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Abstract

Background: Local higher-order chromatin structure, dynamics and composition of the DNA are known to
determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response
affects the spatial organization of chromosome territories is still unexplored.

Results: Our report investigates the effect of DNA damage on the spatial organization of chromosome territories
within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of
chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories
moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome
territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our
results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions
similar to those in undamaged control cells.

Conclusions: Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole

chromosomes, which might be an integral aspect of cellular damage response.

Background
DNA-damaging agents, both endogenous as well as
exogenous, constantly pose a threat to the genome.
Protecting the genome from damage and an efficient
machinery to repair damage are essential for maintaining
genomic integrity. A failure to do so can lead to mutations
or result in cell death. Since, DNA is non-randomly and
spatially distributed within nuclei, it is important to
understand the interplay between DNA damage response
(DDR) and nuclear or chromosome organization.
Genomes within interphase nuclei occupy discrete,
three-dimensional regions known as chromosome territo-
ries (CTs) [1,2]. The non-randomness of CT organization
within an interphase nucleus is conserved in organisms
throughout evolution from flies to humans [1,3,4]. It has
been speculated that the conserved arrangement of CTs is
important for mediating genome functions [1,5-10].
Although non-random, changes in CTs have been
associated with altered cellular physiology. Interestingly,
the organization of interphase CTs has been shown to
change during differentiation, quiescence and senescence
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[1,11-13] (Mehta IS, et al., unpublished work). Altered
chromosome positioning has also been observed in some
diseases and cancers [11,14,15]. Specifically, recent
reports suggest that changes in whole chromosome or
chromosomal domain positions are associated with
modulations in transcriptional status [1,16-19] and
chromatin architecture [1].

The link between transcription and CTs has been
supported by studies where gene-rich chromosomes
are present in the nuclear interior while gene-poor
chromosomes are located at the periphery [20,21]. Fur-
ther, studies have demonstrated that regions of DNA
that are within the nuclear interior show higher tran-
scriptional activity [22-24]. Although chromosome re-
positioning has been associated with varied cellular
outputs, the underlying biological significance and the
molecular mechanisms that mediate these relocalizations
are poorly understood.

Local chromatin structure affects the damage fre-
quency and repair mechanisms. It is interesting that
open chromosomal material or chromatin incurs damage
more easily than closed heterochromatin [25-29]. In
addition, DNA composition is also known to impinge
upon damage and repair mechanisms. DNA associated

© 2013 Mehta et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:bjrao@tifr.res.in
http://creativecommons.org/licenses/by/2.0

Mehta et al. Genome Biology 2013, 14:R135
http://genomebiology.com/2013/14/12/R135

with features such as being at nuclear center, having
higher gene density or GC content, or chromatin
enriched with hyperacetylated histones, is more prone to
damage [27,30,31]. Moreover, gene-rich regions and
euchromatin are repaired faster than gene-poor and
heterochromatic regions [25-29]. In addition to local
changes in chromatin structure and functions [29,32],
global alterations in chromosome architecture and pos-
ition are likely to play an important role during DDR
[33-38]. While studies have demonstrated that chromo-
some domains have to remain stationary following laser
irradiation to assist repair, the studies focused on specific
chromosomal loci and domains or only certain chromo-
somes [35,39-42]. However, in contrast, recent biophys-
ical modelling studies have indicated that structural
reorganization of genome and chromosome domains
assists DDR [43,44]. Specifically, changes in the nuclear
matrix attachment of chromosomes and repositioning of
chromosome domains [45-49] have been hypothesized to
assist cell cycle arrest, alter the transcription profile and the
accessibility of damage sites to repair proteins [33,35,43].
Very recent reports for yeast have shown that damaged
chromosomal domains undergo large-scale nuclear move-
ments and it has been suggested that this phenomenon is
vital for homology searches during homologous recombin-
ation (HR) [36,50-52]. Therefore, investigations of alte-
rations in CTs, if any, are important for understanding the
global effects of chromatin, chromosome packaging and
nuclear architecture vis-a-vis DNA repair.

In this study, we have addressed the effect of DNA
damage on CTs in primary human fibroblasts. We find
that while most of the chromosomes do not change
location, some gene-rich chromosomes, such as chromo-
somes 17, 19 and 20, reposition themselves after DNA
damage in a dose- and time-dependent manner. Our
observations also implicate the importance of DNA
damage sensing in bringing about such alterations,
whereby inhibiting the activity of DNA-dependent pro-
tein kinase (DNA-PKcs) and Ataxia Telangiectasia mu-
tated kinase (ATM kinase) perturb this relocalization.
The results also show that these spatial changes in CTs
are reversible, since the DNA damage is repaired. Our
report highlights an intricate relation between CTs and
DNA damage response.

