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Abstract

Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core
protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how
mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast
imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics.
Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of
movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the
temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD
localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is
accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the
viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV.
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Introduction

Once thought to be a benign storage organelle, the lipid droplet

(LD) has gained attention for its involvement in many cell

functions including cellular signaling, membrane organization,

and trafficking [1,2,3]. LDs are primarily composed of triglycer-

ides (TG) and cholesterol esters in a hydrophobic core that is

surrounded by a phospholipid monolayer [4]. Additionally, the

LD surface is coated in proteins that facilitate cellular signaling

interactions, control the access of metabolic enzymes, and

influence LD movement within the cell [4,5,6,7].

Biochemical and live-cell imaging analyses have shown LD

movement is microtubule-dependent [8,9,10,11] and is facilitated

by motor proteins that move along microtubules radiating from

the microtubule organizing center (MTOC) [9]. LDs are shuttled

towards the MTOC in a dynein-mediated retrograde (minus-end

motion) manner, while movement away from the MTOC is

mediated by kinesin motors in an anterograde manner (plus-end

motion) [12,13,14,15]. Immunofluorescence studies of peroxi-

somes in Drosophila have demonstrated that both motors are

localized on cargo at the same time [16], with evidence of

bidirectional LD movement shown in human hepatocytes [17].

Accordingly, bidirectional LD transport is likely coordinated to

direct net movement to meet cellular demands [11,18].

Productive hepatitis C virus (HCV) infection is tightly linked to

hepatic lipid metabolism and requires direct interactions with LDs

for propagation [19,20]. HCV infection is the leading cause of

liver disease, affecting 2 to 3% of the global population [21,22].

More than half of HCV infections result in dense accumulation of

LDs, a phenotype commonly known as liver steatosis [23,24,25].

There is strong support for a direct relationship between HCV and

LDs, highlighting LDs as a key host organelle involved in

pathogenesis [19,25,26,27,28,29,30,31,32].

HCV is a single-stranded, positive-sense RNA virus encoding a

polyprotein that is processed into 3 structural and 7 non-structural

proteins (reviewed in [33]). Of particular interest is the core

protein, which forms the viral capsid, since it also accumulates on

the LD surface [17,34,35]. The mature form of core is generated

through sequential cleavage by two host proteases (Figure 1A)

[36,37,38,39,40]. This mature form of core, which consists of two

domains, termed I and II, translocates from the ER to the LD

surface, with domain II (DII) involved in LD binding [41,42]. The

core-LD interaction is essential in the HCV lifecycle, since its

disruption eliminates viral particle assembly [39,43,44,45].

Although the fate of lipids contained in the core-bound LDs is

unclear, host lipids are used in virtually every step of the viral

lifecycle and function as viral dependant post-translational

modifications for both host and viral proteins

[23,26,30,46,47,48]. Ultimately, these interactions also permit

the establishment of platforms involved in viral assembly through

LD-associated membrane interactions [25,49].

HCV-induced changes in LD morphology and dynamics can be

investigated by coherent anti-Stokes Raman scattering (CARS)

microscopy. CARS is a molecular imaging tool that uses high

excitation laser pulses to enhance the vibrational resonances of

chemical bonds, and can be specifically tuned to generate high-

contrast images of select organelles and/or drug molecules in the

cell [50,51]. As such, the C-H bonds of long fatty acid chains that
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are densely packed in LDs generate excellent signal contrast for

LD imaging [52,53]. Furthermore, since CARS is a label-free

technique, video-rate imaging of LD dynamics is possible without

the use of chemical stains that may perturb the cellular

environment.

We have previously shown changes in LD morphology as well

as mobility in human hepatoma cells after 48 hours of expression

of a HCV genotype 3a form of core (core3a) [17,35]. In addition,

core3a expression increased cellular LD volume before the LD

migrated towards the perinuclear region. In this study, we focus on

LD dynamics at an earlier time point of core protein expression

using a GFP-tagged DII of JFH1 core protein (DII-core) to

visualize core protein’s localization on the LD surface [45], in

addition to LD particle tracking. This method enabled particle

tracking of DII-core bound LDs, along with LDs in non-DII-core

expressing cells, and allowed their rates of transport in the cell to

be monitored. We also evaluated single amino acid mutations in

the LD binding domain of core to determine whether LDs are

dynamically modified by the binding strength of DII-core. Overall,

our findings provide new insight into the effects of HCV core

protein on LD dynamics. Uncovering details of the HCV life cycle

not only expands our understanding of this important pathogen,

but also offers alternative targets for the development of host-

targeted therapeutics.

