduced with permission from ref 288. Copyright 2019 The Royal Society of Chemistry. (B) Reproduced with
permission from ref 295. Copyright 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of
Science. (C) Reproduced with permission from ref 292. Copyright 2019 American Chemical Society. (D) Reproduced with permission from ref
294. Copyright 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. (E) Reproduced
with permission from ref 296. Copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (F) Reproduced with permission from ref
215. Copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (G) Reproduced with permission from ref 68. Copyright 2017
American Chemical Society. (H) Reproduced with permission from ref 305. Copyright 2018 The Authors, some rights reserved; exclusive licensee
American Association for the Advancement of Science. (I) Reproduced with permission from ref 293. Copyright 2018 WILEY-VCH Verlag GmbH
and Co. KGaA, Weinheim. (J) Reproduced with permission from ref 31. Copyright 2018 American Chemical Society. (K) Reproduced with
permission from ref 304. Copyright 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of
Science.
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vectors of programmatically controllable magnetic fields,
individual pollen-based micromotors with encapsulated mag-
netic Fe3O4 inside present three distinct modes of locomotion
(i.e., rolling, tumbling, and spinning) and these individuals
were able to form a dynamic collective phenomenon under the
steering of an external magnetic field.288 Spore-based micro-
robots composed of G. lucidum spores, Fe3O4 nanoparticles,
and functionalized carbon nanodots have been synthesized via
rapid, direct, and low-cost methods (Figure 13B). The
prepared spore@Fe3O4@CDs microrobots can detect bacterial
toxins.295 As mentioned above, Spirulina, with the innate spiral
morphology, has been utilized as a biological template to create
helical microswimmers248,292 (Figure 13C). Sperm-based soft
MagRobots were fabricated by decorating Fe2O3 nanoparticles
on the surface of immobile sperm cells via the electrostatic self-
assembly (Figure 13D). The highest swimming speed of
sperm-templated micromotors can reach 6.8 ± 4.1 μm s−1 (0.2
body length/s).294

The second method of preparing biohybrid micromotors is
to cloak functionalized synthetic nanomaterials with cell
membranes. This method can enhance the biocompatibility
of micromotors to the largest extent and avoids recognition by
the immune system. Recently, cell membranes/vesicles from
red blood cells (RBCs)296 (Figure 13E), platelets215 (Figure
13F), and even dual cells (e.g., RBCs and platelets297) were
utilized as camouflage to cover the surface of functionalized
synthetic nanomaterials. The magnetic nanoparticles embed-
ded into these biohybrid nanomachines play a role in magnetic
guidance. The locomotion of these cell-based biohybrids can
be powered by a magnetic field or other driving forces. For
example, the random movement pattern of a Janus RBC-Mg
motor can be driven by hydrogen bubbles generated by the
reaction of Mg and water. The addition of Fe3O4 nanoparticles
to the Janus micromotors can make the miniaturized machines
move precisely along a predetermined path.296

The third method to fabricate hybrid small-scale swimmers
consists of combining active locomotive cells that are born
with flagella, among which sperm and bacteria are widely
used.31,68,298−301 In this method, the motile cell either adheres
to the surface of a synthetic particle (normally in the
micrometer scale) or another cell or be trapped into a special
microstructure. For example, bacteria-driven microswimmers
were fabricated by attaching a single E. coli. bacterium to a
drug-loaded polyelectrolyte microparticle via viscoelastic
connection of the bacteria−particle interface (Figure 13G).
The E. coli-powered motor exhibited the chemotaxis behavior
under a chemical concentration gradient. Fe3O4 nanoparticles
embedded within the polyelectrolyte microparticles functioned
as a steering wheel, thus providing the biohybrid motors with
directional control over the directionality and enabling
guidance of the drug-loaded swimmers to target breast cancer
cells in vitro.68 Similarly, the magnetic guidance was also
employed in bacterium-RBC micromotors, which were
fabricated through the strong conjugation chemistry between
the erythrocyte and E. coli bacterium (Figure 13H). In
addition, negatively charged microalgae with ellipsoidal
morphologies (i.e., Chlamydomonas reinhardtii algal) were
integrated with positively charged polyelectrolyte-function-
alized magnetic microsphere via electrostatic interactions
(Figure 13I). The motile microalgae function as an actuator
while the microparticle can be used for cargo encapsulation
and magnetic steering.293 In addition, various customized
magnetic microstructures (such as tetrapod,31 microtube,298

and helix247) have been prepared to capture the task-carrying
spermatozoa to form sperm-hybrid microrobots (known as
“spermbots”). Sperm cells with high vitality serve as a motile
component of hybrid microrobots to complete specific tasks,
for example, targeted drug delivery,31 as shown in Figure 13J.
However, they can also act as carriers when they have motility
deficiencies. In such cases, the remotely controlled assisted
fertilization relies on the synthetic magnetic microstructures of
spermbots under the guidance of external magnetic fields.302

The fourth approach consists of adopting a live immune cell
to engulf the whole magnetic passive functional materials by
taking advantage of the phagocytosis processes of immune
cells.303 As a consequence, biohybrid “immunobots”,304 as
termed by Metin Sitti’s group, can be formed. After a magnetic
double-helical microswimmer was completely internalized by a
macrophage, the biohybrid macrophage-based MagRobots
were able to perform magnetically driven rolling locomotion
along predetermined trajectories by steering the magnetic
helical component. The robots were able to swim unin-
terruptedly even with the presence of cells blocking their
pathway. In the absence of a magnetic field, the immunobots
could autonomously move by crawling and actuated by the
self-propelled movement of the macrophages in a biological
environment (Figure 13K).304