Results and discussion

Repositioning of select chromosomes after DNA damage
Corroborating earlier studies [21,52], we found that
chromosomes maintain a non-random distribution with
the gene-dense chromosomes 17, 19 and 20 distributed
at the center of the nucleus and gene-poor chromo-
somes, such as 18, 21 and 22, distributed towards the
nuclear periphery (Additional file 1, Additional file 2,
Table 1).
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Table 1 Positions of all human chromosomes in fibroblasts
before and after DNA damage

Chromosome Number of Chromosome Chromosome position
number genes/ size (base
megabases  pairs x 10°)
Control Treated
19 25.38 63 Interior Periphery
17 18.49 81 Interior Periphery
20 14.34 63 Interior Periphery
11 13.84 134 Periphery Periphery
16 1351 90 Intermediate  Intermediate
14 12.20 105 Intermediate  Intermediate
12 11.69 133 Periphery Interior
1 11.28 245 Intermediate  Intermediate
15 10.68 100 Intermediate Interior
7 933 158 Periphery Periphery
X 9.21 152 Periphery Periphery
9 894 134 Periphery Periphery
6 894 170 Periphery Periphery
10 8.10 135 Intermediate  Intermediate
2 7.68 243 Periphery Periphery
8 7.65 145 Periphery Periphery
21 749 46 Interior Interior
3 740 199 Periphery Periphery
5 7.08 181 Periphery Periphery
18 6.84 77 Periphery Periphery
Y 6.31 51 Interior Interior
4 6.09 192 Periphery Periphery
13 530 114 Periphery Periphery
22 497 49 Interior Interior

To investigate the relation between the spatial orga-
nizations of CTs and DDR, we analyzed the positions
of all human chromosomes following DNA damage
(Additional file 1, Additional file 2, Table 1). CT posi-
tioning was analyzed by 2D-FISH using IMACULAT
methodology, which divides each nucleus into five shells
of equal area (Figure 1, Additional file 1, Additional file 3)
[53]. An extension of IMACULAT, where nuclei are
divided into five shells of equal volume (Figure 1,
Additional file 2, Additional file 3), and 3D-FISH analyses,
were further used to corroborate the equal-area 2D-FISH
analyses (Figure 1, Additional file 3). Using doses of
DNA damaging agents that elicit DDR (Figure 2A,D)
but do not induce apoptosis in cells (Figure 2B,C), we
observed that most chromosomes (Additional file 1,
Additional file 2 and Table 1) do not alter their localization
within interphase nuclei following damage. However,
interestingly a few chromosomes repositioned after DNA
damage. Specifically, while chromosomes 17, 19 and 20
relocate from the nuclear interior to the periphery
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Figure 1 Chromosome position in interphase nuclei of normal versus DNA-damaged fibroblasts. CT positions of chromosomes 11, 12, 17
and 19 as assessed by 2D-FISH and 3D-FISHin response to treatment with 25 uM cisplatin, T mM H,O, and 0.05% dimethy! sulphoxide (DMSO)
(control). (A, F) Representative images for 2D-FISH. (B, C, G, H) Signal intensity histograms of 100 nuclei divided into five shells of equal area.
(D, E, 1, J) Signal intensity histograms of 100 nuclei divided into five shells of equal volume. Error bars represent SEM. * indicates P = 0.05.

(K, N) Three-dimensional projections of 3D-FISH. (L, M, O, P) Frequency distribution of distance (um) between geometric centers of the CT and
the nucleus for at least 50 nuclei per sample. (Q) Frequency distribution of cells with CTs (12, 15, 17 and 19) positioned in the nuclear interior,
intermediate and periphery before and after damage (cisplatin treatment), and post cisplatin wash-off. For all datasets, the frequency distribution
for cisplatin-treated samples was statistically significantly different from control and 24-hour post cisplatin wash-off samples (P=0.001), while no
statistical difference was observed between control and 24-hour post cisplatin wash-off samples.

(Figure 1 and Additional file 4: Panel 1A,B,C,D), chromo-
somes 12 and 15 reposition towards the interior in a
majority of cells (Figure 1 and Additional file 4). This
relocation for chromosomes 12, 15, 17 and 19 is discern-
ible in both equal-area and equal-volume partitioning
(Figure 1, Additional file 1, Additional file 2 and Additional
file 4: Panel 1A,B,C,D). The shift from an equal-area
analysis to an equal-volume analysis will leave the
outermost shell with less chromatin and the innermost
shell with more chromatin, thereby dampening the
slope (which is most prominent in control chromosome
15 in Additional file 11 compared to Additional file 2I and
Additional file 4).

