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    Introduction 
 The nerve growth cone is the migrating tip of growing neurites 

and plays a central role in axon outgrowth and guidance ( Ramon 

y Cajal, 1890 ;  Bray and Hollenbeck, 1988 ). Actin polymerizes 

near the leading edge of growth cones, and actin fi laments show 

remarkable retrograde movement in fi lopodia and lamellipodia 

( Forscher and Smith, 1988 ;  Katoh et al., 1999 ;  Mallavarapu and 

Mitchison, 1999 ). Myosin 1c and myosin II have been implicated 

in actin fi lament retrograde fl ow in growth cones ( Diefenbach 

et al., 2002 ;  Medeiros et al., 2006 ). Linkage between the actin 

fi lament retrograde fl ow and cell adhesion molecules (CAMs) 

is thought to transmit the force of actin fi lament movement to 

extracellular substrates via CAMs ( Mitchison and Kirschner, 

1988 ;  Jay, 2000 ;  Suter and Forscher, 2000 ), thereby provid-

ing mechanical tension ( Bray, 1979 ;  Lamoureux et al., 1989 ) 

and protrusion of the leading edge ( Lin and Forscher, 1995 ) for 

axon outgrowth and steering. Previous studies demonstrated 

that CAMs such as apCAM ( Suter et al., 1998 ), Nr-CAM 

( Faivre-Sarrailh et al., 1999 ), integrin ( Grabham et al., 2000 ), 

and L1-CAM ( Kamiguchi and Yoshihara, 2001 ) are coupled 

with actin fi lament retrograde fl ow in growth cones. Consis-

tently, coupling between apCAM and actin fi lament retrograde 

fl ow produced mechanical tension and induced protrusion of 

growth cones ( Suter et al., 1998 ). 

 L1 is a single-pass transmembrane protein expressed 

predominantly in developing neurons and involved in axon 

outgrowth and guidance ( Lemmon et al., 1989 ;  Dahme et al., 

1997 ;  Kamiguchi et al., 1998 ). A recent study showed that 

ankyrin B  promotes neurite initiation by coupling F-actin fl ow 

to L1 ( Nishimura et al., 2003 ). However, ankyrin B  was in-

volved neither in their coupling in growth cones nor in L1-

mediated neurite elongation, and the molecular basis for the 

actin fl ow – CAM linkage in growth cones remains elusive 

( Suter et al., 1998 ;  Gil et al., 2003 ;  Nishimura et al., 2003 ). 

It is also unanswered whether coupling of this linkage is in-

volved in the regulation of axon outgrowth. Recently we de-

scribed a novel brain-specifi c intracellular protein, shootin1, 

which is involved in axon formation and polarization of cul-

tured hippocampal neurons ( Toriyama et al., 2006 ). Shootin1 

accumulates in axonal growth cones, and its accumulation in 

growth cones dynamically enhances neurite elongation. Shootin1 

was shown to act upstream of phosphoinositide-3-kinase 

A
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the actin fl ow – CAM linkage model ( “ clutch ”  model) for 

axon outgrowth and suggest that shootin1 is a key mole-

cule involved in this mechanism.
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 Results 

 Shootin1 interacts with both actin 
fi lament retrograde fl ow and L1-CAM 
in growth cones 
  Fig. 1 A  shows shootin1 immunoreactivity in a cultured rat 

hippocampal neuron. Shootin1 accumulated to a high level 

in axonal growth cones ( Fig. 1 A , arrows), where it localized 

(PI 3-kinase). However, shootin1-induced axon formation 

was not fully suppressed by a PI 3-kinase inhibitor ( Toriyama 

et al., 2006 ), which suggests the existence of an additional 

mechanism for axon outgrowth. Here, we show that shootin1 

interacts with both actin fi lament retrograde fl ow and L1-CAM 

in growth cones. Our data suggest that shootin1 mediates the 

linkage between actin retrograde fl ow and L1-CAM to pro-

mote axon outgrowth. 

 Figure 1.    Shootin1 and actin fi laments in axonal 
growth cones and XTC fi broblasts.  (A) Immuno-
fl uorescent localization of shootin1 in a cultured 
hippocampal neuron. Arrows and arrowheads 
denote an axonal growth cone and minor process 
growth cones, respectively. (B) Deconvolved im-
ages of an axonal growth cone stained by anti-
shootin1 antibody and rhodamine phalloidin. 
(inset) An enlarged view of the fi lopodium in the 
rectangle. Arrowheads indicate shootin1 accumu-
lation in a fi lopodium. (C) A fl uorescent speckle 
image of EGFP-shootin1 in an axonal growth cone 
(left) and time series of the indicated area at 5-s 
intervals (right). See Video 1 (available at http://
www.jcb.org/cgi/content/full/jcb.200712138/
DC1). (D) A fl uorescent speckle image of EGFP-
shootin1 expressed in an XTC fi broblast (left) and 
a time series of the indicated area at 10-s intervals 
(right). See Video 2. Yellow arrowheads denote 
a speckle of EGFP-shootin1 moving retrogradely. 
(E) A fl uorescent speckle image of mCherry- � -actin 
(red) and EGFP-shootin1 (green) coexpressed in 
an XTC fi broblast (left). See Video 3. The kymo-
graphs (right) of the peripheral region indicated 
by the rectangle in the left panel show that the 
speckles of shootin1 and those of actin retrograde 
fl ow moved at similar speeds (lines). Bar: (A) 50  μ m; 
(B – E) 5  μ m.   
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actin: 2.7  ±  0.5  μ m/min,  n  = 20;  Fig. 1 E  and Video 3), which 

suggests that shootin1 interacts with actin fi lament retrograde 

fl ow. To confi rm this, we inhibited actin polymerization near 

the leading edge of lamellipodia with cytochalasin. As previ-

ously described ( Forscher and Smith, 1988 ;  Medeiros et al., 

2006 ), treatment of XTC fi broblasts with 1  μ M cytochalasin D 

led to disruption of the peripheral regions of actin filament 

networks in lamellipodia. The boundary of the mCherry-

actin speckles moved from the leading edge of lamellipodia 

at 1.3  ±  0.3  μ m/min ( n  = 10), and the fl ow speed of actin 

speckles was reduced to 0.9  ±  0.1  μ m/min ( n  = 10;  Fig. 2 A  

and Video 4). Concurrently, the boundary of EGFP-shootin1 

speckles moved rearward at the same rate (1.2  ±  0.4  μ m/min, 

 n  = 10) and the speed of shootin1 speckles was also reduced 

to 1.0  ±  0.1  μ m/min ( n  = 10), thereby indicating that the sig-

nals of shootin1 coincide with the redistribution of actin fi la-

ment networks. Similar rearward movement of the boundary 

of EGFP-shootin1 speckles and a reduction of the speed of 

shootin1 speckles were also induced by cytochalasin D in fi lo-

podia and lamellipodia of axonal growth cones ( Fig. 2 B  and 

Video 5). We conclude from these observations that shootin1 

interacts dynamically with actin fi laments, which move retro-

gradely in axonal growth cones. 