5. APPLICATIONS

5.1. Targeted Drug/Gene Delivery

The precise and efficient transportation of therapeutic payloads
to target sites, especially to those confined and hard-to-reach
locations of the body, is challenging for passive drug delivery
systems. The past decade has witnessed a boom in the
development of active smart drug delivery systems using
external field-driven miniaturized micro- and nanomotors.
Particularly, magnetically driven micro and nanorobots offer
several advantages as small agents for targeted cargo delivery
including but not limited to remote, precise, and minimally
invasive maneuverability, and potential recyclability of residual
administered drug-carriers, which often results in serious side
effects to healthy organs and tissues.306−309 In most cases, very
low field strength (in the mT range) is sufficient for the
actuation of MagRobots without causing damage to healthy
cells.
Before the steerable delivery of cargos (e.g., molecules,

drugs, genes), the cargo loading or capture process is needed.
The loading of cargos is often conducted by encapsulating
them inside the MagRobot structure or by attaching them to
the MagRobot surface. The encapsulation process can be
directly carried out during MagRobot fabrication while the
surface attachment (or adhesion) process can be made using
superficial functional groups of biohybrid or synthetic
MagRobots. Various organic or inorganic artificial nanoma-
terials (e.g., Au/Ni/Si nanospears,310 hydrogel-based helical
microswimmers,127 Janus Au/Ni/SiO2 microparticles,311 etc.)
and biogenic materials (such as pollen grains,288 sperm cells,176

bacteria,35,305,312 erythrocytes,313 and microalgae246,293) have
been developed as functional or structural carriers to
encapsulate or carry molecules, drugs, genes, or cells. For
example, Fe-coated biotubes, which exhibit a drill-like motion
under high-angular frequency magnetic fields, were capable of
transporting camptothecin (i.e., an anticancer model drug) and
delivering it to specific sites, killing the targeted HeLa cells in
vitro (Figure 14A).314
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Considering the complexity of the human body’s environ-
ments, it is key to investigate the propulsion mechanisms of
MagRobots and strategies for cargo delivery and release under
complicated physiological conditions in different body fluids
such as gastric juice, saliva, and blood. Recently, a cell-sized
Janus micromotor loaded with antibodies as receptors for the
recognition of target cells and anticancer drugs was able to
navigate in a simulated blood circulation system (Figure
14B).311 Although the propulsion of MagRobots was
weakened under dynamic flow conditions, the ability of active
upstream locomotion in the bloodstream was confirmed in flat
and 3D surfaces. Furthermore, the utilization of biohybrid
micromotors combining sperm cells and synthetic magnetic
micro and nanoarchitectures to deliver anticoagulant agents
(i.e., heparin) in the bloodstream was reported (Figure
14C),176 which is promising for treating diseases of the

circulatory system such as thrombotic clots. In addition to
drugs, targeted transport of genes (e.g., plasmid DNA) to a
single cell and subsequent transfection was achieved by the
utilization of helical micromotors under the actuation and
navigation of low-strength rotating magnetic fields (Figure
14D).218 Recently, Peer Fischer’s group reported targeted
transfection and gene delivery by using biocompatible FePt
nanopropellers under rotating millitesla fields.315

After delivering payloads to a specific location, cargo
molecules can be released naturally via diffusion or via specific
stimuli (such as pH,265 temperature,266 light irradiation,67 or
chemical changes at the disease site) according to the practical
application requirement. For example, because the concen-
tration of matrix metalloproteinase-2 (MMP-2) enzyme at the
tumor site is higher than that at normal physiological
conditions, hydrogel-based helical microswimmers demon-

Figure 14. Magnetically powered micromotors for targeted cargo delivery. (A) Fe-coated camptothecin-loaded magnetic biotube for killing HeLa
cells. Dead cells are highlighted by white circles. Reproduced with permission from ref 314. Copyright 2015 WILEY-VCH Verlag GmbH and Co.
KGaA, Weinheim. (B) Controllable navigation and targeted transport of antibodies inside blood flow by using Janus micropropellers. Reproduced
with permission from ref 311. Copyright 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of
Science. (C) Sperm-based MagRobots capable of delivering heparin-loaded liposomes through flowing blood. Reproduced with permission from ref
176. Copyright 2020 American Chemical Society. (D) pDNA transfection by human embryo kidney cells when in targeted contact with helical
microrobots loaded with plasmid DNA. Reproduced with permission from ref 218. Copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA,
Weinheim. (E) Released drugs from hydrogel-based microswimmer for active labeling. Reproduced with permission from ref 127. Copyright 2019
American Chemical Society.
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strate a quicker response to the evaluated concentration of
MMP-2 enzyme, resulting in a boost-release of embedded
cargo (i.e., antibody-tagged Fe3O4 nanoparticles) through the
swell behavior of the hydrogel.127 The released antibody-
tagged payloads from the micromotors can be further used for
active labeling of targeted tumor cells (Figure 14E).
5.2. Cell Manipulation

Cell manipulation is the practice of maneuvering the physical
position of cells to separate them from the milieu of other
phenotypically different cells (i.e., cell-based screen), guiding
them into a specific target position (e.g., for fertilization), or
organizing themselves in vitro. With the rapid advance of
proteomics and genomics, it is of great significance to develop
sophisticated tools for single-cell manipulation, especially

massively parallel single-cell manipulation.316 Magnetically
powered miniaturized robots are capable of 3D manipulation
of a single cell in terms of capture, transport, sorting, isolation,
and pattering, with excellent maneuverability and high
precision at the nano- and microscale in complex physiological
environments without changing the intrinsic properties of the
cells.317,318 For instance, trapping of breast cancer cells was
reported by tosyl-functionalized superparamagnetic microbe-
ads due to the instantaneous strong binding between the tosyl
groups from the surface of microswimmers and the −NH2

groups from the membrane proteins of cancer cells.
Manipulation of single or multiple cell-laden microrobots
was achieved by the propulsion of oxygen bubbles and manual
direction guidance using a neodymium magnet (Figure