Earlier research demonstrated that the relative gene dens-
ity of chromosomes plays a role in CT organization within
cell nuclei. Interestingly, we observed a partial correlation
between the relocation of CTs and their relative gene

densities (Table 1) with some gene-rich chromosomes
relocating following DNA damage (Table 1, Figure 1,
Additional file 1 and Additional file 2). Conversely, none
of the gene-poor chromosomes exhibited DNA-damage-
induced CT relocation. This response was observed in
normal human dermal fibroblasts (NHDFs) and nor-
mal human lung fibroblasts (NHLFs) (Figures 1 and 3,
Additional file 5). Moreover, using DNA damaging agents
that induced both single- and double-strand breaks (H,O,
and cisplatin), we observed that the same set of chromo-
somes displayed a ‘conserved’ repositioning pattern (Figure 1
and Additional file 4: Panel 1). We did not discern any
changes in nuclear or CT volumes after DNA damage,
thereby ruling out volume changes as a reason for CT re-
positioning following DDR (Additional file 4: Panel 1E,F).
Although, it is still far from clear why only certain
chromosomes reposition after DNA damage, previous
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Figure 2 DNA damage caused by cisplatin treatment. Normal human dermal fibroblasts were treated with cisplatin and the extent of DNA
damage and survival were monitored. Cells were treated for 4 hours with 25 uM cisplatin or 0.05% DMSO (control). yH2AX foci (A) and protein
levels (D) increased in cisplatin-treated cells compared to their control counterparts. Annexin V staining (B) and FACS (C) were used to identify
the percentage of cells undergoing apoptosis. ** indicates P=0.001 NS: non-significant.

concurrence with the previous research [29,54], we ob-
served a slight increase in the number of YH2AX foci

research by Falk and co-workers [29,54] clearly indicated
an association between gene-rich chromosomes and

the high frequency of phosphorylated histone 2A.X
(YH2AX) foci. To assess if the frequency of damage
affects DNA damage-dependent CT repositioning, we
performed combined immuno-FISH experiments to
analyze the occurrence of yH2AX foci on chromo-
somes that show relocalization after DNA damage. In

on gene-rich chromosomes that show relocation after
DNA damage vis-a-vis the chromosomes that do not
change location after DNA damage (Additional file 4:
Panel 2). These results, suggest that chromosome relocali-
zation after DNA damage might be an intrinsic component
of DDR.
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Figure 3 Positions of chromosome territories in normal and DNA-damaged human lung fibroblasts. The positions of chromosomes 11,
12,15, 17 and 19 were delineated in normal human lung fibroblasts before and after DNA damage, and after 24 hours of recovery from damage.
(A, D, I, B, G, L) As in normal human dermal fibroblasts, chromosomes 17 and 19 reposition from the nuclear interior to the periphery.
(B, F, K, C, H, M) Chromosomes 12 and 15 relocate from the nuclear periphery to the interior after damage. On recovery, these chromosomes
revert to their native locations after 24 hours (A, B and C and blue bars in panels D-M). Chromosome 11 does not show any relocation after
DNA damage (A, E and J). Scale bar: 10 um. Error bars represent SEM. * indicates P = 0.05.
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Figure 4 Repositioning of chromosomes following DNA damage. Cells were treated with varying doses of cisplatin (as indicated) for 4 hours.
(A, B, C, D) 2D-FISH images. Histogram distributions for chromosomes 19 (A’, B', C’, D’) and 11 (A”, B”, C", D"). Cells were treated with 25 uM
cisplatin for varying time points (as indicated). (E, F, G, H, 1) 2D-FISH images. Histogram distribution for chromosomes 19 (E’, F', G, H’, I') and 11

(E”, F”", G”, H”, I"). * indicates P=0.05. (J) and (K): TUNEL and yH2AX positive nuclei, under similar conditions. Scale bar: 10 um.
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Figure 5 (See legend on next page.)
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Figure 5 Repositioning of chromosome territories following DNA damage requires ATM/ATR activity. ATM activity in NHDFs was inhibited
by treatment with 10 pM KU55933 for 1 hour. Pre-treatment with KU55933 inhibits phosphorylation of yH2AX after DNA damage as observed by
IF staining (A, B, C) and Western blot analyses (D). Chromosome 19 repositions from the nuclear interior (E, E’, E”) to the periphery after DNA
damage (G, G', G”). This repositioning is inhibited in DNA-damaged cells pre-treated with ATM/ATR activity inhibitors (H, H’, H"). Chromosome
11 remains at the nuclear periphery in cells subjected to the above treatments (E-H, E’-H’, E”-H"). In ATM mutant fibroblasts AT2BE and AT5BT,
chromosome 12 occupies the nuclear periphery (I, J, K, M, N, O) while chromosome 19 remains in the nuclear interior (I, J, L, M, N, P) in both
undamaged cells (black bars) as well as in cells post DNA damage treatment (gray bars). * indicates P =0.05 as assessed by ANOVA.

