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ABSTRACT: A new molecular descriptor, nConf20, based on chemical
connectivity, is presented which captures the accessible conformational space
of a molecule. Currently the best available two-dimensional descriptors for
quantifying the flexibility of a particular molecule are the rotatable bond
count (RBC) and the Kier flexibility index. We present a descriptor which
captures this information by sampling the conformational space of a
molecule using the RDKit conformer generator. Flexibility has previously
been identified as a key feature in determining whether a molecule is likely to
crystallize or not. For this application, nConf20 significantly outperforms
previously reported single-variable classifiers and also assists rule-based
analysis of black-box machine learning classification algorithms.

■ INTRODUCTION

One of the key steps in approaching a cheminformatics
problem is the definition of the “chemical space” used to
describe the problem.1 The set of numerical descriptors chosen
to capture the characteristics of molecules defines the basis
vectors of this space, with n linearly independent descriptors
giving rise to an n-dimensional space, in which the coordinates
of a particular molecule are given by the values of the
descriptors for that molecule. Careful selection of these
descriptors provides a useful chemical space for data visual-
ization, similarity measures, and classification or clustering
algorithms.
Descriptors can be broadly categorized according to their

“dimensionality”, based on the type of molecular representation
used to calculate them.2 Zero-dimensional descriptors can be
calculated directly from the molecular formula, e.g. molecular
weight, while one-dimensional descriptors are bulk properties
of the molecule, e.g. calculated solubility.3 Two-dimensional
descriptors, such as connectivity indices and properties of the
molecular bond graph, are calculated from a traditional two-
dimensional representation of the molecule. Three-dimensional
descriptors are computed from a known conformation of a
molecule and capture features of a molecule such as shape,
distribution of charges, and radius of gyration.4

It has previously been shown that increased flexibility can
reduce the crystallization tendency of a molecule5 and that
rotatable bond count (RBC), a 2D descriptor based on a set of
SMARTS pattern matching rules, was an important feature of
molecules for the determination of how easily a molecular
material can be crystallized.6 This may be due to the reduced
effective concentration of the “correct” crystallizing conformer
in solution for a molecule with more rotatable bonds.5

However, the exact mechanisms of nucleation and growth of

crystals and the influence of molecular conformation are still
not fully understood.7,8

RBC is quite a crude approximation of molecular flexibility;
Kier devised a way of encoding this attribute based on the
chemical graph, but this uses descriptors which are also based
solely on two-dimensional information.9

Other studies of conformational flexibility have been
computationally expensive because they attempt to evaluate
the entire potential energy hypersurface,10,11 which is
impractical for a large number of molecules. They also either
do not yield a single value which can be correlated with a
physical property of the molecule or are only appropriate for
use with a specific subset of chemical space, such as alkanes.12,13

A more direct measure could be obtained by designing a
descriptor based on a sampling of the energetically accessible
conformers of a given molecule. This approach is relatively
quick to compute as it only involves finding the minima of the
potential energy surface, and it falls into the 2D category of
descriptors outlined above since its value depends only on the
chemical connectivity of a molecule but will capture 3D
information about the number of low energy conformers of that
molecule. This eliminates the computation of the barriers to
interconversion and assumes that all conformers are energeti-
cally accessible on the time scales of crystallization.
Implementation of this new “3D from 2D” descriptor and its
application to the problem of predicting if a molecule will be
observed to crystallize is described herein.

■ METHODS

Conformer Generation. Molecules were provided to the
conformer-generation step as SMILES strings to ensure no
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residual conformational information was retained, and explicit
hydrogen atoms were added to the skeleton. RDKit
cheminformatics toolkit14 functions were used to generate 50
random molecular conformations, while retaining the starting
stereochemistry. RDKit was chosen over other open-source
conformer generation tools like BALLOON, CONFAB, and
FROG2 and commercial platforms such as MOE, due to speed
and the ability to generate conformers which are structurally
similar to experimentally determined structures.15 A knowl-
edge-based conformer generator which uses experimental
observations of torsional angle distributions is available in the
latest release of the Cambridge Structural Database (CSD)
tools.16 These alternatives have not been explored in this work
but could potentially be used to sample conformational space in
a similar manner to RDKit.
Each randomly generated conformer was optimized using the

Merck Molecular Force Field (MMFF94).17 MMFF94 is a
general purpose parametrized force field comprised of several
well-defined contributions to the total potential energy of a
molecule, including bond stretching energy, bond torsion, and
electrostatic and van der Waals interaction energies. The force
field parametrization is determined by training on a large set of
computational data derived from ab initio calculations on a
diverse range of organic and bioorganic structures and has been
implemented within the RDKit.18 Some other force fields
suitable for organic molecules include Amber, Gaff, and
CHARMM.19 The Universal Force Field (UFF) can be used
to compute energies and gradients of molecules containing
almost any element and may therefore prove useful if extending
this work to metal−organic complexes or inorganic molecular
materials. MMFF94 has been shown to reproduce gas-phase
conformer energies more accurately than these other widely
available force fields20 and was chosen for its significantly
shorter computational time compared to a more accurate
molecular dynamics calculation including solvent effects.
If the optimization did not converge to a stable minimum the

conformer was removed. The force field is then used to
calculate the energy of each conformer; its energy relative to
the lowest-energy conformer found is stored. The lowest
energy conformer is retained, and for each other conformer the
alignment of all permutations of matching atom orders with the
other conformers is checked, to account for symmetry. Any
duplicate conformers with a heavy atom root-mean-square
(RMS) distance of less than 1.0 Å to any other conformer are
removed.
For the small minority (0.05%) of molecules where the

