
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8494  | https://doi.org/10.1038/s41598-022-12289-z

www.nature.com/scientificreports

On the measurement of skeletal 
muscle anisotropic permittivity 
property with a single cross‑shaped 
needle insertion
Hyeuknam Kwon1*, Hyoung Churl Park2, Albert Cheto Barrera3, Seward B. Rutkove4 & 
Benjamin Sanchez3*

Application of minimally invasive methods to enable the measurement of tissue permittivity in the 
neuromuscular clinic remain elusive. This paper provides a theoretical and modeling study on the 
measurement of the permittivity of two‑dimensional anisotropic tissues such as skeletal muscle with 
a multi‑electrode cross‑shaped needle. For this, we design a novel cross‑shaped needle with multiple‑
electrodes and analyse apparent impedance corresponding to the measured impedance. In addition, 
we propose three methods of estimate anisotropic muscle permittivity. Compared to existing 
electrical impedance‑based needle methods that we have developed, the new needle design and 
numerical methods associated enable estimating in vivo muscle permittivity values with only a single 
needle insertion. Being able to measure muscle permittivity directly with a single needle insertion 
could open up an entirely new area of research with direct clinical application, including using these 
values to assist in neuromuscular diagnosis and to assess subtle effects of therapeutic intervention on 
muscle health.

Understanding the basic characteristics of electrical current flow through muscle is needed for improving the 
accuracy of existing analytical techniques, such as needle electromyography, as well as developing new diagnostic 
tools for neuromuscular disorder (NMD) assessment. For example, volume conduction theory explains that 
high frequency electrical events generated during myofiber depolarization are visible only when the recording 
electrodes are in close proximity to the myofiber source, whereas low frequency events attenuate less and can 
propagate through the extracellular space over a long  distance1–3. This low-pass filtering characteristics affects the 
morphology (i.e., in amplitude and latency) of extracellular local field potentials in muscle tissue. These changes 
are likely the result of complex interactions of many NMD-related tissue alterations affecting the extracellular 
conducting medium (e.g., myofiber atrophy and fatty infiltration in dystrophic muscle)4,5. Although these under-
lying alterations directly affect the microenvironment’s passive, linear permittivity property (i.e., conductivity and 
relative permittivity) as well as their spatial dependence and are a main determinant of the frequency-filtering 
properties of electrical potential distribution within diseased muscle, evaluation of these changes using standard 
needle electromyography (EMG) is not  possible6.

Methods for measuring the muscle permittivity have limitations. Magnetic resonance electrical properties 
(MR-EP) imaging can provide noninvasive imaging of tissue permittivity; however, it has been mainly applied 
to the central nervous  system7. Also, the technique requires subjects to go to a specialized facility, it cannot be 
used in children without sedation, subjects must lie flat—a major problem in people with respiratory compro-
mise, a common situation in patients with NMD—, it can put subjects with implanted pacemakers at risk, it 
is very expensive to perform, and the test is slow, typically taking 45 min or longer to perform. Perhaps most 
importantly, MR-EP imaging can only assess tissue permittivity at a single frequency determined by the strength 
of the magnetic field (typically >100 MHz) and thus these electrical properties have limited value to aid in the 
interpretation of EMG data, which is typically in the Hz to kHz frequency range.

The gold standard electrical impedance-based method for measuring muscle permittivity is muscle  biopsy8–10, 
in which a sample of freshly excised muscle is studied. However, due to the  invasiveness11,12, researchers have 
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mainly obtained ex vivo values from laboratory animals. In addition to the limitations in recapitulating the 
physiopathology of human NMDs, ex vivo animal muscle values differ from in vivo human tissue as these prop-
erties change, among others, within animal  species13–16, with  death17,18 and with  temperature19. Another major 
limitation of biopsy is the inability to follow the natural progression or remission of NMDs over time because 
of sampling limitations.

To allow the measurement of in vivo muscle permittivity  values20,21, we developed needle electrical impedance 
myography (EIM) and associated  methods22,23. While promising, these methods required multiple simultaneous 
needle insertions. Thus, it became clear that further research was still needed to facilitate clinical adoption by 
minimizing patient discomfort to only a single needle  insertion24. Here, we present an innovative cross-shaped 
EIM needle and associated (iterative) inverse methods for estimating in vivo muscle permittivity with only a 
single needle insertion.

The rest of the text consists of three sections; “Methods”, “Results”, and “Discussion”. In the “Methods” section, 
we define needle model and muscle domain model and derive the equation of apparent electrical impedance of 
using the needle in the muscle model (in the subsection “Forward problem”). Based on the apparent electrical 
impedance equation, three methods for estimating the anisotropic permittivity properties of muscles are intro-
duced in the inverse methods subsection (in the subsection “inverse methods”). Finally, this section describes 
the setting up of numerical experiments to verify these methods (in the subsection “Numerical simulations”). 
The results section provides numerical simulation results applying the three methods. Numerical simulations are 
designed to validate Convergence, Sensitivity, and Robustness. In addition, the results of estimating the electrical 
properties of the anisotropic muscle are also presented. The final section of the paper is the “Discussion” section.

Methods
Table 1 summarizes the relevant nomenclature, including symbols and parameters, that is used throughout the 
manuscript.