Chromosome repositioning is DNA damage dose and

time dependent

To test whether the chromosome relocation is DNA dam-
age dose dependent, cells were treated with varying doses
of cisplatin for 4 hours. Chromosome 19 repositioned only
when cells were treated with 12.5 uM or higher cisplatin
concentrations, which was associated with an increase in
double strand breaks (DSBs) [Terminal deoxynucleotidyl
transferase mediated dUTP Nick End Labeling (TUNEL)
and YH2AX foci] (Figure 4A,B,C,D,J). Chromosome 11 does
not relocate and failed to show any repositioning for any
dose of cisplatin (Figure 4A,B,C,D). The dose-dependent
response indicates that below a certain threshold of DSBs,
CT relocalization does not ensue.

Further, to assess whether chromosome relocation was
linked to DSB recognition following breaks, we also
analyzed the DSB kinetics (TUNEL assay and yH2AX).
We observed that chromosome 19 relocation starts at
about 2 hours following cisplatin treatment (Figure 4G)
and coincides with an increasing YH2AX response
(Additional file 4: Panel 2 and Figure 4K). This reloca-
tion is complete after 3 to 4 hours (Figure 4E,F,G,H,I).
These findings were interesting because the repositioning
was initiated only after DDR was elicited and thus, sug-
gested that damage sensing and recognition preceded
territory repositioning.

Repositioning of chromosome territories is dependent
upon DNA damage sensing

Since CT repositioning after DNA damage occurs post
phosphorylation of H2AX, we hypothesized that factors
involved in DSB recognition and downstream signaling
might be involved. Specifically, we wanted to investigate
the role of DSB sensors Ataxia Telangiectasia mutant
(ATM)/Ataxia Telangiectasia and Rad3 related (ATR)
and DNA Protein Kinase C (DNA-PKcs), which are in-
volved in eliciting a repair response including cell cycle
arrest, phosphorylation of H2AX and altering chromatin
structure at the sites of damage [55-59].

Interestingly, cisplatin-treated cells did not reposition
chromosomes in the presence of ATM/ATR inhibitors
(Figure 5E,F,G,H). This result is consistent with our
earlier observation with respect to the initiation of
relocalization post YH2AX appearance (Figure 4 and

Additional file 4: Panel 2). To further confirm these
findings, we assessed the positions of chromosomes 11,
12 and 19 in fibroblasts that have non-functional ATM
kinase, using AT2BE and AT5B1 cell lines derived from
ataxia telangiectasia patients [60,61]. In concurrence
with our inhibitor study, we observed that repositioning of
chromosomes 12 and 19 did not occur after DNA damage
in ATM mutant cell lines (Figure 5 and Additional file 6).
This reiterates that functional ATM kinase is vital
for DNA-damage-dependent CT repositioning. We ob-
served that a similar loss of repositioning occurred
when DNA-PKcs activity was inhibited (Figure 6 and
Additional file 7). To validate this further, we altered
the treatment regime so that the DNA-PKcs inhibitor
was washed off midpoint during the 4 hours of cis-
platin treatment. Notably, the ‘stalled’ chromosome 19
(which relocalizes in cells treated only with cisplatin)
resumed repositioning when the DNA-PKcs inhibitor
was removed (Figure 6). Thus, our study clearly indi-
cates that DNA damage sensing might be required for
relocation of CTs after DNA damage. Although the im-
portance of DNA repair mechanisms in altering chro-
matin structure and functions [25,32] is known, this is
possibly the first study to demonstrate that repair
pathways not only influence chromosome behavior at
specific domains or loci [34,43-48], but can also affect
the whole CT distribution. Further, the results also
highlight a potential crosstalk between DNA damage
sensors and the spatial positioning of chromosomes.