 L1 is a single-pass transmembrane protein expressed pre-

dominantly in developing neurons and involved in axon out-

growth and guidance ( Lemmon et al., 1989 ;  Dahme et al., 1997 ; 

 Kamiguchi et al., 1998 ). L1 immunoreactivity localized in axo-

nal growth cones of hippocampal neurons, in close apposition 

in fi lopodia and lamellipodia in close apposition with actin 

fi laments ( Fig. 1 B , arrowheads). To elucidate the association of 

shootin1 with cytoskeletal dynamics in growth cones, we per-

formed fl uorescent speckle microscopy ( Waterman-Storer and 

Salmon, 1997 ;  Watanabe and Mitchison, 2002 ). We performed 

live imaging of EGFP-shootin1 expressed at a low level in cul-

tured hippocampal neurons. EGFP-shootin1 appeared as discrete 

speckle signals that serve as fi duciary marks, allowing measure-

ment of molecular movement of shootin1. Shootin1 speckles 

displayed retrograde movement in fi lopodia and lamellipodia 

of axonal growth cones ( Fig. 1 C , arrowheads; and Video 1, 

available at http://www.jcb.org/cgi/content/full/jcb.200712138/

DC1). The mean speed of shootin1 speckles was 4.5  ±  0.4  μ m/min 

(mean  ±  SD,  n  = 60), which is similar to that of actin fi lament 

retrograde fl ow in axonal growth cones ( Katoh et al., 1999 ; 

 Mallavarapu and Mitchison, 1999 ) and fi broblast lamellipodia 

( Watanabe and Mitchison, 2002 ). 

 To compare the movement of shootin1 speckles directly 

with that of actin fi lament retrograde fl ow, we coexpressed 

EGFP-shootin1 and  � -actin fused to mCherry ( Shaner et al., 

2004 ) in XTC fi broblasts, which are suitable for speckle im-

aging of actin retrograde fl ow in lamellipodia ( Watanabe and 

Mitchison, 2002 ). EGFP-shootin1 signals also showed retro-

grade movement in lamellipodia of XTC fi broblasts ( Fig. 1 D , 

arrowheads; and Video 2, available at http://www.jcb.org/cgi/

content/full/jcb.200712138/DC1). Speckles of EGFP-shootin1 

and those of mCherry-actin retrograde fl ow moved at similar 

speeds (EGFP-shootin1: 2.6  ±  0.9  μ m/min,  n  = 20; mCherry-

 Figure 2.    Effect of cytochalasin D on retro-
grade movement of EGFP-shootin1 speckles 
in XTC fi broblasts and axonal growth cones.  
(A) Time-lapse speckle images of mCherry –  
� -actin (red) and EGFP-shootin1 (green) co-
expressed in XTC fi broblasts treated with 1  μ M 
cytochalasin D at 0 min. See Video 4 (avail-
able at http://www.jcb.org/cgi/content/full/
jcb.200712138/DC1). (B) Time-lapse speckle 
images of EGFP-shootin1 in an axonal growth 
cone treated with 1  μ M cytochalasin D at 0 min. 
See Video 5. Dotted lines indicate the leading 
edge and boundary of speckles. Bars, 5  μ m.   
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 Shootin1 mediates the linkage between 
actin fi lament retrograde fl ow and L1 
in growth cones 
 To examine whether shootin1 mediates this linkage, we fi rst 

suppressed shootin1 expression in hippocampal neurons us-

ing short hairpin RNA (shRNA). Neurons expressing shRNA 

against shootin1 were immunostained by anti-shootin1 anti-

body after the observation of actin fi lament retrograde fl ow in 

growth cones (Fig. S2, A and B, available at http://www.jcb

.org/cgi/content/full/jcb.200712138/DC1). The mean shootin1 

immunoreactivity in growth cones of neurons expressing the 

shRNA ( n  = 6 growth cones) was 11% of that in growth cones 

expressing the control shRNA ( n  = 6 growth cones). The rates 

of EGFP-actin retrograde fl ow in growth cones expressing 

shootin1 shRNA and in those expressing control shRNA were 

4.0  ±  0.9  μ m/min ( n  = 60) and 4.1  ±  0.5  μ m/min ( n  = 60), 

respectively; the difference between them was not signifi cant 

(P = 0.91). In addition, there was no signifi cant difference in the 

levels and organization of actin fi laments in growth cones ex-

pressing shootin1 shRNA and those expressing control shRNA 

( n  = three independent cultures, 150 growth cones examined; 

P = 0.27; Fig. S2 C). 

 However, suppression of shootin1 by shRNA signifi cantly 

reduced the fl ow velocity of L1-Fc – coated beads ( n  = 71, 

P = 0.0000035 compared with control;  Fig. 4, A, B, and E ; and 

Videos 6 and 7, available at http://www.jcb.org/cgi/content/full/

jcb.200712138/DC1), although it did not affect the percentage 

of the beads that showed retrograde fl ow. The peak velocity of 

moving beads declined substantially from 0.8 – 1.0  μ m/min to 

0.4 – 0.6  μ m/min. In addition, expression of an RNAi refractory 

myc-shootin1 rescued the effect of shootin1 RNAi ( n  = 44; 

P = 0.85 compared with control; P = 0.00024 compared with 

RNAi;  Fig. 4, C – E ). Each L1-Fc – coated bead probably binds to 

multiple L1 molecules in growth cones, thereby monitoring the 

engagement of multiple L1 molecules with actin fi lament retro-

grade fl ow. Thus, the reduction in the fl ow velocity of L1-Fc –

 coated beads by RNAi without a change in the actin fi lament 

retrograde fl ow rate suggests that suppression of shootin1 in 

growth cones reduces the number of L1 molecules linked to 

actin fl ow. We do not rule out the alternative possibility that L1 

can bind to F-actin fl ow weakly even in the absence of shootin1. 

In such a case, shootin1 down-regulation would lead to a 

with shootin1 ( Fig. 3 A , arrowheads). We examined the physio-

logical association between shootin1 and L1 by coimmuno-

precipitation assay. When shootin1 was immunoprecipitated from 

P5 rat brain lysates, coprecipitation of L1 was detected; shootin1 

was also reciprocally coimmuno precipitated with L1 ( Fig. 3 B ). 