Forward problem. Needle and muscle domain models. We propose a cross-type ‘+’ needle shown in Fig. 1a 
containing 64 point-like electrodes distributed in the eight faces of the needle (Fig. 1b), each face referred as to 
[F1F2] where F1 and F2 denote the face’s cardinal point and orientation respectively, i.e., F1, F2 ∈ {N , S,W ,E} , so 
that when F1 ∈ {N , S} then F2 ∈ {E,W} and when F1 ∈ {E,W} then F2 ∈ {N , S} as in Fig. 1b. Each face has eight 
electrodes εik distributed in a four rows × two columns, where i = 1, 2, 3, 4 is the row index and k = 1, 2 is the 
column index. The distance a (m) is defined between the outermost electrodes and the nearest electrodes, i.e., 
ε1k to ε2k and ε3k to ε4k , while the distance b (m) is defined between the inner electrodes ε2k to ε3k . The distance 
from both the needle tip and the needle’s upper edge to the nearest electrodes ε1k and ε4k is a0 (m), respectively. 
The distance between εi1 and εi2 is s (m). Finally, both distances from εi1 to the needle’s major axis and from εi2 to 
the lateral edge is c (m). We then assume that the four arms of the needle define four semi-infinite subdomains 
in Fig.  1c, namely �1 = {x > 0, y > 0, z ∈ R} , �2 = {x < 0, y > 0, z ∈ R} , �3 = {x < 0, y < 0, z ∈ R} and 
�4 = {x > 0, y < 0, z ∈ R} . In other words, the needle arms’ thickness is considered negligible.

The needle is inserted through the skin and subcutaneous fat tissues into the muscle as shown in Figure 2. We 
define the x, y-axes transverse to the longitudinal direction determined by the muscle fibers in the z-axis. They 
are defined to form the canonical basis in R3 and for the needle’s major axis to be located in the first quadrant 
of the yz plane. We use spherical coordinates to define the position of the needle’s major axis, with the origin 
of coordinates defined by convention located in the needle’s tip. The polar angle is defined by ϕ ∈ [0,π/2] . By 
definition of the axes the azimutal angle θ is always 0. The rotation angle φ ∈ [0, 2π) defines the needle’s rotation 
angle with respect to its major axis.

Table 1.  Symbols and parameters used in this study.

Symbol Unit Description

θ Radian Needle azimutal angle, set to be 0 in this paper

ϕ Radian Needle polar angle, set to be 0 in this paper

φ Radian Needle rotation angle, set to be positive number in this paper

a m Distance between the first and second rows of the electrode array (= third and fourth rows)

b m Distance between the second and third rows of the electrode array

s m Distance between two columns of electrode array

κL and κT � m Longitudinal and transverse impedivity

κ̄ � m Geometric mean of the impedivity, defined as κ̄ := √
κLκT

ρL and ρT � m Longitudinal and transverse resistivity

τL and τT � m Longitudinal and transverse reactivity

α2 Dimensionless Anisotropy ratio of the muscle, defined as ρL/ρT
Khalf space Dimensionless Domain factor of the half space, that is 2π

K̂i and K̂⊥
i

Dimensionless Domain factor of the needle for i = 1, 2, 4, 6, 17

Zi and Ẑi � Measured and simulated apparent impedance for i = 1, 2, 4, 6, 17
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As a convention, when θ = ϕ = φ = 0 , then the needle’s major axis is aligned with respect to the z-axis and 
the [ES] face is the yz plane. Finally, we define when ϕ = π/2 then φ ∈ [0,π).

Electrodes’ position in spherical coordinates. Unless otherwise noted, henceforth we restrict ourselves to study 
an impedance measurement with the electrodes in the face [ES]. The position Pik := (xik , yik , zik) ∈ R

3 of elec-
trode εik by default, i.e., ϕ = φ = θ = 0 , is

as we see in Fig. 1b. For notational simplicity, we denote the electrode position by (0, yik , zik) := Pik for i = 1, 2, 3, 4 
and k = 1, 2 . To describe the general position of an electrode we use three dimensional rotation matrices. The 
rotation matrices along x-, y-, and z- axes with an angle δ using right-hand rule are

(1)

P11 = (0, c, 2a+ b+ a0) & P12 = (0, c + s, 2a+ b+ a0)
P21 = (0, c, a+ b+ a0) & P22 = (0, c + s, a+ b+ a0)
P31 = (0, c, a+ a0) & P32 = (0, c + s, a+ a0)
P41 = (0, c, a0) & P42 = (0, c + s, a0)

(2)

Rx(δ) :=

[
1 0 0
0 cos δ − sin δ
0 sin δ cos δ

]
, Ry(δ) :=

[
cos δ 0 − sin δ
0 1 0

sin δ 0 cos δ

]
and Rz(δ) :=

[
cos δ − sin δ 0
sin δ cos δ 0
0 0 1

]
.

Figure 1.  (a) Schematic representation of the needle. (b) Needle’s geometry (not to scale). (c) Needle’s top view.