Chromosome territories revert back after repair

We then wanted to investigate if the interplay between
DNA damage sensing and CT relocalization was an im-
portant aspect of DDR. Since our treatments did not
evoke a cell death response, we anticipated a reversion
of CTs similar to their distribution in control cells post
repair. Chromosomes 19 and 17, which showed periph-
eral distribution following damage, reverted to a more
interior distribution like that in undamaged control cells,
18 to 24 hours post removal of the damaging agent
(Figures 3 and 7A-H). The relocalization kinetics was
also strikingly similar for chromosome 12, which reverted
from an interior distribution following damage to a more
peripheral distribution (Figures 3 and 7I-P) after cisplatin
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Figure 6 Chromosome repositioning requires DNA-PKcs activity. Positions of chromosomes 11 and 19 in control, only cisplatin, only
DNA-PKcs inhibitor and inhibitor with cisplatin-treated cells as depicted by 3D-FISH (A-F) and 2D-FISH (G-J) analyses. Scale bar: 10 um. Quantitation
as in Figure 1. A delayed repositioning of chromosome 19 territories is observed in damaged cells after removal of the DNA-PKcs inhibitor from the

culture medium (K-P) * indicates P=0.05 as assessed by ANOVA.

wash-off. To corroborate the reversal, the radial positions
of relocating CTs (12, 15, 17 and 19) were determined with
respect to static or non-relocating CTs (18 — peripheral and
22 — interior) (Additional file 8). Computing both the
mean and distribution of inter-CT distances before and
after damage, and after cisplatin wash-off indicated that
the CTs reverted back to distributions like those in un-
damaged control cells, both in the interior and per-
iphery of the nucleus (Figure 8, Additional file 8 and
Additional file 9). The reversion of CTs to distributions
similar to their normal undamaged counterparts was pre-
ceded by the disappearance of YH2AX foci (Figure 8Q,
Additional file 3: Panel 2 and Additional file 9) [62,63]. It
is important to note that both the initial CT response
and the reversal followed the phosphorylation and de-
phosphorylation of H2AX, respectively. In addition to

suggesting a link with chromatin components, our re-
sults also highlight a potential crosstalk between mech-
anisms that repair DNA and those that determine the
location of chromosomal domains. It would be interest-
ing to investigate the role of DNA repair factors in regu-
lating chromosome territories and vice versa.

Reversal of chromosome territories to locations similar to
those of control cells post repair may require passage
through mitosis

Earlier studies suggested that the reversal of CTs to a
distribution similar to control cells occurs post mitosis
and requires nuclear rebuilding [12,64]. Therefore, we
wanted to see if the reversal of CTs post DNA repair
that we have observed here (Figures 7 and 8) also re-
quires the cells to undergo mitotic exit. Moreover, since
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Figure 8 Relocated chromosomes revert to distributions similar to control cells post cisplatin wash-off. 3D-FISH analyses were performed
to compute the pairwise distance distribution between relocating CTs 19 and 12 vis-a-vis static CTs 18 and 22 (A-L). The pairwise distance
distributions between CTs 19 and 18 (A, B, C and M), 19 and 22 (G, H,
least 50 nuclei were measured. The box plots (M, N, O, P) span the second quartile, median and the fourth quartile of the pairwise distances,
while negative and positive error bars represent the minimum and maximum distances. * indicates P=0.01. (Q) Quantitation of yH2AX positive
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the DNA damage response leads to cell cycle arrest, CT
reversal could occur within the same phase of the cell
cycle. To test these two possibilities, we designed an ex-
perimental regime in which post cisplatin treatment
(25 uM cisplatin for 4 hours), we incubated the cells in
media containing colchicine (to cause mitotic arrest).
We observed that colchicine-treated cells that had repo-
sitioned chromosomes after DNA damage failed to re-
vert these CTs distributions as in control cells (Figure 9
and Additional file 10). Interestingly, the chromosomes
did revert to distributions similar to their control coun-
terparts within 30 hours post removal of the colchicine
block (Figure 9H,H;H” and Additional file 10). Moreover,
the forward relocation of CTs following damage was not
affected by colchicine’s action on the cells (Figure 9E,M).
Although it appears that the forward relocation of CTs is
microtubule independent, the reversal may still directly or
indirectly require microtubules (as progression through
mitosis is microtubule dependent). Thus, reversal of repo-
sitioned CTs to distributions similar to control cells post
repair may require passage through mitosis, reinforcing
"the nuclear rebuilding" hypothesis discussed above.