We also coexpressed exogenous shootin1 and L1 in HEK293T 

cells but could not detect coimmunoprecipitation between 

shootin1 and L1 (unpublished data). These results indicate that 

shootin1 associates with L1 in vivo, probably through unidenti-

fi ed neuron-specifi c proteins. 

 L1 is linked to actin fi lament retrograde fl ow 
in growth cones of hippocampal neurons 
 By tracking the movement of microbeads coated with L1-Fc, 

which binds homophilically to L1, or anti-L1 antibody, a 

previous study showed that L1 is linked to actin fi lament retro-

grade fl ow in growth cones of chick dorsal root ganglion 

neurons ( Kamiguchi and Yoshihara, 2001 ). Microbeads coated 

with L1-Fc, anti-L1 antibody, or IgG (control) were placed 

on axonal growth cones of hippocampal neurons cultured 

on coverslips coated with N-cadherin – Fc using laser optical 

tweezers. Similar to the case of dorsal root ganglion neu-

rons ( Kamiguchi and Yoshihara, 2001 ), 54% of the beads 

coated with L1-Fc showed retrograde directional movement 

( n  = 24; Fig. S1, A and B, available at http://www.jcb.org/

cgi/content/full/jcb.200712138/DC1), whereas the remaining 

46% showed Brownian motion or no movement. The mean 

velocity of the moving beads was 1.1  ±  0.10  μ m/min (mean  ±  

SEM). Similar results were obtained with beads coated with 

anti-L1 antibody ( n  = 25; Fig. S1 B). However, only 32% of 

the IgG-coated beads showed retrograde movement ( n  = 25), 

and the velocity of the moving beads (0.64  ±  0.08  μ m/min) 

was signifi cantly slower than that of beads coated with L1-Fc 

or anti-L1 antibody (P = 0.0030 compared with L1-Fc; P = 

0.00012 compared with anti-L1 antibody; Fig. S1 B). In addi-

tion, none of the L1-Fc – coated beads showed retrograde 

movement in the presence of both 1  μ M cytochalasin D and 

50  μ M blebbistatin ( n  = 23; unpublished data), which block 

actin fi lament retrograde movement ( Medeiros et al., 2006 ). 

Together, these results indicate that L1 is linked to actin fi l-

ament retrograde fl ow in the axonal growth cones of hippo-

campal neurons. 

 Figure 3.    Shootin1 associates with L1.  (A) Deconvolved 
images of an axonal growth cone stained by anti-shootin1 
and anti-L1 antibodies. (inset) An enlarged view of the 
rectangle. Arrowheads indicate shootin1 accumulation 
in a fi lopodium. Bar, 5  μ m. (B) Coimmunoprecipitation 
of shootin1 and L1 from P5 rat brain lysates. Brain ly-
sates were incubated with anti-shootin1 antibody, anti-L1 
antibody, or control IgG. The immunoprecipitates were 
analyzed by immunoblotting with anti-shootin1 and anti-
L1 antibodies.   
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of moving L1-Fc – coated beads may therefore be mainly regu-

lated by this molecule. Together, these results suggest that shootin1 

mediates the linkage between actin fi lament retrograde fl ow 

and L1 in growth cones. 

decrease in the number of L1 molecules strongly linked to 

F-actin fl ow. Concerning the percentage of the moving beads, 

 Gil et al. (2003)  found that the stationary behavior of beads 

bound to cell surface L1 is mediated by ankyrin. The percentage 

 Figure 4.    Repression of shootin1 expression 
by RNAi weakens the actin fl ow – L1 linkage.  
(A, B, and D) DIC micrographs showing retro-
grade movement of L1-Fc – coated beads on axo-
nal growth cones (two days in vitro) expressing a 
control shRNA (A), the shRNA designated against 
shootin1 (B), or the shRNA designated against 
shootin1 together with the mutant myc-shootin1 
(D), which is refractory to the shRNA (left), and 
time series of the indicated areas at 30-s intervals 
(right). See Videos 6 and 7 (available at http://
www.jcb.org/cgi/content/full/jcb.200712138/
DC1). As previously described ( Toriyama et al., 
2006 ), about half of the RNAi-induced neurons 
polarized after 48 h in vitro. Therefore, we se-
lected such neurons and performed the analysis 
on their axonal growth cones. (C) Hippocampal 
neurons transfected with shootin1 shRNA (left), or 
shootin1 shRNA together with the refractory myc-
shootin1 (right) were cultured for 48 h. The vector 
to express the shRNAs is designed to coexpress 
EGFP (green). Shootin1 and myc-shootin1 were 
immunostained by anti-shootin1 (left) and anti-myc 
(right) antibodies, respectively (red). Arrows de-
note axonal growth cones. (E) The percentage of 
beads coated with L1-Fc that showed retrograde 
fl ow on growth cones expressing a control shRNA 
( n  = 86), shootin1 shRNA ( n  = 71), or shootin1 
shRNA and the refractory myc-shootin1 ( n  = 44); 
mean velocity of moving beads as means  ±  SEM 
(***, P  <  0.0005 compared with control and 
RNAi + refractory shootin1); and the percentage 
of moving beads with indicated velocities. Bars: 
(B) 5  μ m; (C) 50  μ m.   
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  � N-shootin1 and NES- � N-shootin1 disturb 
the interaction between shootin1 and actin 
fi lament retrograde fl ow 
 Next, we designed a shootin1 deletion mutant that disturbs the 

interaction between shootin1 and actin fi lament fl ow. Because 

shootin1 does not have well-characterized functional domains 

( Toriyama et al., 2006 ), we could not design mutants based on 

domain structure.  � N-shootin1 was produced by deleting the 

N-terminal 216 amino acids from the wild type ( Fig. 5 A ). We fused 

the nuclear export signal (NES) LSLKLAGLDL ( Fukuda et al., 

1996 ) to the N terminus of  � N-shootin1, as  � N-shootin1 un-

expectedly accumulated in the neuronal nucleus. Myc-NES- � N-

shootin1 was localized in the cytoplasm of hippocampal neurons 

and accumulated in growth cones (unpublished data). When 

EGFP- � N-shootin1 or EGFP-NES- � N-shootin1 were expressed 

in XTC fi broblasts, their speckles showed retrograde movement 

similar to that of EGFP-shootin1 ( Fig. 5 B  and Video 8, available 

at http://www.jcb.org/cgi/content/full/jcb.200712138/DC1; and 

data not shown), which suggests that these mutants also interact 

with actin fi lament retrograde fl ow. Overexpression of myc-

NES- � N-shootin1 in XTC cells decreased the number of EGFP-

shootin1 speckles that displayed retrograde movement without 

affecting the retrograde fl ow of mCherry-actin speckles ( Fig. 5 C  

and Video 9). Similar results were obtained for myc- � N-shootin1 

(unpublished data). We also produced  � C-shootin1, in which the 

C-terminal 79 amino acids of the wild type were deleted ( Fig. 5 A ). 