Figure 2.  Insertion of the needle to the skeletal muscle and inlet representing a model abstraction of an 
arbitrary geometrical arrangement of muscle domain � and needle to illustrate the spherical coordinate system 
used.
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The rotated electrode position Qik ∈ R
3 is defined as Qik := Rx(−ϕ)Rz(φ)Pik , that is

If we want to describe the position of an electrode in another face it is equivalent to consider the electrode 
to be in the [ES] face changing the angle φ for φ + tπ/2 with t ∈ Z.

Apparent electrical impedance. We define the impedivity κ ( � m) ∈ C as

where ρ and τ are the resistivity and reactivity, respectively, j2 = −1 is the imaginary unit (dimensionless), σ is 
the conductivity (S m−1 ), ω is the angular frequency (rad s−1 ), ǫ0 is the vacuum permittivity (F m−1 ) and ǫr is 
the relative permittivity (dimensionless). We note that if ǫr = 0 , then κ = ρ = 1/σ.

Let α2 := ρL
ρT

:= τL
τT

≤ 1 be the anisotropy ratio (dimensionless), where the subscripts {T,L} denote the trans-
verse x,z-axes and longitudinal y-axis directions. Following Plonsey and  Heppner33 and Kwon et al.20 work, the 
potential V (V) ∈ C created by a point current electrode in an homogeneous infinite anisotropic material is

where κ̄ := √
κLκT is the geometric mean of the longitudinal and transverse impedivities, I is the current (A), 

K := 2π is a domain factor (dimensionless) from assuming that the needle face delimits the muscle in a semi-
infinite  region34. The operator �·�2 is the L2 norm, r0 := (x0,αy0, z0) and rα := (x,αy, z) are the apparent position 
of current and voltage electrodes, respectively.

For notational convenience, we define the apparent distance dα m between two electrodes ( Qik , Qnl ) as

Using the expression above and the position of electrodes in Eq. (3) we obtain

where

are variables that only depend on the needle orientation and the anisotropy ratio. As expected, when α2 = 1 (i.e., 
isotropic muscle) the dependence of dα with the orientation of the needle is lost. If we choose two electrodes on 
the same face, there are eight different distances considering the electrodes’ distribution (see Fig. 3). We define 
them as d1,...,8

(3)Qik =

[ −yik sinφ
yik cosφ cosϕ + zik sin ϕ
−yik cosφ sin ϕ + zik cosϕ

]
=:

[
Qik(x)
Qik(y)
Qik(z)

]
.

(4)κ := ρ + jτ =
σ

σ 2 + (ωǫ0ǫr)2
− j

ωǫ0ǫr

σ 2 + (ωǫ0ǫr)2
,

(5)V :=
κ̄I

K�rα − r0�2
=

κ̄I

K
√

(x − x0)2 + α2(y − y0)2 + (z − z0)2
,

(6)dα(Qik ,Qnl) :=
√
(Qik(x)−Qnl(x))2 + α2(Qik(y)−Qnl(y))2 + (Qik(z)−Qnl(z))2.

(7)dα(Qik ,Qnl) =
√
(yik − ynl)2A+ (zik − znl)2B+ (yik − ynl)(zik − znl)C,

(8)
A := sin2 φ + cos2 φ(α2 cos2 ϕ + sin2 ϕ),

B := 1,

C := 2(α2 − 1) cosφ sin ϕ cosϕ = (α2 − 1) cosφ sin 2ϕ,

Figure 3.  The eight different distances between two same face electrodes. Face [ES] in default side shown.
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To perform an impedance measurement, we need four electrodes being positive and negative current and 
voltage electrodes which are denoted by εI+ , εI− , εV+ and εV− , respectively. Their positions are denoted by QI+ , 
QI− , QV+ and QV− . Considering Eqs. (5) and (7), we can rewrite electrical potential as follows

where p,m ∈ {+,−} and Vpm is the electric potential measured at εVp when current I generated at εIm . Finally, 
we define the impedance as

To measure the impedance using the four electrode method, we will have to measure the distance between 
two electrode roles instead of two electrodes. Therefore, dα(·, ·) in Eq. (10) is presented like so. If we choose four 
electrodes on the same face for an impedance measurement, i.e., εI+ , εI− , εV+ and εV− , there are 

(8
4

)
· 4! = 1680 

possibilities. Most of the configurations give redundant information so we restrict ourselves to nineteen con-
figurations (see Fig. 4). Configurations 1 to 16 in Fig. 4 verify {ε11, ε12} ∈ εI+ , {ε41, ε42} ∈ εI− , {ε21, ε22} ∈ εV+ 
and {ε31, ε32} ∈ εV− . Configurations 17 to 19 are rectangular configurations. The expressions of the imped-
ance for each configuration in Fig. 4 are presented in Table 2. Note that two configurations that have the sets 
{dα(QV+ ,QI+), dα(QV− ,QI−)} and {dα(QV+ ,QI−), dα(QV− ,QI+)} equal give the same impedance value as 
shown in Table 2.

In this paper, we choose to use five different current-voltage configurations (1, 2, 4, 6, 17 in Fig. 4) to measure 
apparent impedance Z. Using Eqs. (5) and (11), the impedance values are

Here, A, B, and C are defined in Eq. (8).
Of note, Zi with i = {1, 2, 4, 6, 17} are inversely proportional to the unknown geometric factor K (dimension-

less), the latter dependent on the electrode size and the inter-electrode distances. We propose an empirical needle 
geometric factor of the needle K̂i and K̂⊥

i  as

for given anisotropy ratio α2 and needle rotation angle φ , where Khalf space is 2π , Zi(α2,φ) is the apparent imped-
ance value derived from Eqs. (12)–(16) with half space domain assumption, and Ẑi(α2,φ) is the simulated 
apparent impedance value.