Conclusions
This study reports a hitherto unknown association be-
tween DNA damage sensing and chromosome territories
(CTs). We demonstrate that CT positions alter after
DNA damage and are intrinsically coupled to the ability
of cells to elicit a damage response dependent on ATM/
ATR and DNA-PKcs activity. Local chromatin structure
and DNA damage sensing mechanisms have been known
to crosstalk with each other and mediate an efficient repair
response [25-29,33]. Although the type and kinetics of
repair are governed by the local chromatin structure
(heterochromatin versus euchromatin) [25,29,32], the be-
havior of chromosomes as a whole has not been addressed
thus far. In this regard, our results show reorganization of
whole CTs in response to DNA damage. While some gene-
rich CTs relocate (for example, 12 and 17) and others do not
(for example, 11 and 14), a better correlation is observed in
the lack of relocation of gene-poor chromosomes. It would
be thus interesting to investigate further the properties of
gene-rich CTs to determine their propensity to relocate.
Recent studies of yeast have hinted at the possibility of
large-scale chromosome movement that ensue because of
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Figure 9 Relocated chromosomes may require passage through mitosis to revert to distributions similar to control cells post cisplatin
wash-off. Normal DNA-damage-dependent repositioning (A, B, 1, J) and repair-dependent reversal (C, K) of chromosomes 12 (1, J, K), 17 (1, J, K)
and 19 (A, B, C) in human dermal fibroblasts. In fibroblasts that were treated with cisplatin (25 uM) for 4 hours, and then allowed to repair in
colchicine-containing media, the reversal of relocated chromosomes 12, 17 and 19 is not observed (F, N). Colchicine, by itself, has no effect on
the positions of CTs 12, 17 and 19 (D, L) and on the forward relocation of these CTs after DNA damage (E, M). After removal of colchicine from
the media, these relocated chromosomes revert back to locations similar to those of control cells (G, H). Chromosome 11 territories remain at the

nuclear periphery under all these conditions (A-H). Scale bar: 10 um.

heightened mobility of broken DNA ends [29,35,36,49,50].
Chromatin repositioning, including the relocation of single
or multiple chromosome loci or whole chromosomes, has
been hypothesized to be a normal cellular response to ra-
diation exposure [35-37,43,44]. Our findings not only sup-
port the hypothesis but also evidence the involvement of
whole chromosomal mobility in DDR. These studies have
also shown that the mobility of broken DNA ends influ-
ences HR efficiency. Although we cannot rule out such a
possibility in our system (at least for the chromosomes
that move to the interior), we do not hypothesize this to
be a determining factor, since HR is not predominant in
mammalian cells unlike yeast. Instead, we speculate that a
potential bias in transcriptional activity and chromatin
structure in these chromosomes might be relevant for
such repositioning and needs to be addressed in the
future. More importantly, we have addressed the relation
between DNA damage response and nuclear organization
vis-a-vis chromosomal localization.

Our results show that repositioned CTs revert to distri-
butions similar to their control counterparts in a repair-
dependent manner whereby restoration coincides with
loss of YH2AX foci. Importantly, these raise fundamental

questions about the link between DNA repair proteins
and chromosomal relocalization, and suggest that CT
reorganization could be an integral component of cellular
DNA damage response. In conclusion, our report has
investigated a novel aspect of DNA damage response
and should lead to further studies aimed at under-
standing the role of nuclear complexity in maintaining
genomic integrity.

Materials and methods

Cell culture and treatments

Early passage primary normal human dermal fibroblasts
(NHDFs; Lonza) and normal human lung fibroblasts
(Lonza) were cultured in 15% fetal bovine serum (FBS)
supplemented DMEM and fibroblast growth medium
(FGM) media supplemented with 2% FBS and growth sup-
plements (Lonza). ATM mutant fibroblast lines AT2BE
and AT5B1 (kindly provided by Dr Michael Weinfeld)
were cultured in 10% FBS supplemented Dulbecco’s modi-
fied Eagle’s medium/nutrient mixture F-12 (D-MEM/
F-12) (1:1 ratio). Cells were either treated with 1 mM H,O,
or with 25 uM cisplatin (Calbiochem) for 1.5 or 4 hours,
respectively, unless mentioned otherwise in figure legends.
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Two-dimensional fluorescence in situ hybridization
2D-FISH was performed using the standard protocol [65].
Briefly, cells treated with hypotonic solution (0.075 M KCl)
were fixed with 3:1 (v/v) methanol:acetic acid using the
standard protocol. Cells dropped on slides were taken
through an ethanol row followed by denaturation in
70% formamide at 70°C for 2 minutes. The slides were
then taken through another ethanol row and air-dried at
37°C. Directly labelled total human chromosome DNA
probes (Applied Spectral Imaging), denatured at 80°C
for 7 minutes and re-annealed at 37°C for 20 minutes,
were then applied to the denatured cells followed by
hybridization for 18 hours. Post hybridization stringency
washes were performed and then the cells were counter-
stained with 4',6-diamidino-2-phenylindole (DAPI) in
Vectashield mounting medium.