In contrast to  � N-shootin1, EGFP- � C-shootin1 did not interact 

with actin retrograde fi lament fl ow in XTC cells ( Fig. 5 A ), and 

myc- � C-shootin1 did not accumulate in neuronal growth cones 

(not depicted). In addition, overexpression of myc-shootin1 or 

myc- � C-shootin1 in XTC cells did not decrease substantially 

the number of EGFP-shootin1 speckles that displayed retrograde 

movement ( Fig. 5, D and E ). These results suggest that  � N-

shootin1 and NES- � N-shootin1 disturb the interaction between 

shootin1 and actin fi lament retrograde fl ow. 

 Myc-NES- � N-shootin1 was overexpressed in hippocampal 

neurons to disturb this interaction. The rates of EGFP-actin retro-

grade fl ow in growth cones overexpressing myc-NES- � N-

shootin1 and in those overexpressing the control protein myc-GST 

were 3.6  ±  0.4  μ m/min ( n  = 60) and 3.9  ±  0.4  μ m/min ( n  = 60), re-

spectively (Fig. S2, D and E); the difference between them was 

not signifi cant (P = 0.12). In addition, there was no signifi cant dif-

ference between the levels and organization of actin fi laments in 

growth cones expressing these proteins ( n  = three independent 

cultures, 150 growth cones examined; P = 0.48; Fig. S2 F). How-

ever, overexpression of myc-NES- � N-shootin1 decreased the 

percentage of L1-Fc – coated beads that showed retrograde fl ow on 

axonal growth cones and signifi cantly reduced the velocity of the 

retrograde fl ow ( n  = 41, P = 0.011 compared with myc-GST;  Fig. 6, 

A – C ). The peak velocity of moving beads declined substantially 

from 0.8 – 1.0  μ m/min to 0.4 – 0.6  μ m/min, which suggests that dis-

turbing the shootin1-actin fl ow interaction also weakens the actin 

fl ow – L1 linkage. These results suggest that disturbing the inter-

action between shootin1 and actin fi lament fl ow by NES- � N-

shootin1 also impairs the actin fl ow – L1 linkage, and strengthen 

the notion that shootin1 mediates the linkage between actin fi la-

ment retrograde fl ow and L1 in growth cones. 

 Figure 5.    NES- � N-shootin1 disturbs the linkage between shootin1 and 
actin fi lament retrograde fl ow.  (A) Schematic representation of the wild-
type (WT) and  � N- and  � C-shootin1, and their abilities to interact with 
actin fi lament fl ow and inhibit the interaction between EGFP-shootin1 
and actin fi lament fl ow. Numbers indicate amino acid numbers. (B and C) 
Fluorescent speckle images of EGFP- � N-shootin1 (B, left), and EGFP-
shootin1 and mCherry-actin coexpressed in the same XTC fi broblast 
(C, left), with a time series of the indicated area of the cells at 10-s intervals 
(right). Myc-NES- � N-shootin1 was also overexpressed in the cell in C 
under the  � -actin promoter. See Videos 8 and 9 (available at http://www
.jcb.org/cgi/content/full/jcb.200712138/DC1). (D and E) Fluo-
rescent speckle images of EGFP-shootin1 (left) in XTC fi broblasts and 
a time series of the indicated area of the cells at 10-s intervals (right). 
Myc-shootin1 (D) and myc- � C-shootin1 (E) were also overexpressed in 
the cells under the  � -actin promoter. Arrowheads indicate speckles of 
EGFP- � N-shootin1 (B), mCherry-actin (C), and EGFP-shootin1 (D and E) 
moving retrogradely. Bar, 5  μ m.   
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veloped longer axons on L1-Fc than on polylysine ( Fig. 7, A 

and B ), which suggests that homophilic binding between L1 

in growth cones and L1-Fc on culture plates is important for 

axon outgrowth. Suppression of shootin1 expression by RNAi 

resulted in a signifi cant decrease in axonal length on L1-Fc 

( n  = three independent cultures, 160 neurons examined; P = 0.0086 

compared with control;  Fig. 7 B ), whereas shootin1 RNAi on 

polylysine caused only a marginal reduction of axonal length 

( n  = three independent cultures, 174 neurons examined; P = 0.22 

compared with control). The decrease in axonal length by RNAi 

was signifi cantly smaller on polylysine than on L1-Fc (P = 0.032; 

 Fig. 7 C ). This is consistent with the observation that shootin1 

RNAi reduced the velocity of retrograde movement of L1-Fc –

 coated beads on axonal growth cones ( Fig. 4 ) but did not affect 

the movement of polylysine-coated beads ( n  = 49; P = 0.58 com-

pared with control;  Fig. 8, A – C ). The inhibition of axon elonga-

tion on L1-Fc by RNAi was rescued by expression of the 

RNAi refractory myc-shootin1 ( n  = three independent cultures, 

 To examine whether NES- � N-shootin1 retains the ability 

to associate with L1, we compared the fl ow speeds of EGFP-

NES- � N-shootin1 ( Fig. 6 D ) and EGFP-shootin1 ( Fig. 1 C ) in 

growth cones: they were 4.2  ±  0.5  μ m/min (mean  ±  SD,  n  = 60) 

and 4.5  ±  0.4  μ m/min (mean  ±  SD,  n  = 60), respectively, and not 

signifi cantly different (P = 0.37). Together with the fi nding that 

overexpression of myc-NES- � N-shootin1 reduced the velocity 

of the L1-Fc-coated beads, these observations suggested that 

 � N-shootin1 has a reduced ability to associate with L1. 

 Impairing the actin fl ow – L1 linkage 
by shootin1 RNAi inhibits L1-dependent 
axon outgrowth 
 Next, we analyzed the effects of impairing the actin fl ow – L1 

linkage on axon outgrowth. Hippocampal neurons were trans-

fected with shRNA against shootin1 and cultured for 48 h on 

coverslips coated with L1-Fc or a control substrate, polylysine. 