(9)

d1 := dα(Qin,Q(i+1)n) = a
√
B, i ∈ {1, 3}, n ∈ {1, 2},

d2 := dα(Qin,Q(i+2)n) = (a+ b)
√
B, i ∈ {1, 2}, n ∈ {1, 2},

d3 := dα(Q1n,Q4n) = (2a+ b)
√
B, n ∈ {1, 2},

d4 := dα(Qi1,Qi2) = s
√
A, i ∈ {1, 2, 3, 4},

d5 := dα(Qin,Q(i+1)k) =
√

s2A+ a2B+ saC, i ∈ {1, 3}, {n, k} = {1, 2},

d6 := dα(Q2n,Q3k) =
√
s2A+ b2B+ sbC, {n, k} = {1, 2},

d7 := dα(Qin,Q(i+2)k) =
√
s2A+ (a+ b)2B+ s(a+ b)C, i ∈ {1, 2}, {n, k} = {1, 2},

d8 := dα(Q1n,Q4k) =
√

s2A+ (2a+ b)2B+ s(2a+ b)C, {n, k} = {1, 2}.

(10)Vpm =
κ̄I

Kdα(QVp ,QIm)
,

(11)Z :=
V++ − V+− − V−+ + V−−

I

(12)Z1 =
κ̄

K

2b

a(a+ b)

(13)Z2 =
κ̄

K

(
1

a
√
B
−

1√
s2A+ (a+ b)2B+ s(a+ b)C

−
1

(a+ b)
√
B
+

1
√
s2A+ a2B+ saC

)

(14)Z4 =
2κ̄

K

[s2A+ (a+ b)2 + (a+ b)sC]
√
B− aB

√
s2A+ (a+ b)2B+ (a+ b)sC

aB[s2A+ (a+ b)2B+ (a+ b)sC]

(15)Z6 =
2κ̄

K

(a+ b)B
√
s2A+ a2B+ asC −

√
B(s2A+ a2B+ asC)

(s2A+ a2B+ asC)(a+ b)B

(16)Z17 =
2κ̄

K

a
√
B− s

√
A

as
√
AB

(17)K̂i(α
2,φ) = Khalf space

Zi(α
2,φ)

Ẑi(α2,φ)
and K̂⊥

i (α2,φ) = K̂i(α
2,φ − π/2)
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Inverse methods. In this section, we provide three inverse methods to estimate the anisotropic permittiv-
ity properties of muscle from apparent impedance values measured using the cross-shaped needle electrodes. 
Methods are presented in increasing complexity: 

1. Method I requires to insert the cross-shaped needle has its major axis is aligned with respect to the z-axis 
and the [ES] face is the yz-plane as in Fig. 1 b, i.e. ϕ = φ = 0 . Method I can be applied using only electrodes 
on one side, for example electrodes on [ES].

2. The needle of method II rotated the needle of method I about the z-axis by known angle φ , i.e. ϕ = 0 and φ 
don’t need to be zero. Method II can be applied using only electrodes on one side, for example electrodes on 
[ES].

3. The needle position of method II is same as that of method III, but method III does not require to know the 
needle rotation angle φ . Method III requires the use of electrodes on two facing sides, for example electrodes 
on [ES] and [SE].

The key idea of the iteration process is to update the needle geometric factor K in Eqs. (12)–(16). We use K̂i in 
Eq. (17) to estimate K. To do that, we built a dataset of K̂i values for each needle electrode model i = 1, 2, 4, 6, 17 
while changing muscle anisotropy and needle rotation angle in numerical simulations. Indeed, in order to 
make a dataset of K̂i with fixed needle electrode model, we perform several numerical simulations with various 
α2 ∈ (0, 1] and φ ∈ [0,π/2).

Figure 4.  Configurations 1 to 19. In blue, distance for V++ . In red, distance for V−− . In yellow, distance for 
V

+− . In black, distance for V−+.
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Inverse Method I: Z1 and Zi are measured in θ = 0 (or π/2 ), φ = 0 , ϕ = 0 for i ∈ {2, 4, 6, 17}. 

Assumption 1.  The major muscle fibers orientation is known and the needle axis is aligned on the z-axis (i.e., 
the needle is inserted perpendicularly to the muscle fibers).

Method I uses four electrodes on a plane parallel to the direction of the muscle fibre (e.g. [ES] plane in Fig. 1). 
On the selected plane, we measure two impedances Z1 and Zi for i = 2, 4, 6, 17 as in Fig. 4. The measured Z1 is 
used to compute κ̄ and measured Zi is used to compute α2 . The flowchart can be seen in Fig. 5.

Estimation of κ̄. We estimate κ̄ as a convergence value of κn , i.e. κ̄ := limn→∞ κn , and define κn as

where α2
n,i is estimated anisotropy ratio at n-th iteration for i = 2, 4, 6, 17 which indicates used impedance value.