At least 100 captured images (Axiovision software, Zeiss
Axiovert 200 microscope) were run through IMACULAT
[53], a methodology that divides each nucleus into five con-
centric shells of equal-area (Additional file 3). Since volume
scales to the cube of the radius, a concentric equal-area
partitioning of the nuclei biases the volume of the 3D shells
towards the outermost shell, which has 29% of the total vol-
ume. To make the volumes equitable amongst shells, we
enhanced the IMACULAT program to divide the nuclei into
shells with areas proportional to 34, 20, 17, 16 and 13 (from
the innermost shell to the outermost shell) (Additional file
3: Panel E and Additional file 11). The number of pixels of
DAPI and the amount of the chromosome probe in these
five shells were measured. Background normalization of
the FISH signal was carried out using the mean pixel in-
tensity within the segmented nucleus. The probe signal
was normalized using following formula:

% of probe in shell x + % of DAPI in shell x
% of probe in all shells + % of DAPI in all shells

Histograms displaying these results and standard error
bars representing the +/— SEM were plotted (Additional
file 3B,C,D) [53]. One-way ANOVA and t-tests were
performed.

Three-dimensional fluorescence in situ hybridization

To conserve the three-dimensional structure of fibro-
blast nuclei, a previously described FISH methodology
was used [65]. Cells, grown on slides, were fixed with 4%
paraformaldehyde (PFA) and permeabilized using Triton
X/saponin solution followed by four or five freeze-thaw
cycles and depurination in 0.1 N HCL Denaturation was
performed using 70% and 50% formamide for precisely 3
and 1 minutes, respectively, at 73°C. Hybridization with
processed probes (see 2D-FISH section) was carried out
for 48 hours at 37°C. Post hybridization washes were
carried out similar to 2D-FISH.

Page 12 of 15

Stacks of 0.3-um optical sections (with an average of
eight) were captured using a Zeiss confocal laser-scanning
microscope (LSM510). The distances between the geomet-
ric center of each chromosome territory and the nuclear
center in at least 40 nuclei were measured (Bitplane Imaris
software) (Additional file 3F) and frequency distribution
curves were plotted. Simple statistical analyses were per-
formed using the two-tailed Student’s ¢-test.

Additional files

Additional file 1: Position of chromosome territories before and
after DNA damage. Equal-area analysis: Cells were treated with T mM
H,0, for 90 minutes to induce DNA damage. Standard 2D-FISH assay
was performed and at least 100 digital images were analyzed per
chromosome by the IMACULAT equal-area algorithm. The graphs display
the percentage amount of probe of each human chromosome in each
of the eroded shells (y-axis) for control (black bars) and DNA-damaged
(gray bars) fibroblasts, and the shell number on the x-axis. The standard
error bars representing the standard errors of mean (SEM) were plotted
for each shell for each graph. * indicates P=0.05 as assessed by ANOVA.

Additional file 2: Position of chromosome territories before and
after DNA damage. Equal volume analysis: NHDFs were treated with

1 mM H,0, for 90 minutes to induce DNA damage. A standard 2D-FISH
assay was performed and at least 100 digital images were analyzed per
chromosome by the IMACULAT equal-volume algorithm. The graphs
display the percentage amount of probe of each human chromosome
in each of the eroded shells (y-axis) for control (black bars) and
DNA-damaged (gray bars) fibroblasts, and the shell number on the
x-axis. The standard error bars representing the standard errors of mean
(SEM) were plotted for each shell for each graph. * indicates P=0.05 as
assessed by ANOVA.

Additional file 3: 2D- and 3D-FISH analysis for positioning chromosome
territories. NHDFs were probed with specific whole chromosome paints
using 2D- or 3D-FISH. For 2D-FISH, images were taken and run through
IMACULAT. The program divides each nucleus into five concentric shells
of either equal area (A) or equal volume (E) and then measures the
signal intensities of the probe and the amount of DNA in each shell. The
amount of probe is then normalized with respect to the amount of DNA
for each shell and histograms are plotted, which allow us to determine
the positions of chromosomes as interior (B), intermediate (C) or
peripheral (D) within a cell nucleus. (F) Three-dimensional projections

of 0.2-um optical sections of nuclei subjected to 3D-FISH, imaged by
confocal laser scanning microscopy and reconstructed using IMARIS
software. The distance between the geometric centers of the chromosome
territory and the nucleus was measured.