As has been described ( Oliva et al., 2003 ), control neurons de-

 Figure 6.    Disturbing the linkage between shootin1 
and actin fi lament retrograde fl ow by NES- � N-
shootin1 weakens the actin fl ow – L1 linkage.  (A and B) 
DIC micrographs showing retrograde movement of 
L1-Fc – coated beads on axonal growth cones (two 
days in vitro) overexpressing myc-GST (A, left) or 
myc-NES- � N-shootin1 (B, left), and a time series of 
the indicated areas at 30-s intervals (A and B, right). 
(C) The percentage of beads coated with L1-Fc that 
showed retrograde fl ow on growth cones expressing 
myc-GST ( n  = 41) or myc-NES- � N-shootin1 ( n  = 41), 
mean velocity of moving beads as means  ±  SEM 
(**, P  <  0.02), and the percentage of moving beads 
with indicated velocities. (D) A fl uorescent speckle im-
age of EGFP-NES- � N-shootin1 in an axonal growth 
cone (left) and a time series of the indicated area at 
5-s intervals (right). Arrowheads indicate a speckle 
of EGFP-NES- � N-shootin1 moving retrogradely. Bars, 
5  μ m.   
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on L1-Fc. Consistent with the notion that homophilic binding be-

tween L1 in growth cones and L1-Fc on culture plates is impor-

tant for axon outgrowth, neurons transfected with control shRNA 

and cultured on L1-Fc developed longer axons than those trans-

fected with L1 shRNA and cultured on L1-Fc ( Fig. 7, A and B ). 

270 neurons examined; P = 0.60 compared with control; P = 

0.00068 compared with RNAi; Fig. S3 A, available at http://

www.jcb.org/cgi/content/full/jcb.200712138/DC1). 

 To further confi rm that these RNAi effects are L1 dependent, 

neurons were cotransfected with shRNA against L1 and cultured 

 Figure 7.    Impairing the actin fl ow – L1 linkage by 
RNAi inhibits L1-dependent axon outgrowth.  Hippo-
campal neurons were transfected with shRNA against 
shootin1 or with control shRNA, and cultured on L1-
Fc –  or polylysine-coated coverslips for 48 h. Some 
were also cotransfected with shRNA against L1. 
Neuronal morphology was visualized by EGFP fl uo-
rescence. (A) Vectors expressing shRNAs coexpress 
EGFP. (B) Length of axons or the longest neurites. 
(C) The percentage reduction in axons by shootin1 
RNAi (mean  ±  SEM; *, P  <  0.05, ***, P  <  0.01; 
 n  = 3 independent cultures; 512 neurons were exam-
ined). Bar, 50  μ m.   

 Figure 8.    Shootin1 RNAi does not affect the 
movement of polylysine-coated beads on axonal 
growth cones.  (A and B) DIC micrographs show-
ing retrograde movement of polylysine-coated 
beads on axonal growth cones (two days in vitro) 
expressing a control shRNA (A, left) or a shRNA 
against shootin1 (B, left), and a time series of the 
indicated areas at 30-s intervals (A and B, right). 
(C) The percentage of polylysine-coated beads 
that showed retrograde fl ow on axonal growth 
cones expressing the control ( n  = 46) or shootin1 
shRNA ( n  = 49), mean velocity of moving beads 
as means  ±  SEM, and the percentage of moving 
beads with indicated velocities. Bar, 5  μ m.   



825 SHOOTIN1 AS A CLUTCH MOLECULE IN GROWTH CONES  •  Shimada et al.

signifi cantly on L1-Fc ( n  = three independent cultures, 623 

neurons examined; P = 0.00083 compared with GST;  Fig. 9, 

A and B ). We noted that cell bodies of some neurons over-

expressing myc-NES- � N-shootin1 showed a rather fl attened 

morphology (unpublished data). Overexpressing myc-NES-

 � N-shootin1 in neurons cultured on polylysine or in neurons 

expressing L1 shRNA also inhibited axon outgrowth (for neu-

rons on polylysine:  n  = three independent cultures, 565 neurons 

examined, P = 0.0062 compared with GST; for neurons express-

ing L1 shRNA:  n  = three independent cultures, 182 neurons ex-

amined, P = 0.00088 compared with GST;  Fig. 9, A and B ); 

however, the effects were signifi cantly weaker than those in 

neurons cultured on L1-Fc without L1 RNAi (for neurons on 

polylysine: P = 0.0014; for neurons expressing L1 shRNA: P = 

0.034;  Fig. 9 C ). Thus, although these data suggest an additional 

L1-independent effect of myc-NES- � N-shootin1, it also inhib-

ited L1-dependent axon outgrowth. 

 Enhancing the actin fl ow – L1 linkage 
by shootin1 overexpression promotes 
L1-dependent neurite outgrowth 
 Finally, we examined whether increased levels of shootin1 alter 

the linkage between actin fl ow and L1. To do so, because shootin1 

accumulates strongly in axonal growth cones ( Fig. 1 A , arrows; 

 Toriyama et al., 2006 ), we monitored the movement of actin 

retrograde fl ow and L1-Fc – coated beads on minor process 

growth cones, where shootin1 levels are low ( Fig. 1 A , arrow-

heads). The rates of EGFP-actin retrograde fl ow in growth cones 

overexpressing myc-shootin1 and in those overexpressing myc-

GST were 4.6  ±  0.8  μ m/min ( n  = 60) and 4.3  ±  0.5  μ m/min 

( n  = 60), respectively (Fig. S4, A and B, available at http://www

.jcb.org/cgi/content/full/jcb.200712138/DC1); the difference 

between them was not signifi cant (P = 0.25). In addition, there 

Shootin1 RNAi reduced axonal length of neurons transfected 

with L1 shRNA and cultured on L1-Fc ( n  = three independent 

cultures, 178 neurons examined; P = 0.0022 compared with 

control;  Fig. 7, A and B ), though to a signifi cantly lesser de-

gree than the reduction seen in neurons without L1 RNAi 

(P = 0.00063;  Fig. 7 C ), thereby confi rming the L1-dependency 

of the RNAi effects. We previously found that shootin1-

induced axon formation was inhibited by the PI-3 kinase inhibitor 

LY294002 ( Toriyama et al., 2006 ). However, it was not fully 

suppressed, which suggests the existence of an additional PI-3 

kinase – independent mechanism for shootin1-induced axon out-

growth. Therefore, we also examined whether the effects of 

shootin1 RNAi on L1-dependent axon outgrowth are affected 

by PI 3-kinase activity. In the presence of 20  μ M LY294002, 

shootin1 RNAi resulted in a signifi cant decrease in axon out-

growth on L1-Fc ( n  = three independent cultures, 226 neurons 

examined; P = 0.00015 compared with control) but not on poly-

lysine ( n  = three independent cultures, 213 neurons examined; 

P = 0.52 compared with control; Fig. S3 B). The decrease in 

axon outgrowth by shootin1 RNAi on L1-Fc in the presence or 

absence of LY294002 was similar (P = 0.73; Fig. S3C), thereby 

suggesting that the effects of shootin1 RNAi on L1-dependent 

axon outgrowth are not infl uenced by PI 3-kinase activity. 