Figure 15. MagRobots for cell manipulation. (A) Manipulation of T47D cancer cells using superparamagnetic/Pt Janus micromotors via bubble
propulsion and magnetic actuation. Reproduced with permission from ref 209. Copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA,
Weinheim. (B) Delivery and patterning of a single cell by peanut-like hematite microrobots. Reproduced with permission from ref 169. Copyright
2018 American Chemical Society. (C) Transport of nonmotile sperm cells to the oocyte with the assistance of magnetically driven helical
micromotors. Reproduced with permission from ref 247. Copyright 2015 American Chemical Society. (D) Magnetically powered microspirals for
the delivery of murine zygote. Reproduced with permission from ref 320. Copyright 2020 The Authors. (E) Magnetically actuated transport of
neural progenitor cell and ultrasound-induced neuronal differentiation. Reproduced with permission from ref 216. Copyright 2019 The Royal
Society of Chemistry. (F) MagRobots as motile 3D scaffolds for stem cell delivery. Reproduced with permission from ref 121. Copyright 2019 The
Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science.
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15A).209 Arranging cells to achieve predetermined patterns
with the assistance of an arrayed substrate was implemented
through single-cell pick-up and subsequent delivery using
magnetically propelled peanut-like micromotors (Figure
15B).169 To aid sperm cells with defective locomotion features
to complete their fertilization task, Oliver G. Schmidt’s group
designed several motile nano/micromotors as assisted tools302

such as magnetic microcarriers with a cylindrical cavity and a
helical body319 and a magnetic helix247 (Figure 15C).
Moreover, magnetically driven micromotors provide an
invasive way to transfer zygotes through the uterus and
fallopian tube (Figure 15D), and magnetic microrobots with
spiral shapes exhibit higher maneuverability in terms of capture
and transfer of the zygotes between different physiological
environments than those with helical shapes.320 Transportation

of neural progenitor cells was conducted by the corkscrew-like
motion of magnetically powered soft microswimmers contain-
ing piezoelectric polymer and CoFe2O4 magnetic nanoparticles
under a rotating magnetic field. Subsequent neuronal differ-
entiation of PC12 cells was induced by the acoustic stimulation
due to the utilization of piezoelectric polymer as a stimuli-
responsive cell electrostimulation platform (Figure 15E).216

Furthermore, Kim et al.321 precisely manipulated a neuron-
loaded magnetic microrobot to a gap between two neural
clusters to connect broken neural networks. Recently,
successful trials of magnetically powering microrobots toward
a target site (such as a liver tumor micro-organ, ventricle of
mouse brain, blood vessel of rat brain, and live mouse) using in
vitro, ex vivo, and in vivo experimental models, indicate the

Figure 16. MagRobots for minimally invasive surgery. (A) Schematic image and experimental image (inset) of rolled-up magnetic microdrillers
with sharp end penetrating into a pig liver after drilling motion. Reproduced with permission from ref 41. Copyright 2013 The Royal Society of
Chemistry. (B) Schematic of a driller working in a 3D vascular network and experiment result shows the driller can dislodge blood clot.
Reproduced with permission from ref 324. Copyright 2018 The Authors. This article is licensed under a Creative Commons Attribution 4.0
International License. (C) Movement of Au/Ag/Ni surface walker under a transversal rotating field with different frequencies and magnetic
navigation of microrobots to penetrate a cell and remove a cell fragment. Reproduced with permission from ref 172. Copyright 2020 American
Chemical Society. (D) Magnetic manipulation of Si/Ni/Au nanospears for targeted intracellular transfection. Reproduced with permission from ref
310. Copyright 2018 American Chemical Society. (E) Penetration of Helicobacter pylori bacterium and helical MagRobot into mucin gels and
liquefaction of mucus via enzyme-catalyzed reaction. Reproduced with permission from ref 221. Copyright 2015 The Authors, some rights
reserved; exclusive licensee American Association for the Advancement of Science. (F) Long-range propulsion of injected slippery MagRobots in
the vitreous toward the retina with the assistance of a magnetic field and standard optical coherence tomography. Reproduced with permission from
ref 126. Copyright 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science.
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feasibility of adopting MagRobots for the purpose of targeted
stem cell transport and transplantation (Figure 15F).121

5.3. Minimally Invasive Surgery

Miniaturized machines that are capable of precisely opening
specific cell membranes to kill abnormal cells and even achieve
intracellular delivery of various drugs (including DNA) are
promising candidates for noninvasive surgery.322,323 Nano/
microrobots that project sharp tips or have the ability to
perform a corkscrew-like movement can execute drilling under
the application of a rotating magnetic field. The drilling feature
can be harnessed to penetrate tissue with high precision,
holding great promise to perform untethered microsurgeries.
As shown in Figure 16A, microdrillers (tubular Ti/Cr/Fe
microdrillers with sharp tips) were able to penetrate into a
section of porcine liver tissue via magnetically driven
mechanical drilling. To make the microdriller “stand up” to
drill, a specific angular frequency threshold of the rotating field
(in correlation with the viscosity of media) is required to
transform the horizontal rotation mode into a vertical rotation

mode.41 Other representative microdrillers are Fe-coated
calcified biotubes containing pointed ends, which are extracted
from Dracaenea marginata leafs. Upon magnetic actuation, the
microdagger stabbed into the cellular membranes of HeLa cells
with a drill-like motion, finally resulting in cell death. In
addition, the ability to drill into a target cell can be utilized for
subsequent drug delivery because the porous structures of
calcified biotubes endow the microdriller with the capacity of
drug loading.314