Estimation of α2. We estimate α2 as a convergence value of α2
n,i , i.e. α2 := limn→∞ α2

n,i for i = 2, 4, 6, 17 . Note 
here that n is for iteration number and i is for used impedance number. We propose here four methods to esti-
mate α2

n,i of using Zi for i = 2, 4, 6, 17.

• Using Z2 : α2
n,2 is the solution of below equation 

 where Q := Z2K̂2(α
2
n−1,2,0)

κn−1
− 1

a + 1
a+b and R := 2ab+ b2.

• Using Z4 : 

 where Q :=
(

2aκn−1

aZ4K̂4(α
2
n−1,4,0)−2κn−1

)2

.

• Using Z6 : 

(18)κn =
a(a+ b)Z1K1(α

2
n,i , 0)

2b

(19)Q4x4 − 4(Q2 + 2Q4R)x3 − 6(Q2R + Q4R2)x2 − 2Q2R2 + R2 = 0

(20)α2
n,4 =

Q − (a+ b)2

s2

Table 2.  Table of the nineteen configurations in Fig. 4 with its impedance equation (11) and the electrode 
involved for each role.

Configurations Impedance

Q subscript

I
+

V
+

V
−

I
−

1 Z1 = 2κ̄
K

(
1
d1

− 1
d2

)
11 21 31 41

2 Z2 = κ̄
K

(
1
d1

− 1
d7

− 1
d2

+ 1
d5

)
11 21 31 42

3 Z3 = Z2 11 21 32 41

4 Z4 = 2κ̄
K

(
1
d1

− 1
d7

)
11 21 32 42

5 Z5 = Z2 11 22 31 41

6 Z6 = 2κ̄
K

(
1
d5

− 1
d2

)
11 22 31 42

7 Z7 = 2κ̄
K

(
1
d5

− 1
d7

)
11 22 32 41

8 Z8 = Z2 11 22 32 42

9 Z9 = Z2 12 21 31 41

10 Z10 = Z7 12 21 31 42

11 Z11 = Z6 12 21 32 41

12 Z12 = Z2 12 21 32 42

13 Z13 = Z4 12 22 31 41

14 Z14 = Z2 12 22 31 42

15 Z15 = Z2 12 22 32 41

16 Z16 = Z1 12 22 32 42

17 Z17 = 2κ̄
K

(
1
d4

− 1
d1

)
11 12 21 22

18 Z18 = 2κ̄
K

(
1
d4

− 1
d2

)
11 12 31 32

19 Z19 = 2κ̄
K

(
1
d4

− 1
d3

)
11 12 41 42
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 when Q :=
(

2a(a+b)κn−1

(a+b)Z6K̂6(α
2
n−1,6,0)+2κn−1

)2

• Using Z17 : 

Inverse Method II: Z1 and Zi are measured in θ = 0 , ϕ = 0 for i ∈ {2, 4, 6, 17}. 

Assumption 1.  Same as method I
Assumption 2.  Known φ  = 0

 Method II uses four electrodes on a plane with an angle φ to the direction of the muscle fibre. On the selected 
plane, we measure two impedances Z1 and Zi for i = 2, 4, 6, 17 as in Fig. 4. The measured Z1 is used to compute 
κ̄ and measured Zi is used to compute α2 . The flowchart can be seen in Fig. 6.

Estimation of κ̄. We estimate κ̄ as a convergence value of κn below

for i = 2, 4, 6, 17.

Estimation of α2. We estimate α2 as a convergence value of α2
n,i for i = 2, 4, 6, 17 which is defined as

(21)α2
n,6 =

Q − a2

s2

(22)α2
n,17 =

(
2aκn−1

asZ17K̂17(α
2
n−1,17, 0)+ 2κn−1)

)2

(23)κn =
a(a+ b)Z1K̂1(α

2
n,i ,φ)

2b

Figure 5.  Iteration scheme of the method I.
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Here, An,i are defined as below ( i = 2, 4, 6, 17):

• Using Z2 . An,2 is a solution of the following 4th degree polynomial. 

 where R := 2ab+ b2 and P := Z2K̂2(α
2
n−1,2,φ)

κn−1
− 1

a + 1
a+b.• Using Z4 . 

 where Qn−1 :=
(

2aκn−1

aZ4K̂4(α
2
n−1,4,φ)−2κn−1

)2

• Using Z6 . 

 where Qn−1 :=
(

2a(a+b)κn−1

(a+b)Z6K̂6(α
2
n−1,6,φ)+2κn−1

)2

• Using Z17 . 

Inverse Method III: Z1 , Z⊥
1  , Zi , and Z⊥

i
 are measured in θ = 0 , ϕ = 0 for i ∈ {2, 4, 6, 17}. 

(24)α2
n,i =

An,i − sin2 φ

cos2 φ

(25)P4x4 + (−4P2 + 2P4R)x3 + (−6P2R + P4R2)x2 − 2P2R2 + R2

(26)An,4 =
Qn−1 − (a+ b)2

s2

(27)An,6 =
Qn−1 − a2

s2

(28)An,17 =

(
2κn−1

asZ17K̂17(α
2
n−1,17,φ)+ 2κn−1

)2

Figure 6.  Iteration scheme of the method II.
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Assumption 1.  Same as method I
Assumption 2.  Unknown φ( = 0)

 Method III, which does not require to know φ , is most practical method in this paper. This method uses four 
electrodes on one side and two faces perpendicular to each other (e.g. [ES] and [SE] planes in Fig. 1) i.e. eight 
electrodes total. At first, we compute κn ( κ⊥n  ) using the Z1 ( Z⊥

1  ) and K1 ( K⊥
1  ) in each plane (perpendicular plane). 