Together, these results suggest that impairing the actin fl ow – L1 

linkage by shootin1 RNAi inhibits L1-dependent axon outgrowth. 

 Impairing the actin fl ow – L1 linkage by 
NES- � N-shootin1 inhibits L1-dependent 
axon outgrowth 
 Next, we examined the effects of disturbing the actin fl ow –

 shootin1 linkage by NES- � N-shootin1 on axon outgrowth. As in 

the case of shootin1 RNAi, overexpression of myc-NES- � N-

shootin1 in hippocampal neurons also reduced axon outgrowth 

 Figure 9.    Impairing the actin fl ow – L1 linkage by 
myc-NES- � N-shootin1 inhibits L1-dependent axon 
outgrowth.  Neurons overexpressing myc-NES- � N-
shootin1 or myc-GST were cultured on L1-Fc –  or 
polylysine-coated coverslips for 48 h and stained 
by anti-myc antibody (A). Some were cotransfected 
with shRNA against L1. (B) The lengths of axons or 
the longest neuritis. (C) The percentage reduction in 
axons by expressing myc-NES- � N-shootin1 (mean  ±  
SEM; *, P  <  0.05, ***, P  <  0.01;  n  = 3 indepen-
dent cultures, 1,370 neurons were examined). Bar, 
50  μ m.   
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retrograde fl ow and L1 in growth cones. Concurrently, myc-

shootin1 overexpression in hippocampal neurons promoted 

outgrowth of total minor processes on L1-Fc ( n  = four indepen-

dent cultures, 276 neurons examined; P = 0.039 compared with 

GST;  Fig. 10, D and E ) but not in neurons expressing shRNA 

against L1 ( n  = four independent cultures, 278 neurons exam-

ined; P = 0.47 compared with GST;  Fig. 10, D – F ). We also ex-

amined whether the effects of shootin1 overexpression on 

L1-dependent neurite outgrowth are affected by PI 3-kinase ac-

tivity. In the presence of LY294002, shootin1 overexpression re-

sulted in a signifi cant increase in axonal length on L1-Fc ( n  = 3 

was no signifi cant difference between the levels and organiza-

tion of actin fi laments in growth cones expressing these proteins 

( n  = three independent cultures, 150 growth cones examined; 

P = 0.42; Fig. S4 C). 

 In contrast to shootin1 RNAi and myc-NES- � N-shootin1 

overexpression, myc-shootin1 overexpression signifi cantly in-

creased the velocity of those beads that showed retrograde move-

ment on minor process growth cones ( n  = 35, P = 0.045 compared 

with GST;  Fig. 10, A – C ), which suggests that it enhanced the 

actin fl ow – L1 linkage. These results further strengthen the no-

tion that shootin1 mediates the linkage between actin fi lament 

 Figure 10.    Enhancing the actin fl ow – L1 linkage by shootin1 over-
expression promotes L1-dependent neurite outgrowth.  (A and B) DIC 
micrographs showing retrograde movement of L1-Fc – coated beads 
on minor process growth cones (one day in vitro) overexpressing 
myc-GST (A, left) or myc-shootin1 (B, left), and a time series of the 
indicated areas at 30-s intervals (A and B, right). (C) The percentage 
of beads coated with L1-Fc that showed retrograde fl ow on minor 
process growth cones expressing myc-GST ( n  = 28) or myc-shootin1 
( n  = 35), mean velocity of moving beads as means  ±  SEM (*, P  <  
0.05), and the percentage of moving beads with indicated veloci-
ties. (D – F) Neurons overexpressing myc-shootin1 or myc-GST were 
cultured on L1-Fc – coated coverslips for 24 h (D). They were also co-
transfected with control shRNA or shRNA against L1. (E) The lengths 
of total minor processes (lengths of all neurites except the longest 
one) relative to that of the control neurons expressing myc-GST and 
control shRNA. (F) The percentage increase in total minor processes 
upon expression of myc-shootin1 (mean  ±  SEM; *, P  <  0.05;  n  = 4 
independent cultures, 554 neurons were examined). Bars: (B), 5  μ m; 
(D) 50  μ m.   
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phorylated forms of shootin1 in cultured hippocampal neurons 

(unpublished data). It will be intriguing to learn whether 

phosphorylation of shootin1 is involved in modulation of actin 

fl ow – CAM linkage, which has been implicated in regulation of 

axon outgrowth and guidance ( Suter et al., 1998 ;  Suter and 

Forscher, 2000 ). Detailed molecular mechanisms involved in 

actin fi lament – shootin1 linkage and shootin1-L1 linkage remain 

important issues for future analysis. 

 In conclusion, this study has shown that shootin1 medi-

ates the linkage between actin fi lament retrograde fl ow and L1 

in growth cones. Formation of this linkage together with mul-

tiple mechanisms involving actin polymerization near the lead-

ing edge ( Mallavarapu and Mitchison, 1999 ), microtubule 

dynamics ( Tanaka and Sabry, 1995 ;  Dent and Gertler, 2003 ), 

axonal transport ( Brown, 2003 ), and plasma membrane expan-

sion ( Lockerbie et al., 1991 ) may coordinately contribute to 

axon outgrowth. 

 Materials and methods 
 Cultures and transfection 
 Hippocampal neurons prepared from embryonic day 18 rat embryos were 
cultured on coverslips coated with L1-Fc, N-cadherin – Fc, or polylysine as 
described previously ( Inagaki et al., 2001 ). They were transfected with 
vectors using Nucleofector (Amaxa) before plating. XTC cells were cultured 
as described previously ( Higashida et al., 2004 ) and transfected with vec-
tors using SuperFect (QIAGEN). Coverslips coated with polylysine, L1-Fc, 
or N-cadherin – Fc were prepared as described previously ( Inagaki et al., 
2001 ;  Kamiguchi and Yoshihara, 2001 ). 