A millimeter-sized magnetic driller can be navigated in a 3D
vascular channel and perforate a blood clot in a simulated
thrombosis model environment, providing an application
potential for cardiovascular disorders (Figure 16B).324 Besides,
surface walkers also can open the cell membrane. Recently, we
developed Au/Ag/Ni microwires that display walking move-
ment under a transversal rotating magnetic field. Because of
the rigidness of the microwires, they can only perform a
drilling movement. To make the structure of microwires
slightly bent, an Ag segment was partly etched by concentrated
H2O2 solution. As a consequence, a surface tumbling motion

Figure 17. MagRobots for biopsy. (A) Schematic of a thermoresponsive gripper autonomously picking up and placing a target. Reproduced with
permission from ref 344. Copyright 2016 The Authors. (B) Cell biopsy from a cell cluster using a magnetically navigated thermoresponsive
microgripper and immunofluorescence images of suspended fibroblast cells captured by the microgripper. Reproduced with permission from ref
341. Copyright 2020 American Chemical Society. (C) (a) Transport of microgrippers into the porcine biliary orifice using an endoscope-assisted
catheter; (b) retrieval of microrobots with the assistance of a magnetic catheter; (c) retrieved microrobot with a tissue piece in its “hand” after
Trypan Blue staining. Reproduced with permission from ref 347. Copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim.
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can be achieved. The surface walkers, functioning as micro-
scalpels, can penetrate cancer cells, capture a piece of the
cytosol, and exit the cells while leaving the cytoplasmic
membrane intact, thus demonstrating excellent minimally
invasive microsurgery capabilities172 (Figure 16C). Au/Ni/Si
nanospears functionalized with plasmid were able to penetrate
U87 glioblastoma cells by means of rotating magnets, and
deliver the gene (i.e., eGFP expression-plasmid) within the
cells over large areas (Figure 16D). Such intracellular cargo
delivery in a high-throughput manner paves the way for
translation to new clinical cellular therapies.97,310

Realistic biological environments are substantially complex.
The microscopic propulsion of micro/nanorobots in biofluid
environments (e.g., bloodstream,24,250,325−327 saliva,328

semen,329 mucus,221 vitreous humor,126,330−332 brain vascula-
ture,333 cerebrospinal fluid in the spine or brain, urinary fluid,
gastrointestinal fluid,334,335 etc.) is different from that in

Newtonian fluid. Physicochemical and histological barriers
(e.g., cell membrane,322 blood−brain barrier,336 intestinal
mucosal barrier), interactions with boundaries, crowded
biological environments, complex rheology (e.g., viscoelastic-
ity, shear-thinning), and other factors impact the locomotion
behaviors and application performance of micro/nanorobots in
biological environments.337−340 Attempts have been made to
exploit the actuation of MagRobots in complex biofluids. For
example, to overcome the mucus barrier, Peer Fischer’s
group221 developed a helical microdriller surface-functionalized
with urease as shown in Figure 16E. Such microdrillers can
penetrate the viscoelastic mucin gel in an acidic environment
in the presence of urea and swim freely inside under a rotating
magnetic field. This idea is inspired by Helicobacter pylori
bacteria, which are capable of decreasing the viscosity of mucin
gel via a gel−sol transition caused by the release of ammonia
through an enzyme-catalyzed procedure that raises the local

Figure 18. Representative examples of biofilm disruption or eradication using active MagRobots. (A) Magnetic guidance of biohybrid microbot
into an island of E. coli biofilms. Reproduced with permission from ref 350. Copyright 2017 American Chemical Society. (B) Linear footprints left
on the surface of P. aeruginosa biofilm after the motion of MagRobots. Reproduced with permission from ref 351. Copyright 2020 American
Chemical Society. (C) Application illustration of biofilm removal in confined and hard-to-reach positions, such as interior of human teeth, catheter
surfaces, or implant surfaces by using two types of catalytic antimicrobial robots (CARs) under the navigation of magnetic field. Reproduced with
permission from ref 352. Copyright 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of
Science.
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pH. To move further toward clinical application, the same
group created magnetic helical micropropellers that were able
to penetrate the biopolymeric network of porcine vitreous
humor and swim inside over a centimeter distance under
navigation by a rotating magnetic field and using clinical
optical coherence tomography as shown in Figure 16F.126 The
smooth propulsion of the micropropellers in the dense
biopolymeric network lies in the slippery liquid layer on the
surface of micropropeller, which minimizes the adhesion force
to the surrounding environment. More mechanisms, actuation
approaches, and applications of micro/nanorobots in complex
biofluids that resemble real-world scenarios are required to be
explored.

5.4. Biopsy

MagRobots have been proved to be wireless biopsy tools to
capture a single cell or collect tissue samples from healthy or
diseased organs, including breast, lung, liver, skin, prostate, and
so forth, with high specificity and selectivity for further disease
diagnosis. These functional magnetic miniaturized robots,
normally in the microscale, are called microgrippers. To have
the ability to pick up an object and lay it down, analogous to
the function of human hands, most of the magnetically driven
microgrippers40,341−343 explored to date are flexible (see
Section 4.3). Thermoresponsive flexible MagRobots have
been widely used as grippers due to their temperature-induced
opening and closing capacities39,344−346 (Figure 17A). For
instance, a thermoresponsive magnetic microrobot, having a
tip-to-tip size of 70 μm in its open state and 15 μm in its
folding state, was able to conduct single-cell biopsy (Figure
17B). The thermally responsive layer of the microgripper is
made from paraffin wax, whose phase-transition temperature is
in close proximity to biological temperatures, including
humans. After being navigated to the position of a fibroblast
cluster, the untethered microgripper grasped one cell or a few
cells when it transformed from open to closed state with the
increase of field temperature. Cell separation from the cluster
and retrieval of the microrobot can be easily fulfilled by
adjusting the direction of magnetic field. Metin Sitti’s group342