Additional file 4: Panel 1. Chromosome positioning in control versus
DNA-damaged cell nuclei. Control and 25 uM cisplatin-treated NHDFs
were subjected to 2D-FISH to delineate the positions of chromosomes 15
and 20 before and after DNA damage. At least 100 images per sample
were analyzed using standard 2D-FISH equal-area analysis. Chromosome 20
repositioned from the nuclear interior (black bars in C) to the periphery

(A, C) while chromosome 15 relocated from the nuclear periphery (black
bars in D) to the interior (B, D), after treatment with 25 uM cisplatin (green
bars in C and D) and 1 mM H,0, (blue bars in C and D). No significant
alterations are observed in the volumes of nuclei (E) or chromosome 11 and
19 CTs (F) before (black bars) or after treatment with 25 puM cisplatin (gray
bars). Scale bar: 10 um. * and # indicate P = 0.05 with respect to the control
as assessed by ANOVA. Panel 2: Dynamics of yH2AX foci with respect to
DNA-damage-dependent CT repositioning. The status of yH2AX foci and CT
repositioning were analyzed using immuno-FISH analyses in undamaged
cells, cells post cisplatin treatment (25 uM) for 4 hours (0 hours cisplatin
wash-off) and then 24 hours post cisplatin wash-off. (A, B, C, D, E, F) Three-
dimensional projections of immuno-FISH images. The number of yH2AX
foci/nuclei was quantified for at least 50 nuclei per sample and is depicted in

the box plot (G). The error bars show the range (minimum and maximum) for
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the number of foci observed per nuclei. * indicates P=0.05 with respect to
the control as assessed by the standard Student’s t-test. (H) The number of
foci per specific CT were also counted for at least 50 nuclei/sample using spot
and surface algorithms from the IMARIS software.

Additional file 5: Frequency distribution of cells with CTs
positioned in the nuclear interior, intermediate and periphery
before and after damage, and post recovery.

Additional file 6: DNA damage and chromosome positioning in
cells from ataxia telangiectasia patients. ATM mutant fibroblasts
(AT2BE and AT5B1) were treated with cisplatin and the extent of DNA
damage and survival were monitored. Cells were treated for 4 hours with
25 uM cisplatin or 0.05% DMSO (control). yH2AX foci (A, C) increased in
cisplatin-treated cells compared to their control counterparts. Annexin V
staining (B, D) was used to identify the percentage of cells undergoing
apoptosis. The positions of chromosome 11 territories were determined
in these fibroblasts before and after DNA damage (E, F, G, H, | and J).
Scale bar: 6 um. * indicates P=0.05 with respect to the control as
assessed by ANOVA.

Additional file 7: Inhibition of DNA-PKcs activity. Recruitment of
DNA-PKcs foci that occurs after DNA damage (A was inhibited in cells
where phosphorylation of this protein was perturbed using 10 uM
NU7026. Scale bar: 30 um. The amount of protein yH2AX also decreases
in cells treated with NU7026 after DNA damage compared to untreated
damaged cells (B).

Additional file 8: Model showing the predicted outcomes if after
repair chromosomes revert to similar locations as non-relocating
chromosomes. (A, B) The positions of relocating chromosomes 12 and
19 vis-a-vis static or non-relocating chromosomes 18 and 22 in a control
sample, post DNA damage sample and a sample after the damaging
agent has been washed off.

Additional file 9: Distances between relocating versus static CTs
before and after damage, and post cisplatin wash-off. Pairwise
distance distribution between CTs 17 and 18 (A), 15 and 18 (B), 17 and
22 (€) and 15 and 22 (D) were measured in control and 25 uM cisplatin-
treated cells and also post 24 hours of recovery. The box plots span the
second quartile, median and the fourth quartile of the pairwise distances,
while negative and positive error bars represent the minimum and max-
imum distances.

Additional file 10: Flow cytometry analysis for cells that are
prevented from passage through mitosis. NHLFs (A) were treated
with cisplatin for 4 h. Post cisplatin wash-off, they were incubated in
0.05 pg/ml colchicine for 30 hours and analyzed using flow cytometry.
Mitosis is blocked for these cells and hence there is a higher population
of the G2/M phase of the cell cycle compared to a control sample (B).
When the cells are left in normal media for 30 hours after a further
colchicine wash-off they resume cycling and the G2/M population
decreases to 24% (C).

Additional file 11: Extended experimental procedures. P.S: Gray-scale
images in all three channels and 3D stacks for Figures 2, 6, 8 and S3 can
be found on the link below: http://www tifr.res.in/~dbs/faculty/bjr/mehta/
Genome_Biology_7297118161044271 zip.
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