 DNA constructs 
 cDNA fragments of the shootin1 deletion mutants  � N-shootin1 and  � C-
shootin1 were amplifi ed by PCR and subcloned into pCAGGS-myc ( Niwa 
et al., 1991 ) or pEGFP (Clontech Laboratories, Inc.) vectors. pCAGGS-myc 
was used to overexpress proteins under the  � -actin promoter as described 
previously ( Toriyama et al., 2006 ). Unexpectedly, myc- � N-shootin1 prefer-
entially accumulated in the neuronal nucleus, whereas it was mainly local-
ized in the cytoplasm of XTC cells. To express myc- � N-shootin1 in the 
cytoplasm of neurons, we fused the NES LSLKLAGLDL ( Fukuda et al., 1996 ) 
to the N terminus of  � N-shootin1. The RNAi refractory shootin1 mutant 
was generated by using QuikChange II site-directed mutagenesis kit (Strat-
agene). Four silent mutations (underlined) in 5 � -TGAAGCTGTTAA  A  A A-
 GT T A GA-3 �  were induced in the target sequence of shootin1 shRNA 
( Toriyama et al., 2006 ). 

 RNAi 
 Expression of shootin1 was suppressed using shRNA designated against 
shootin1 as described previously ( Toriyama et al., 2006 ). The original vec-
tor to express shRNAs was designed to coexpress EGFP. We also con-
structed a vector that does not coexpress EGFP by deleting the coding 
sequence of EGFP. For vector-based RNAi of L1, we also used the BLOCK-
iT Pol II miR RNAi Expression Vector kit (Invitrogen). The targeting mRNA 
sequence 5 � -ATCATTCAGACTACATCTGCA-3 �  corresponds to nucleotides 
605 – 625 in the coding region of rat L1, whereas the control vector pcDNA 
6.2-GW/EmGFP-miR-neg encodes an mRNA not to target any known ver-
tebrate gene. To ensure a high-level expression of shRNA before neurite 
elongation, hippocampal neurons prepared from embryonic day 18 rat 
embryo and transfected with the expression vector shRNA were plated on 
uncoated polystyrene plates. After a 20-h incubation to induce shRNA 
expression, the cells were collected and cultured on coverslips coated with 
polylysine, L1-Fc, or N-cadherin – Fc. Reduction of shootin1 and L1 levels 
in neurons was confi rmed immunocytochemically using anti-shoootin1 
( Toriyama et al., 2006 ) and anti-L1 antibodies (Fig. S5, available at 
http://www.jcb.org/cgi/content/full/jcb.200712138/DC1). 

 Immunocytochemistry and immunoprecipitation 
 Immunocytochemistry and immunoprecipitation were performed as de-
scribed previously ( Toriyama et al., 2006 ). Secondary antibodies and phal-
loidin were conjugated with Alexa 488 (Invitrogen), Alexa 594 (Invitrogen), 

independent cultures, 244 neurons examined; P = 0.050 com-

pared with control; Fig. S4 D). A similar increase was ob-

served in the absence of LY294002 (P = 0.84; Fig. S4 D), which 

indicates that the effects of shootin1 overexpression on L1-

dependent axon outgrowth are not affected by PI 3-kinase activ-

ity, as in the case of shootin1 RNAi. Thus, we considered that 

L1-dependent axon outgrowth induced by shootin1 was medi-

ated mainly through a PI 3-kinase – independent mechanism. 

Together, these results suggest that enhancing the actin fl ow – L1 

linkage by shootin1 overexpression promotes L1-dependent 

neurite outgrowth. 

 Discussion 
 Linkage between actin fi lament retrograde fl ow and CAMs in 

growth cones is thought to transmit the force of actin fi lament 

movement to extracellular substrates via CAMs, thereby pro-

viding mechanical tension for axonal outgrowth and guidance. 

Actin fl ow – CAM linkage has also been found to produce me-

chanical tension in nonneuronal cells ( Felsenfeld et al., 1996 ) 

and has been implicated in cell migration ( Felsenfeld et al., 

1996 ) and the relocation of cell – cell contacts ( Kametani and 

Takeichi, 2007 ). Concerning the actin fl ow – CAM linkage in 

growth cones, a critical question that remains to be addressed is 

the molecular basis for the linkage. It is also unknown whether 

coupling of this linkage induces axon outgrowth. Here, we have 

shown that shootin1 interacts with both actin fi lament retro-

grade fl ow and L1 in axonal growth cones and provided evi-

dence that shootin1 mediates the linkage between them. When 

this linkage was impaired by shootin1 RNAi or NES- � N-

shootin1, axon outgrowth was inhibited in an L1-dependent 

manner. However, enhancing the linkage by shootin1 over-

expression promoted L1-dependent neurite outgrowth. We pre-

viously found that shoootin1 overexpression induced formation 

of multiple axons on coverslips coated with polylysine and lam-

inin ( Toriyama et al., 2006 ). As laminin binds to multiple CAMs, 

including L1 and its chicken relative NgCAM ( Grumet et al., 

1993 ;  Brummendorf and Rathjen, 1996 ;  Hall et al., 1997 ), we 

considered the fact that the coverslips coated with polylysine 

and laminin could monitor L1-dependent neurite outgrowth by 

shootin1. Collectively, the present results suggest that shootin1 

is a key molecule involved in the actin fl ow – CAM linkage for 

axon outgrowth. 

 We do not rule out the involvement of other molecules in 

the linkage between actin fi lament fl ow and L1, or the possibil-

ity that shootin1 may couple actin fl ow to other CAMs. Un-

known molecules may mediate the interaction between shootin1 

and L1, as we could not obtain evidence that shootin1 directly 

interacts with L1. At present, it is also unknown whether 

shootin1 interacts directly with actin fi laments or through asso-

ciation with other molecules. The velocity of L1-Fc – coated 

microbeads on growth cones was slower than those of shootin1 

and actin fi lament retrograde fl ows. Therefore, the couplings 

between shootin1 and L1 may incorporate  “ clutchlike ”  slip-

pages as previously proposed ( Mitchison and Kirschner, 1988 ), 

or this may simply be refl ective of the fact that the retrograde 

fl ow has to move a heavy bead. Recently, we detected phos-
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School of Medicine, Miami, FL). Antibodies against myc and L1 were ob-
tained from MBL International and Santa Cruz Biotechnology Inc., respec-
tively. Blebbistatin, cytochalasin D, and poly- D -lysine were obtained from 
BIOMOL International, L.P., EMD, and Sigma-Aldrich, respectively. Rhoda-
mine phalloidin and Alexa 594 phalloidin were obtained from Invitrogen. 
mCherry ( Shaner et al., 2004 ) was provided by R. Tsien (University of Cali-
fornia, San Diego, San Diego, CA). 