utilized hundreds of thermosensitive microgrippers that had
been pre-encapsulated in the chamber of a centimeter-scaled
magnetically actuated capsule endoscope (MASCE), to grab
stochastically tissue inside the stomach ex vivo for further
analysis. Retrieval of distributed magnetic microgrippers was
conducted by strong wet-adhesive force from the retrieval unit
of MASCE. This multiscale robotic system provides a novel
multiagent collaboration strategy not only for gastrointestinal
capsule biopsy but also for other biopsy tasks in complex
physiological structures and environments. An in vivo tissue
excision of the porcine biliary tree was conducted using
thermal-induced self-folding microgrippers as shown in Figure
17C. More than 1000 microgrippers were delivered to the
position of interest (i.e., the biliary orifice) through a standard
catheter with the assistance of the endoscopic camera. The
thermosensitive magnetic microrobots, initially in the open
state, spontaneously transformed into closed state in order to
excise tissue samples when they are exposed to body
temperature (37 °C) for 10 min. Retrieval was carried out
by using a catheter containing a magnetic tip. Subsequent PCR
(polymerase chain reaction) results indicated that the excised
tissue piece was sufficient for genetic or epigenetic diagnosis in
terms of quantity and quality.

5.5. Biofilm Disruption/Eradication

Different from planktonic (free-swimming) bacterial cells, the
interaction of cell masses (i.e., community of microorganisms)
produces a matrix called “extracellular polymeric substances”
(EPS).348 The embedded cells and the viscoelastic matrix that
constitute the biofilm on the surface of a subject are
notoriously difficult to eliminate.349 The nature of bacterial
biofilms’ resistance to antimicrobial agents makes them a
source of some recalcitrant infections. Magnetically powered
nano/microrobots manifest themselves in the competence to
penetrate into the matrix and disrupt the biofilm formation or
eradicate already-formed biofilm due to their small size as well
as high magnetically driven mechanical force. A biohybrid
microrobot based on nonpathogenic magnetotactic bacteria
has been used to penetrate into the island of Escherichia coli by
the external actuation of magnetic field350 as shown in Figure
18A. Although this invasion can temporarily cause the elastic
formation of the biofilm, the microrobot was almost trapped in
it, presenting restrained movement ability. How to make nano/
microrobots swim in a viscous media is a common challenge. A
magnetic microrobot made from tea buds, called “T-Budbots”,
was able to precisely fragment and remove bacteria biofilm.351

As demonstrated in Figure 18B, T-Budbots left a clear trail on
the surface of P. aeruginosa biofilm after their movements,
indicating that the biofilm had been effectively swept away.
Moreover, antibiotic encapsulated in T-Budbots of the biofilm
exhibited a pH-triggered release behavior around the acidic
microenvironment of the biofilm. Once the biofilm was
disrupted, the dislodged bacterial cells were exposed to the
drugs and finally killed. One of the most outstanding
advantages of using MagRobots to execute the task of biofilm
elimination lies in their function to be directed to a confined
and hard-to-access position. A recent study demonstrated that
magneto-catalytic iron oxide nanorobots (called “CARs”) are
capable of the degradation and removal of biofilms in the
isthmus of human teeth due to the catalytically induced
generation of reactive antibiofilm molecules and the external
shear forces from magnetic actuation (Figure 18C).352

5.6. Imaging-Guided Delivery/Therapy/Surgery

To translate medical micro/nanorobots from the bench to the
bedside, imaging technologies are of vital importance to
achieve real-time tracking of the MagRobots in vivo.201,353−360

Clinically established imaging modalities, including but not
limited to optical imaging, magnetic resonance imaging
(MRI),53,197,325,361−363 magnetic particle imaging (MPI),184

fluorescence imaging,364−366 ultrasound (US) imag-
ing,89,124,367−370 photoacoustic (PA) imaging,225,371 X-ray
computed tomography (CT), photoacoustic computed
tomography (PACT),83 optical coherence tomography
(OCT),126,372 single-photoemission computed tomography
(SPECT),373 positron emission tomography (PET),374 and
their combined imaging techniques (e.g., MR/CT,375 PET/
CT,376 PET/MRI377) can be integrated into miniaturized
robotics systems. Although many challenges remain, many
researchers have attempted to use these imaging techniques as
powerful tools to assist the tracking of MagRobots for site-
specific drug delivery, targeted therapy, and precision surgery.
Because of limited penetration depth of biological tissues,

optical imaging is not suitable for the visualization of
MagRobots across tissues in vivo. For magnetically driven
micro/nanorobots, MRI is an efficient tool to track the
position of MagRobots both in vitro and in vivo.356 Both MRI
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and MPI are magnetic-based imaging techniques. MRI has
been widely used in clinical practice, especially for three-
dimensional anatomical images of soft tissues. The main
advantages of MRI lie in high soft-tissue contrast, high spatial
resolution, and no consumption of dedicated contrast or
imaging agents. Most importantly, strong magnetic fields and
field gradients generated by MRI scanners provide suitable
actuation environments for the navigation of MagRobots, while
MagRobots with integrated magnetic compositions or
components can augment the signal and boost image quality.
As one representative example shown in Figure 19A, in vivo
MRI tracking of a swarm of microalgae-based helical

microrobot inside the subcutaneous tissues of a rodent
stomach was reported by Zhang’s group.248 Felfoul and co-
workers378 reported real-time positioning and tracking of a
microrobots magnetically propelled by MRI gradients in the
carotid artery of a pig in a closed-loop control scheme.
MPI, first proposed by Bernhard Gleich and Jürgen