From the κn ( κ⊥n  ) and the Zi ( Z⊥
i  ) and Ki ( K⊥

i  ) in each plane, we compute A ( A⊥ ). Now, αn is found using A and 
A⊥ . The loop is made by putting αn into the K1 and Ki ( K⊥

1  and K⊥
i  ). The flowchart can be seen in Fig. 7.

Estimation of κ̄. We estimate κ̄ from the convergence value of κn and κ⊥n  . Note here that if the iterative process 
converges well, then κn and κ⊥n  converges to the same value which is κ̄.

for i = 2, 4, 6, 17.

Estimation of α2 and φ. We estimate α2 and φ as a convergence value of α2
n,i and φn,i , respectively, as n goes 

infinity which are defined by

for i = 2, 4, 6, 17 . We define An,i and A⊥
n,i as below:

• Using Z2 and Z⊥
2  . An,2 and A⊥

n,2 can be found by solving the below 4th degree polynomial. 

 where R := 2ab+ b2 and P is defined as below: 

(29)κn =
Z1K̂1(α

2
n,i , φ̂)a(a+ b)

2b
and κ⊥n =

Z⊥
1 K̂

⊥
1 (α2

n,i , φ̂)a(a+ b)

2b

(30)α2
n,i = An,i + A⊥

n,i − 1 and φn,i =
1

2
arccos

(
2An,i − 1− α2

n,i

α2
n,i − 1

)

(31)P4x4 + (−4P2 + 2P4R)x3 + (−6P2R + P4R2)x2 − 2P2R2 + R2

Figure 7.  Iteration scheme of the method III.
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• Using Z4 and Z⊥
4  . 

 where Qn−1 :=
(

2aκn−1

aZ4K̂4(α
2
n,4 ,φ̂)−2κn−1

)2

 and Q⊥
n−1 :=

(
2aκn−1

aZ⊥
4 K̂⊥

4 (α2n,4 ,φ̂)−2κn−1

)2

.

• Using Z6 and Z⊥
6  . 

 where Qn−1 :=
(

2a(a+b)κn−1

(a+b)Z6K̂6(α
2
n,6,φ̂)+2κn−1

)2

 , Q⊥
n−1 :=

(
2a(a+b)κn−1

(a+b)Z⊥
6 K̂⊥

6 (α2n,6,φ̂)+2κn−1

)2

• Using Z17 and Z⊥
17 . 

Numerical simulations. The numerical experiments are performed using Comsol (Comsol Multiphys-
ics, Inc., Burlington, MA) and Matlab (The Mathworks, Inc., Natick, MA). In order to simulate needle muscle 
impedance data, a box in Comsol with 40× 40× 40 ( cm3 ) is created. The needle dimensions are length 20 (cm), 
width 2.15 (cm), and thickness 0.2 (cm). The needle is inserted vertically into the domain, i.e. φ = 0 , ϕ = 0 while 
θ is 0 for method I and π/6 (radian) for method II and III. The needle electrodes have radius 0.05 (cm) with 
distances a0 = 1 (cm), a = 1 (cm), b = 1 (cm), c = 0.5455 (cm), s = 0.9893 (cm) (details in Fig. 1 b). To estimate 
the anisotropic permittivity of the domain, a sinusoidal current of 1 (mA) was injected from 1 kHz to 1 MHz. 
Experimental results verifying ‘Convergence’, ‘Sensitivity’ and ‘Robustness’ were performed at 1 kHz. The used 
transverse electrical conductivity σT is from 0.341 to 0.503 (S/m) and relative permittivity εr,T is from 2.59 · 104 
to 1.84 · 103 (dimensionless) from skeletal muscle at specified  frequencies35,36. Longitudinal (denoted by the sub-
script L) permittivity values were computed from transverse permittivity values using a (constant) anisotropy 
ratio α2 = 0.4 , unless otherwise noted. Methods I and II use needle impedance values Z1 and Z6 while method 
III uses Z1 , Z6 , Z⊥

1  , and Z⊥
6  . Simulated impedances in method I are obtained assuming φ = 0 , whereas method 

II and III assume φ = π/6 . Here, the angle φ = π/6 for method II and III is chosen to satisfy the assumptions 
of the methods which is φ  = 0 . Note that, in method II and III, φ may select any angle satisfying φ  = 0 , which 
is the assumption of the method II and III. For the iteration process, the initial anisotropy ratio α2 is set to 1 and 
consequently initial K(α2,φ) is obtained with α2 = 1.