 Online supplemental material 
 Fig. S1 shows linkage between L1 and actin fi lament retrograde fl ow in 
axonal growth cones. Fig. S2 shows the effects of shootin1 RNAi and NES-
 � N-shootin1 overexpression on actin fi lament retrograde fl ow in axonal 
growth cones. Fig. S3 shows the effects of RNAi refractory shootin1 and 
LY294002 on the shootin1 RNAi – induced inhibition of axon outgrowth on 
L1-Fc. Fig. S4 shows the effects of shootin1 overexpression on actin fi la-
ment retrograde fl ow together with the effects of LY294002 on the shootin1-
induced promotion of L1-dependent neurite outgrowth. Fig. S5 shows 
repression of L1 by RNAi. Videos 1 and 5 are time-lapse videos of EGFP-
shootin1 speckles in the growth cone of hippocampal neurons as described 
in  Fig. 1 C  and  Fig. 2 B . Video 2 is a time-lapse video of EGFP-shootin1 
speckles in an XTC cell as described in  Fig. 1 D . Video 3 and 4 are time-
lapse videos of EGFP-shootin1 and mCherry-actin speckles in XTC cells as 
described in  Fig. 1 E  and  Fig. 2 A . Video 6 and 7 are time-lapse videos of 
L1-Fc – coated beads on the axonal growth cone of hippocampal neuron as 
described in  Fig. 4 (A and B) . Video 8 is a time-lapse video of EGFP- � N-
shootin1 speckles in an XTC cell as described in  Fig. 5 B . Video 9 is a 
time-lapse video of EGFP-shootin1 and mCherry-actin speckles in the same 
XTC cell as described in  Fig. 5 C . Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200712138/DC1. 
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 Microscopy 
 Fluorescence and phase-contrast images of fi xed neurons were acquired at 
room temperature using a fl uorescence microscope (Axioplan2; Carl Zeiss, 
Inc.) equipped with a plan-Neofl uar 40 ×  0.75 NA or 20 ×  0.50 NA objec-
tive (Carl Zeiss, Inc.), a charge-coupled device camera (AxioCam MRm; 
Carl Zeiss, Inc.), and imaging software (Axiovision 3; Carl Zeiss, Inc.). 
The original images of shootin1 immunoreactivity and Alexa 594 phalloi-
din staining were quantifi ed using Multi Gauge software (Fujifi lm). Adjust-
ments of image size, brightness, and contrast were performed on Photoshop 
Element 5.0 (Adobe). For the deconvolution analysis shown in  Fig. 1 B  and 
 Fig. 3 A , z series of focal planes were digitally imaged at room tempera-
ture using a fl uorescence microscope (Axiovert S100; Carl Zeiss, Inc.) 
equipped with a plan-Apochromat 63 ×  oil 1.40 NA objective (Carl Zeiss, 
Inc.) and CSNAP and Deltavision2 (Applied Precision, LLC) software, and 
deconvolved with the Deltavision constrained iterative algorithm to gener-
ate high-resolution images. 

 Fluorescent speckle imaging 
 Fluorescent speckle imaging was performed as described previously 
( Watanabe and Mitchison, 2002 ) using EGFP- or mCherry-tagged pro-
teins, and cells were cultured in Leibovitz ’ s L-15 medium (Invitrogen). 
Speckle images were acquired at room temperature (XTC cells) or 37 ° C 
(neurons) using a fl uorescent microscope (BX52; Olympus) equipped with 
a cooled charge-coupled device (CCD) camera (Cool SNAP HQ; Roper 
Scientifi c), or an inverted microscope (IX71; Olympus) equipped with a 
cooled CCD camera (UIC-QE; MDS Analytical Technologies), using in both 
cases a plan-Apochromat 100 ×  oil 1.40 NA objective (Olympus) and im-
aging software (MetaMorph; MDS Analytical Technologies). Adjustments 
of image size, brightness, and contrast were performed on Photoshop Ele-
ment 5.0. Speckle speed was measured by the following procedure, using 
Multi Gauge software. First, a pair of moving speckles that kept their rela-
tive position constant for at least 20 s during each experiment (5 frames) 
were identifi ed. We then manually overlaid 300-nm-diameter circle scales 
on one of these speckles, and the translocation of the circles between the 
fi rst and fi fth frames was measured. 

 Bead tracking 
 1- � m-diameter polystyrene beads (Polysciences, Inc.) were coated with 
L1-Fc or anti-L1 antibody ( Kamiguchi and Yoshihara, 2001 ) as described 
previously ( Nishimura et al., 2003 ). To prepare polylysine-coated beads, 
a 1% (wt/vol) aqueous suspension of 1- μ m-diameter polystyrene beads 
was mixed with an equal volume of 20 mg/ml carbodiimide in sodium 
phosphate buffer for 4 h at room temperature. After washes, the beads 
were incubated with 1 mg/ml polylysine in PBS, pH 7.4, overnight 
at room temperature. The beads were blocked with 7.5 mg/ml BSA in 
50 mM Tris-HCl buffer, pH 8.0, and stored in PBS at 4 ° C. As described 
previously ( Kamiguchi and Yoshihara, 2001 ), we used the laser optical 
trap system to place beads on growth cones cultured in Leibovitz ’ s L-15 
medium (Invitrogen). 

 As vectors expressing shRNAs are designed to coexpress EGFP, we 
used the EGFP fl uorescence to identify growth cones expressing shRNA 
during bead tracking experiments. Reduction of shootin1 and L1 levels and 
expression of myc-tagged proteins in neurons were confi rmed immunocyto-
chemically after the experiments. Differential interference contrast (DIC) im-
ages of beads were acquired at room temperature using a fl uorescence 
microscope (Eclipse TE2000-U; Nikon) equipped with a plan-Apochromat 
60 ×  WI 1.20 NA objective (Nikon) and a digital video camera (DCR-
SR100; Sony). Videos were acquired directly by the video camera without 
software. Extraction of still images from videos was performed by Premier 6 
(Adobe). Adjustments of image size, brightness, and contrast were per-
formed on Photoshop Element 5.0. Bead velocity was quantifi ed using 
Multi Gauge software. We manually overlaid 1- μ m-diameter circle scales 
on the images of microbeads and then measured translocation of the scales 
during a 2-min observation period (121 frames). 

 Statistics 
 In the statistical analysis, signifi cance was determined by the unpaired 
Student ’ s  t  test. 

 Materials 
 Preparation of anti-shootin1 antibody has been described previously 
( Toriyama et al., 2006 ). Antibody against the L1 cytoplasmic domain 
( Schaefer et al., 1999 ) was provided by V. Lemmon (University of Miami 
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