Weizenecker,379 is a three-dimensional tomographic imaging
method. The MPI scanner comprises two permanent magnets
in a Maxwell configuration. Larger field gradients in the MPI
scanner workspace provide a strong propulsion force to drive
magnetic objects.380−382 However, in terms of the spatial
resolution of MPI (a few millimeters) in the current platform,

Figure 19. Visualization of MagRobots in vivo via various medical imaging modalities. (A) Cross-sectional magnetic resonance imaging of
microrobot swarms inside the subcutaneous tissues of a rat’s stomach after magnetic actuation and steering via rotating field for different time
periods. Reproduced with permission from ref 248. Copyright 2017 The Authors, some rights reserved; exclusive licensee American Association for
the Advancement of Science. (B) Image-guided theranostic platform via the combination of magnetic particle imaging and localized magnetic
hyperthermia experimentally demonstrated in a U87MG xenograft mouse with superparamagnetic nanorobots present in the liver and tumor.
Reproduced with permission from ref 184. Copyright 2018 American Chemical Society. (C) In vivo fluorescence images of spirulina-based
MagRobots in the intraperitoneal cavity of mice at various residence times. Reproduced with permission from ref 248. Copyright 2017 The
Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. (D) Tracking of the generation process of
a MagRobot swarm in a bovine eyeball via ultrasound imaging technique. Reproduced with permission from ref 124. Copyright 2019 The Authors.
(E) Utilization of multispectral optoacoustic tomography for real-time tracking of individual moving microrobot within phantoms actuated by a
permanent magnet. Reproduced with permission from ref 392. Copyright 2019 American Chemical Society. (F) SPECT images of radiolabeled
microrobots in Eppendorf tube and in mice. Reproduced with permission from ref 373. Copyright 2019 WILEY-VCH Verlag GmbH and Co.
KGaA, Weinheim.
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this technique is only applied to the visualization of swarming
micro/nanorobots, not an individual one. Tay and co-
workers184 reported quantitative guidance of MPI imaging,
precise localization of magnetic hyperthermia, induced by the
interaction between MPI gradient and superparamagnetic
magnetic nanoparticles, to arbitrarily selected tumor sites.
When the field-free region (FFR) of the MPI gradient was
centered to the targeted tumor area, localized heat only killed
the cancerous tissues while minimizing the collateral heat
damage to nearby healthy tissues (Figure 19B).

Fluorescence imaging, with the advantages of excellent
planar resolution (≈ 100 nm) and high sensitivity, has become
another widely used medical imaging modality. Under the
guidance of fluorescence imaging, the utilization of spore-based
magnetic microrobots functionalized with carbon quantum
dots for effective targeted delivery was demonstrated by
Zhang’s group.383 They designed an automated control system
that can help microrobots avoid obstacles and find the optimal
path based on a particle swarm optimization algorithm with the
assistance of vision feedback.383,384 However, fluorescent

Figure 20. Representative pollutant removal by active MagRobots. (A) Directional motion of walnut-like magnetic micromotor under an external
magnetic field and its oil-removal ability. Reproduced with permission from ref 400. Copyright 2019 American Chemical Society. (B) Pollen-based
microsubmarines for the removal of microplastics (i.e., PS spheres). Reproduced with permission from ref 401. Copyright 2020 Elsevier Ltd. (C)
Higher removal efficiency of heavy metals by dynamically swarming spore@Fe3O4 biohybrid micromachines compared with that of their static
counterparts. Reproduced with permission from ref 291. Copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (D) Pd/Ni/Ag
nanocoils for removing microbial pathogens. Reproduced with permission from ref 402. Copyright 2015 WILEY-VCH Verlag GmbH and Co.
KGaA, Weinheim. (E) Magneto-catalytic micromotors for the degradation of Methylene Blue (MB) dye. Reproduced with permission from ref
403. Copyright 2020 American Chemical Society. (F) Lotus pollen-templated magnetic micromotors for temperature-sensitive adsorption of
erythromycin. Reproduced with permission from ref 289. Copyright 2019 Elsevier B.V.
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probes (e.g., organic dyes,385 quantum dots,386 metal−organic
frameworks,387,388 etc.), which usually have poor biocompat-
ibility and biodegradability, are required to label the micro/
nanorobotic materials or cells. Because of the intrinsic
fluorescence feature, excellent biocompatibility, and biode-
gradable performance of Spirulina microalgae, microalgae-
based magnetic microrobots allow for in vivo fluorescent
imaging without the use of probes and concern for biosafety
(Figure 19C).248

Ultrasound imaging, as a conventional clinical imaging
technique, mainly has two different modalities, namely, B-
mode and Doppler.389,390 The former is based on pulse−echo
technique while the latter relies on the Doppler effect. The
main advantages of US imaging lie in high spatial and temporal
resolution, large penetration depth, minimal damage to tissues,
and relatively lower setup cost. A magnetically driven
microrobot swarm was visualized and tracked in a bovine
eyeball via US imaging124 as shown in Figure 19D. Sitti’s group
used the color Doppler mode of US imaging to track the
“hairbots” in ex vivo chicken breast.267 Recently, Zhang’s group
adopted US Doppler for real-time guidance of a swarm of
magnetic microrobots for endovascular delivery.369