Results
Numerical experiments were performed to evaluate three iterative reconstruction methods: (i), method I (cor-
responding equations are 17 - 21); (ii), method II (corresponding equations are 22, 23); (iii), method III (cor-
responding equations are 24, 25). The results confirm the convergence of the methods, their sensitivity to the 
presence of measurement noise, and their robustness to experimental positioning errors through numerical 
experiments. In addition, the three proposed methods were applied to estimate the electrical properties of the 
muscle, conductivity and relative permittivity, in the frequency range of 10 kHz to 1 MHz. The cross-shaped 
needle in method I has its major axis aligned with respect to the z-axis and the [ES] face is the yz-plane, i.e. θ = 0 , 
φ = 0 , ϕ = 0 (Fig. 2). Method I is then extended to method II by considering needle’s rotation angle φ  = 0 . 
In this numerical simulation, we assume φ = π/6 with respect to its major axis. For method III, the angle φ is 
assumed to be unknown. The two impedances z1 and z6 are used in both method I and method II. In method 
III, four impedances z1 , z⊥1  , z6 and z⊥6  are used to estimate muscle permittivity values.

To compare the three methods, the following three observations were made; (1) ‘Convergence’: result error 
according to the number of iterations to which the method is applied (Fig. 8a), (2) ‘sensitivity’: result error 
according to the noise level (Fig. 8b), (3) ‘Robustness’: result error according to angle error (Fig. 8c). Method I 
was developed to be applied when the needle is inserted perpendicular to the muscle and one side of the needle is 
parallel to the direction of the muscle fiber. According to the experimental results, we recommend to use method 
I to obtain stable results at all SNRs, but to obtain accurate results, the angular misalignment with respect to the 
anisotropy direction should be less than 10 degrees. Method II was developed to be applied when the needle is 
inserted perpendicularly to the muscle, and the angle between one side of the needle, the direction of the muscle 
fiber is not 0 and the angle is known. According to the experimental results, method II should be used only when 
an SNR of 40 dB or more and a very accurate angular mismatch are guaranteed. Method III was developed to be 

(32)P :=






Z2 �K2(α
2
n,2,

�φ)
κ

− 1
a + 1

a+b is to find An,2
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2
�K⊥
2 (α2n,2,

�φ)
κ

− 1
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a+b is to find A⊥
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(33)An,4 =
Qn−1 − (a+ b)2

s2
, A⊥
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Q⊥
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applied when the needle is inserted perpendicular to the muscle. It can be applied without knowledge of muscle 
fiber orientation. Experimental results show that method III provides the most stable and accurate results when 
an SNR of 50 dB or higher is guaranteed.

Convergence. As mentioned above, the methods presented are iterative. Therefore, here we evaluate their 
convergence to the true permittivity value. We quantified the error of the resistivity anisotropy ratio α2 as a 
function of the iteration number. Figure 8a shows all three methods proposed converge to the true value and 
the relative error is lower than 0.1% after five iterations. All three methods showed good convergence in which 
the error decreased as the number of iteration increased in common. If the number of iteration was less than 5 
times, method II was the most accurate and method III was the least accurate, but if the number of repetitions 
was more than 5 times, all three methods had a very small error of close to 0%.

Sensitivity. Figure 8b shows the error of the estimated anisotropy ratio α2 under the presence of random 
noise varying the SNR from 30 to 60 dB. Overall, these results show the estimated parameter is not sensitive to 
noise if the SNR is larger than 35 dB, with a relative error lower than 5%. The SNR is computed as

From the given SNR range (30 to 60 dB), the simulated noisy impedance is generated with additive random noise 
sampled from standard Gaussian distribution with appropriate standard deviation. Methods I and III clearly 
showed a tendency for errors to decrease as SNR increased. Method II showed that as the SNR increased as a 
whole, the error tended to decrease, but when the SNR was 40–45 dB, an unexpected large error occurs. Since 
the measurement noise is randomly made, a large error may occur in the 40–45 dB SNR by chance. As a result 
of performing a number of random measurement noise at 30–60 dB, errors tend to decrease as SNR increases 
overall, but errors are large even in certain SNRs.

(36)SNR = 10 log10

(
impedance value

standard deviation

)2

Figure 8.  Performance comparison between methods considering the estimated anisotropy ratio α2 . (a) 
Convergence of the with iteration number. (b) Sensitivity to measurement noise. (c) Robustness in front of 
needle angle misalignments.
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Robustness. Figure  8c shows the reconstruction error of the estimated anisotropy ratio α2 assuming an 
experimental misalignment of the cross-shaped needle once inserted into the muscle. Out of the three methods 
developed and tested, method III is the most robust to angle errors. Methods I and II are very weak against angle 
misalignment, in other words, the larger the angle mismatch, the greater the error. Method II is more vulner-
able to angle misalignment than method I. On the other hand, method III is robust against angle misalignment, 
because it does not require any prior information about the angle. In this experiment, an error of less than 0.1% 
was shown in the case of angular misalignment.