MMFF optimization failed, the molecule was removed from the
study.
The entire calculation of the energies takes around 0.2 s for

molecules with fewer than two rotatable bonds, 1−2 s for
molecules with 4 or 5 rotatable bonds, and up to 5 s for
molecules with 8 rotatable bonds.
Predictive Model. CSD molecules were obtained from

crystal structures in the 2016 CSD release (version 5.37), while
lists of commercially available molecules were obtained from
ZINC15 downloaded in May 2016. 177 molecular descriptors
were calculated using the RDKit cheminformatics toolkit,14

version Q1 2016. Machine learning algorithms and perform-
ance metrics were implemented using version 17.0 of the scikit-
learn package.21 The descriptor definitions and an example of
the method used to train a model and output a predictive
accuracy from a set of training and test molecules with known
labels are given in the Supporting Information of Wicker and

Cooper (see http://www.rsc.org/suppdata/ce/c4/c4ce01912a/
c4ce01912a1.pdf).6

Training and test molecules were selected as in a previous
study6 using information extracted from the ZINC22 database
and the CSD.16 In this instance, no drug-like filter was applied,
to include all organic molecules, which resulted in a set of
48112 commercially available molecules of which 36083 were
used for training and 12029 were reserved for a test set. Half of
each set consisted of “observed to crystallize” molecules (found
in both ZINC and the CSD) and the other half consisted of
“not observed to crystallize” molecules (found only in ZINC).
Support vector machines (SVMs) were used as the machine

learning algorithm to create the predictive model using the
molecular descriptors, having previously been found to give the
best performance for this classification problem.6

Rule Extraction. The “black-box” nature of the nonlinear
SVM predictive model prevents direct determination of the
most important descriptors used in performing the classi-
fication.23 Two methods were used to identify these
descriptors.

Single Variable Classifiers. The descriptors which are
calculated by RDKit were each used in turn to create a single
variable classifier built in order to find the descriptor which
gave the best predictive accuracy and therefore the most
effective classification.24 The accuracy was assessed both by 5-
fold cross-validation on the training set and by prediction on an
external validation set. This approach can be extended to two
(or more) variable classifiers.

Decision Tree. Rule extraction techniques can be used to
mimic the SVM model as closely as possible in order to infer
how it is performing the classification.25 This approach has
been used to extract simple rules from machine-learning models
which were trained to classify reaction outcomes.26 The SVM
algorithm is trained as usual on the training data set, and the
resulting model is then used to obtain the predicted labels for
the training data. A conventional decision tree classifier is then
trained on the predicted labels to represent the SVM predictive
model in terms of a rule-based decision tree.

Descriptor. A new single value descriptor was developed
based on the distribution of relative conformer energies. The
new descriptor is a count of additional conformers (not
including the lowest energy conformer) with energies between
selected relative energy thresholds and is designed to
approximate the number of energetically accessible conforma-
tions of a molecule.
In order to find the optimal energy thresholds for the

descriptor, a 5-fold cross-validation was carried out on the
training set using the descriptor to create a single variable
classifier. Figure 1 shows the distribution of accuracies, which
has a broad maximum between an upper threshold of 16 to 20
kcal/mol and a lower energy threshold of 0 to 1 kcal/mol, with
no significant difference between the predictive accuracies. This
led to a choice of 0 as the lower threshold and 20 as the upper
threshold. An example of calculating this descriptor using a 20
kcal/mol cutoff is given in Table 1.

■ RESULTS AND DISCUSSION
Figure 2 shows that rotatable bond count and nConf20 capture
similar but slightly different information. There is a positive
correlation of 0.75 between the two features, but the spread of
values of nConf20 for each value of RBC is significantly different
for those molecules observed to crystallize compared to those
which are not. Histograms of the distribution of nConf20 values
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in each class are plotted in Figure 3, and the distribution of the
RBC descriptor is shown in Figure 4. Those molecules which
are not observed to crystallize tend to have a larger value of
nConf20 than those with the same RBC which are observed to
crystallize, indicating that nConf20 provides better discrim-
ination between the two classes than RBC. Table 2 shows an
example molecule where RBC and the new descriptor differ
significantly in their estimation of the flexibility of the molecule.
Some rotatable bonds cause no change to the molecule,
especially when there is symmetry present, information which is
captured by nConf20.
When nConf20 is used to make a single variable classifier of

molecules observed and not observed to crystallize, the
predictive accuracy on the external validation set is 86.1%, 7.7
percentage points better than any other single variable (Table
3). The new descriptor therefore captures more information
than any other single 2D descriptor about the likelihood of a
molecule being observed to crystallize.
nConf20 was then combined with every other descriptor in