Photoacoustic imaging, first proposed by Alexander Graham
Bell391 in 1881, is a “light-in, sound-out” approach. A light
source (i.e., IR laser) and US transducer are two fundamental
elements for a PA imaging setup. Utilization of PA imaging to
track microalgae-based magnetic microswimmers for killing
pathogenic bacterial was reported.225 A more advanced PA
imaging technique, multispectral optoacoustic tomography,
was adopted for real-time monitoring of the migration of single
magnetically driven conical micromotors with the length of
100 μm in phantom as well as ex vivo chicken tissue392 as show
in Figure 19E.
X-ray-CT, PET, and SPECT belong to the category of

ionizing radiation-based techniques that employ high-fre-
quency radiation with wavelength ranging 10−100 nm. As a
consequence, these techniques endow high penetration depth
and spatial resolution, but the harm radiation does to living
(human) tissues must be taken into consideration. In
comparison with the widely used X-ray CT technique used
in clinics, PET and SPECT techniques based on γ-rays have
been developed in the last decades. Although the two state-of-
the-art imaging techniques exhibit excellent spatial resolution
and molecular selectivity, the utilization of PET and SPECT
(usually in conjunction with CT imaging) for the localization
and tracking of MagRobots is still in its infancy. For both
techniques, interested materials or micro/nanorobots are often
conjugated with radiotracers (such as 64Cu, 124I, 18F, 68Ga,
99mTc, etc.).373,377,393−396 SPECT imaging for individual
microrobots with diameter as low as 100 μm was reported
by Nelson’s group373 as shown in Figure 19F. To track the
shape transition (e.g., from tubular to planar configuration) of
microrobots, they used 99mTc [Tc]-based radioactive com-
pounds to label the magnetically driven thermoresponsive
hydrogel-based microrobots. More research is expected to
explore the combination between biomedical imaging
techniques and locomotive micro/nanorobots, and aimed at
targeting individual MagRobots or a swarm of MagRobots to a
specific location with high temporal and spatial precision, and
executing certain diagnostic or therapeutic tasks in an invasive
and visualizable fashion. Because of the restriction of small size,
clear observation of a single miniaturized robotic in the

nanoscale and microscale using current biomedical imaging
techniques is still a big challenge.

5.7. Pollution Removal for Environmental Remediation

In addition to the biofriendliness, recoverability of magnetically
driven micro- and nanorobots, and the toxin-free nature of
magnetic manipulation, MagRobots can also actively swim
around waterborne pollutants (e.g., dyes, oil, heavy metals,291

microplastics, microbial pathogens, estrogenic,397,398 etc.) and
remove them by capture (adsorption/absorption) or degrada-
tion. As such, small-scale MagRobots constitute a technology
with great potential for water remediation. In the future,
sophisticated magnetic manipulation systems could be used to
externally guide MagRobots to pollution sites (i.e., canal-
izations, industrial reactors, tanks, pools) in a contactless
fashion. Additionally, magnetic fields can be used to accelerate
reaction kinetics or recognition efficiency due to the robust
dynamic intermixing (i.e., magnetic stirring function) and to
retrieve the nano/microrobots once the cleaning procedure has
been finalized.399 Eventually, the cleaning agents can be reused
or recycled if their constituent components have remained
unaltered. The treatment of six representative pollutants using
miniaturized magnetic motors is summarized in Figure 20.
The autonomous movement of a walnut-like microrobot

composed of polycaprolactone, Fe3O4 nanoparticles, and
catalase in H2O2-included solution is ascribed to the oxygen
bubbles from the enzyme-catalytic degradation of H2O2,
exhibiting a spiral trajectory.400 The direction of the micro-
swimmers could be controlled using external magnetic fields.
Because of the hydrophobic nature, the motile walnut-like
micromotor was capable of collecting spilled oil (Figure 20A).
Because of the incorporation of Fe3O4 component, the
recycling of the micromotor was realized by using a magnetic
field.400 A magnetic hollow microsubmarine, using natural
sunflower pollen grains as a template, was reported to remove
leaked oil and microplastics pollutants simultaneously (Figure
20B).401 High removal efficiency of heavy metal ions was
found in porous biohybrid microrobots consisting of fungi
spore and Fe3O4 nanoparticles. The collective behaviors of the
microrobots and magnetically steered agitation could further
enhance the pollutant adsorption ability compared with static
microrobots (Figure 20C).291 The excellent antibacterial
ability of Pd/Ni/Ag nanocoils and high magnetic maneuver-
ability at low magnetic strength (8 mT; 10 Hz) allows for
precise locomotion of nanorobots toward the target location of
bacterial infection to efficiently fight against the drug-resistant
bacteria (Figure 20D).402 The dual actuation of micromotors
prepared from carbon soot by using a magnetic field and
oxygen microbubbles facilitated efficient on-the-fly degradation
of MB dye pollution403 (Figure 20E). In addition, the use of
functional magnetic micromotors for the absorption or
removal of antibiotics, such as erythromycin (Figure 20F)289

and doxycycline404 in contaminated water, has also been
investigated.

5.8. Sensing and Biosensing

According to sensing mechanisms, there are three main
purposes of using magnetically driven micro/nanomotors for
sensing and biosensing. First, because the motion behaviors
(e.g., velocity, wobbling angle) of MagRobots is related to an
applied external magnetic field as well as properties (e.g.,
temperature, pH, viscosity, ionic strength) of the solution, the
detection of these movement parameters of MagRobots
provides a novel approach to probing the local microenviron-
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ment in a heterogeneous medium.405 For instance, a helical
nanomotor was developed as a mobile viscometer capable of
monitoring in real-time the surrounding viscosity in homoge-
neous or heterogeneous media. A mathematical model was
developed that establishes a relation between viscosity and the
precession angle of the swimmer. High temporal and spatial
precision of the viscometer was confirmed by gradually
measuring the viscosity of deionized water from the hot state
(70 °C) to its cool-down state (30 °C) and mapping the local
viscosity from a reference fluid (e.g., deionized water) to
another fluid (e.g., glycerol−water 4:1 v/v) in a microfluidic
chamber under the application of homogeneous rotating
magnetic fields (Figure 21A).157 Second, externally maneu-
vered MagRobots can act as signal amplifiers and, therefore,
provide enhanced detection sensitivity and efficiency for
identifying the signals (e.g., fluorescence) triggered by target
molecules due to the active stirring and vigorous mass transfer
in the solution.406 Janus micromotors, which contain phenyl-
boronic acid-modified graphene quantum dots, iron oxide
nanoparticles, and Pt nanoparticles, were used to detect the
bacterial endotoxin in contaminated water. The reaction
between graphene quantum dots and the targeted endotoxin
results in the fluorescence quenching of the dots while
phenylboronic acid tags serve as specific recognition receptors
of the endotoxin. Compared with that in the static conditions,
the micromotors actuated by external magnetic fields or those
autonomously propelled by oxygen bubbles displayed faster
fluorescence quenching than those that remained static due to
elevated fluid intermixing (Figure 21B).407 Similarly, mobile
magnetic spore@Fe3O4@CDs microrobots can remotely