Reconstruction of anisotropic muscle electrical properties. Figure 9 shows the results of estimat-
ing the conductivity and relative permittivity (electrical properties) of anisotropic muscles for frequencies using 
each of the three methods; method I (Eq. 18), (Eq. 21) with Z1 and Z6 , method II (23), (Eq. 24) with Z1 and Z6 , 
and method III (Eq. 29), (Eq. 30) with Z1 , Z⊥

1  , Z6 and Z⊥
6  . In this numerical experiment, when the angle mis-

alignment was 1 degree and the noise SNR was 30 dB, the average and standard deviation of the estimated values 
were used by applying each method 10 times. The solid and dotted lines show true muscle electrical properties 

Figure 9.  Estimated anisotropic permittivity (i.e., conductivity and relative permittivity) using method I, II, and 
III. The solid lines represent the true values, whereas the shaded area represent ±3 times the standard deviation 
based on the estimated value.
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(EP)35,36 and transparent areas represent ±3 times the standard deviation (99.7% confidence interval) based 
on the estimated value from method I, II, and III. For all three methods, the true values were within the 99.7% 
confidence interval. The 99.7% confidence intervals for longitudinal and transverse EPs were small enough to 
distinguish between longitudinal and transverse EPs.

Discussion
This modeling study demonstrates the potential for using a novel cross-shaped needle for the assessment of two-
dimensional anisotropic muscle permittivity property. While the technology itself still requires actual develop-
ment, its potential for simplifying assessment of this electrical tissue property could be valuable. Specifically, 
by better understanding tissue permittivity, it could become possible to more accurately assess and understand 
alterations in muscle tissue in certain diseases and their impact on standard electrophysiological  testing25. For 
example, by applying this needle and analyzing the resulting data, it would become possible to better understand 
the origins of the morphology of motor unit potentials recorded at a distance from the source generator (i.e., 
the cumulative depolarizing myofiber membranes)26. Similarly, we would be able to better understand the limits 
of detection of smaller discharges, such as fibrillation potentials, as one moves farther from the source. Indeed, 
these very basic concepts have been minimally studied to date and, in these authors’ view, remain relatively 
poorly  understood6. Detailed work in this area could greatly expand the basic tenets underlying the field of 
clinical neurophysiology.

Beyond these new insights into the underpinnings of acquired needle EMG data, the ability to measure tissue 
permittivity with a single needle could also have important direct clinical  value27,28. To date, needle impedance-
related works require multiple simultaneous 4-electrode needle insertions to measure tissue  permittivity20,21. The 
invasiveness of these approaches limit their clinical translation, but this could be obviated with the construction 
and implementation of the needle design proposed  here29. Being able to measure the permittivity directly with a 
single needle insertion could open up an entirely new area of research with direct clinical application, including 
using these actual tissue property to assist in neuromuscular diagnosis, and even more importantly, to assess 
subtle effects of therapeutic intervention on muscle health.

There are several limitations to this study and our proposed needle design. First, this is only a modeling 
study and a number of both theoretical and practical simplifications have been made, including the assump-
tion of relative homogeneity of muscle tissue. However, many NMDs are patchy with some regions of a given 
muscle being severely affected while other regions are entirely normal or only minimally  affected30,31. While we 
have made first inroads into modeling such  heterogeneities32, this would have made our analysis here difficult 
and was not attempted here. Second, muscle conditions are not static and thus, it is possible that there may be 
changes in tissue permittivity making it difficult to align EMG data obtained even if there is a relatively short 
time lag between application of the cross-needle and the insertion of a standard concentric EMG needle in the 
same region. The third related concern is that this cross-needle itself might injure the muscle thus potentially 
altering impedance readings. Standard EMG needles are round for many reasons, a major one of which is to 
ensure patient comfort (as well, as of course, simplicity in design and manufacture). The needle designed here, 
although pointed, to some extent represents two orthogonal blades being inserted into the muscle. Even if rela-
tively small, it would like still injury muscle and cause localized bleeding which in itself could negatively impact 
and distort the measured permittivity. It is worthwhile to note, however, that other large needles do exist and 
are used routinely for muscle assessment such as the Bergstrom biopsy needle, which actually typically requires 
a small incision in the overlying skin to place appropriately in the muscle. Of course, it may be theoretically 
possible to make this cross-needle very small (e.g., approximately 26 gauge, based on a circle circumscribing 
the cross), and thus keeping any tissue damage quite limited. A fourth concern is that, while we have included 
anisotropy in our analyses, as well as a study of needle misalignment, muscle fiber orientation can be complex, 
and thus this modeling remains a vast simplification of any observed data. Finally, muscle is is a dynamic organ 
and in these analyses we have considered only the muscle at rest. However, in order to generate actual contrac-
tion of the muscle, motor unit potentials is required. Even an isometric contraction would still likely alter many 
aspects of muscle structure, including producing slight shifts in muscle fiber orientation (and hence anisotropy), 
altering the relative extracellular/intracellular volume ratios, and impacting muscle blood volume, a feature that 
was not even included in this model.

A single surface flat electrode can only be used in Methods I and II. In order to apply Method III, it is required 
to have a surface and its perpendicular surface. Accordingly, the minimum requirement is L-shaped needle elec-
trode which has two planes perpendicular to each other. However, the reason why we proposed a cross-shaped 
needle electrode rather than an L-shaped needle electrode is because of (1) structural stability resulting from the 
symmetry of the shape, and (2) the efficiency of measuring four regions with one insertion.

In conclusion, we have performed a modeling study on a novel impedance-measuring needle that has the 
potential of providing robust assessments of muscle volume conduction properties. To move these innovative 
concepts forward, it will next be necessary to design and produce a working version of this needle electrode, 
likely for initial application and study in larger NMD animal models. This work is now being planned.
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