turn to create a set of two variable classifiers, and their accuracy
was assessed by cross-validation on the training set and
prediction on the external test set. In combination with the
SMR VSA3 descriptor it produces the best two-descriptor
model with a predictive accuracy of 89.2%, as shown in Figure
5. SMR VSA3 is a subdivided surface area descriptor which
encodes information about the van der Waals surface area of
the molecule with a molar refractivity in the range 0.26−0.35
and has a strong positive correlation with the number of cyclic
nitrogen atoms (0.84). The heatmap shows that while the
molecules which are not observed to crystallize have a spread of
values for both descriptors, the vast majority of molecules
observed to crystallize have a value of 0 for both descriptors.
This appears to imply that molecules with no additional
conformers and no cyclic nitrogen atoms are likely to be
observed to crystallize. The black dotted line denoting the SVM
decision boundary between the two classes shows an effective
separation, and the predictive accuracy is an increase of 4.4
percentage points on any other two-variable classifier of
crystallization propensity.
When the algorithm was trained with nConf20 and all 177

original descriptors, the predictive accuracy improves by only
0.1% to 96.1% relative to the model with the 177 descriptors
without nConf20, suggesting that this descriptor provides
information to the model that is already indirectly captured
by the other original descriptors. However, the new descriptor
captures this flexibility information more directly, as demon-
strated by the high predictive accuracy when used in a single
variable classifier. This is important for unpicking and
understanding the decisions made by the machine learning
process and will also allow it to be used more easily in linear
machine learning classifiers and decision trees, which can
become very complicated if a combination of variables is
required to predict the output.
The rule extraction analysis further supports the high

importance of this flexibility descriptor in performing the
classification, as shown in Figure 6. The first node in the tree
(which mimics the labels provided by the predictive model for
the training data set) provides the best initial split of the data
and therefore indicates the most important classification
feature. In this case, nConf20 is the most important feature;
the decision tree shows that the best single−decision
approximation of the SVM can be obtained by assuming that
the majority of molecules with fewer than 6 low energy

Figure 1. Predictive accuracies for the conformer energy descriptor
with varying limits, as determined by 5-fold cross-validation.

Table 1. Example nConf20 Calculation for CSD Refcode
TERLUXa

aThe lowest energy conformer is not counted, and conformer 41 is
above the energy threshold, giving an nConf20 value of 4.
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conformers are observed to crystallize, while most of those
above this cutoff are assumed to not be observed to crystallize.
This agrees with the distribution shown in the histograms in
Figure 3. The leaves below this node show that a single nConf20
decision alone reproduces the SVM predictive model with an
accuracy of 92% on the crystalline leaf and 83% on the
noncrystalline leaf (an overall accuracy of 87%).

■ CONCLUSIONS
We have created and optimized a new descriptor, nConf20,
which captures the conformational flexibility of a particular
molecule based on its 2D chemical connectivity. The descriptor

Figure 2. Boxplot of the distribution of nConf20 for each value of rotatable bond count, split by class. The central line in the box shows the median of
nConf20 for that value of RBC. The bottom and top of the box denote the 25th and 75th quartiles, respectively. The whiskers extend to 1.5 times the
interquartile range, and any points outside this are plotted as outliers.

Figure 3. Histogram of nConf20 for each of the two classes.

Figure 4. Histogram of rotatable bond count for each of the two
classes.

Table 2. Example Rotatable Bond Counts and nConf20
Values

Table 3. Best-Performing Single Variable Classifiers by 5-
Fold Cross-Validation and Prediction on an External Test
Seta

descriptor
cross-validation
accuracy (%)

external validation
accuracy (%)

nConf20 85.9 86.1
valence electron count 78.1 78.4
Kappa1 78.3 78.3
Chi0n 78.3 77.9
SlogP VSA2 77.7 77.8
Kappa2 77.8 77.8
Kier molecular flexibility
index

77.3 77.6

path length flexibility
index

75.2 75.2

rotatable bond count 73.9 74.8
aExisting flexibility descriptors27 are included for comparison.
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improves on rotatable bond count by taking account of both
molecular symmetry and relative energies of conformations, in
a manner that is correlated with the crystallization propensity of
the molecule. The descriptor encodes relevant information
about the 3D shape and flexibility of a molecule from a 2D
representation, without the need to consider the interconver-
sion energies, as we have assumed that all contributing
conformers are energetically accessible on the time scale of
crystallization. We have shown that, of the descriptors tested,
this one is the most relevant for predicting crystallization
propensity of organic molecules, using both a single variable
classifier approach and rule extraction analysis. The overall
predictive accuracy of a full-descriptor model including this
descriptor is slightly increased, suggesting that the descriptor
captures similar information to the other descriptors in a more
direct manner; however, use of this descriptor in rule-based
classification methods will reduce the complexity of the
resulting model. This descriptor has the potential to be applied
to other chemical problems where flexibility is a key factor, such
as QSAR studies or the prediction of polymorphism. Further

improvements could be made, at the expense of computational
speed, by incorporating information from molecular dynamics
calculations, to take account of solvent effects which may
influence how the conformers behave in solution.
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