detect C. dif f toxins with much more obvious fluorenes
quenching in a noninvasive way through the targeting
combination of C. dif f toxins and CDs (carbon quantum
dots) in comparison with nonactuated microrobots.295 Third,
MagRobots can function as a navigator, precisely guiding
payloads (especially biomolecules for the diagnostic purpose)
to a user-defined site for chemical/biological interactions or
other purposes in an untethered way. Janus magnetic
microrobots were capable of loading biotin-functionalized
commercially purchased microbeads and transporting them to
a specific region under the steering of a uniform electric field
and rotating magnet. The dynamic binding between the
surface-immobilized probe (i.e., biotin) and the target analyte
(i.e., avidin) provides a label-free method for biosensing. The
experimental detection limit in a single microfluidic chamber
can be as low as 2 μg/mL (Figure 21C).408

6. CONCLUSION AND FUTURE PERSPECTIVES

The last decades have witnessed great advances and break-
throughs in MagRobots, including innovative manufacturing
approaches, reconfigurable and programmable navigation
techniques, advanced theoretical models, impressive proofs of
concept, and clinically oriented application trials. This review
introduces basic knowledge of magnetic fields and magnetic
materials, offers the experimental setups of magnetic
manipulation systems and various field configurations, and
proposes the strategies to generate nonreciprocal movement.
The movement mechanisms of flagella-inspired helical motion,
undulatory motion, and boundary-assisted motion also are
presented. Fabrication techniques of (quasi-)spherical, helical,

Figure 21. (A) Helical nanorobots as mobile viscometers. Reproduced with permission from ref 157. Copyright 2018 WILEY-VCH Verlag GmbH
and Co. KGaA, Weinheim. (B) Graphene Quantum Dots MagRobots for the detection of endotoxin from E. coli. Reproduced with permission from
ref 407. Copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (C) Janus micromotors deliver biotin-functionalized cargos for
avidin sensing within a microfluidic device. Reproduced with permission from ref 408. Copyright 2020 American Chemical Society.
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flexible, wire-like, and biohybrid MagRobots are summarized,
followed by various state-of-the-art applications in the field of
biomedicine and environment.
The considerable application potential of micro/nanorobots

in the biomedical area, such as targeted drug/gene delivery,
localized bioanalysis, cell sorting, microsurgery, biopsy,
detoxification, biofilm removal, and biosensing becomes a
driving force that attracts an increasing number of scientists to
join in this emerging research field.143,409

In addition, before implementing MagRobots in real
applications, the following aspects should be taken into
consideration: (i) MagRobots’ materials should meet the
standards of practical biomedical and environmental applica-
tions, such as biocompatibility and biodegradability, and bring
economic and social benefit. For instance, expensive materials
and fabrication apparatus or complicated preparation proce-
dures limit the mass production of synthetic microstructures.
This is a challenge that researchers face today and should be
solved in the future. (ii) To enhance the work efficiency of
MagRobots in complex environments, swarms or collective
behavior of synthetic MagRobots can be regulated to
cooperatively and efficiently execute complex biological or
environmental missions that would be insurmountable for a
single MagRobot. Moreover, reconfigurability provides another
strategy for MagRobots to adapt to variational biological
surroundings. For instance, the intriguing collective behavior
from the self-assembly of nanoparticles could present a
reversible pattern transformation (i.e., reconfigurability)
under the steering of an external field, enhancing MagRobots’
tasking capabilities and high environmental adaptability.
Finally, great endeavors have been made to navigate these
untethered microrobots in various complex body fluids such as
blood, gastric juice, urine, cerebrospinal fluid,216 and intra-
cellular medium. However, given the complexity of biological

fluids, the relation between movement behaviors of MagRo-
bots and environment parameters (e.g., the components,
temperature, viscosity, boundaries, the flow speed of the
biological fluids, etc.) are expected to be theoretically and
experimentally established in order to obtain better control of
MagRobots. (iii) Precise maneuvering of MagRobots on-body
and in real-time is very important and their monitoring is
essential. This is a challenge confronted by micro/nanorobots
researchers. Clinical imaging systems in current use, such as
MRI as discussed in Section 5.6, can help in terms of
visualization and as an actuation source. However, there is still
room to improve MagRobots’ programmability in terms of
orientation, locomotion, and even morphology. In this way, if
MagRobots can be controlled and altered according to actual
conditions or occasions such as the patient’s health status and
physiology, then MagRobots will be able to perform precise
and personalized therapy.
In summary, a good understanding of the mechanism of

magnetically driven micro/nanorobots and corresponding
impact factors (e.g., geometrical shape, field configuration,
fluids properties, and boundary) is a precondition for the
conceptualization, functionalization, and automation of Ma-
gRobots. High spatial maneuverability, fast reconfigurability,
and precise programmability are the ultimate research goals of
small-scale robots (see Figure 22). Although there is a long
way to go to translate robust minimized robots from bench to
bedside, considerable advances are bringing fantasy closer to
reality.
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