Figure 1. GFP-tagged DII-corewt colocalizes with LDs. (A) Schematic representation of HCV core protein. Distinct interactions belong to each of
the three core protein domains. The mature and immature forms are also shown, and are generated by the two host proteases: signal peptidase (SP,
blue), and signal peptide peptidase (SPP, red). (B) GFP-tagged DII-corewt contains the membrane binding domain consisting of two a-amphipathic
helices separated by a hydrophobic loop. (C-D) CARS microscopy imaging of LDs in Huh-7 cells expressing GFP-tagged DII-corewt. All images were
collected approximately 20 hours after Huh-7 cells were transfected with (D) DII-corewt and (C) without DII-corewt, which contained only the
lipofectamine transfection reagent. (C) Lipid volumes measured by voxel analysis for mock Huh-7 cells are shown in the CARS image. (D) CARS
imaging captures DII-corewt induced LD biogenesis and redistribution towards the perinuclear region. The two values in panel 2 represent the
average LD volume for cells expressing DII-corewt (top value, double asterisks) and non-expressing DII-core cells (single asterisks) within the same
field of view (bottom value) as measured by voxel analysis. The error represents standard error of the mean. The n represents the amount of cells
quantified for LD density. This experiment was conducted under two biological replicates. Panel 4 is a magnified image selected by a region of
interest from the merged image to project a clearer view of colocalization between DII-corewt and LDs. All scale bars represent 10 mm.
doi:10.1371/journal.pone.0078065.g001
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Results

Expression of GFP-tagged DII-corewt Increases Cellular LD
Volume

Changes in LD dynamics that are induced by bound

fluorescently-tagged proteins can be monitored by simultaneous

two-photon fluorescence (TPF) and CARS microscopy. With this

method, the dynamics of both bound and unbound LD

populations can be compared within the same cell and/or field

of view. Previously, we showed that an N-terminal GFP-tagged

construct of DII-core from the JFH1 strain (Figure 1B, DII-corewt)

was capable of LD colocalization [45]. These results are supported

herein by simultaneous TPF and CARS microscopy, which show

DII-corewt retained a colocalized pattern with cytoplasmic LDs in

Huh-7 cells (Figure 1D).

It was also possible to make qualitative and quantitative

comparisons between LD dynamics and mobility in DII-corewt

expressing and non-expressing cells under one single field of view.

We observed a distinct change in LD density for cells expressing

DII-corewt (Figure 1D, single vs. double asterisks), while LDs

observed in non-DII core expressing cells were comparable to

mock Huh-7 cells (Figure 1C & D, single asterisks). Voxel analysis

used to calculate LD density revealed a 3-fold increase in LD

density of DII-corewt expressing cells to non-expressing cells under

the same field of view (Figure 1D). We also observed a change in

LD localization in cells expressing DII-corewt, with LD clusters

located at the perinuclear region (Figure 1D, arrowheads). Our

images show that clusters of LDs were absent in the mock and

non-DII-core expressing cells (Figure 1C & D, single asterisks).

This suggests that DII-corewt is capable of inducing LD migration

towards the perinuclear region much like full-length core [45],

likely by affecting interactions with motor proteins that are

involved in LD motility [35]. Importantly, we observed that GFP

did not disrupt DII-core binding to LDs, indicating that GFP-

tagged DII-core is suitable to study the dynamics of LD mobility.

DII-corewt Modulates LD Dynamics when it is bound to
the LD Surface

Since DII-corewt behaves similarly to naı̈ve full-length core

protein [45], we assessed whether the interaction between DII-

corewt and LDs affected LD mobility. DII-corewt expressing cells

contain populations of naı̈ve and DII-corewt-bound LDs. By

simultaneous TPF and differential interference contrast (DIC)

imaging, the trajectories of LDs from both populations can be

tracked by following LD movements with and without overlap of

the DII-corewt GFP tag. It is important to note that LD mobility

may potentially be affected by factors including cell passage

number, biological replicate and cell confluency. To circumvent

this, in every experiment that was conducted, the LD measure-

ments acquired from Huh-7 cells expressing DII-corewt were

directly compared with LD measurements from a mock sample of

the same biological replicate. We have previously shown that LDs

in full-length core expressing cells were motile, but travel at half

the speeds by comparison to mock LDs [17]. With GFP-tagged

DII-corewt expressing cells, we observed a similar pattern, and

showed that DII-corewt coated LDs traveled with an average speed

of approximately 40.3 nm/sec compared to LDs in mock-treated

Huh-7 cells, which traveled at 67.2 nm/sec (Table 1). To compare

these values, we divided the average speeds of DII-corewt coated

LDs by LDs in mock cells and observed a ratio of 0.60. To

illustrate these changes more clearly, a representative image was

captured from a time-course movie (Figure 2A–C, arrowheads)

that tracked spatially unique LDs under different expression

conditions within the same field of view. For example, the general

trajectories of LD mobility for individual DII-corewt coated and

non-coated LDs in the same cell are illustrated (Figure 2D, box 1

vs box 2, inset 1 vs inset 2). As expected, non-coated LDs travelled

a longer distance. Additionally, LDs in an adjacent non-expressing

cell traveled further than LDs that are bound to DII-corewt

(Figure 2D, box 3 and inset 3). Furthermore, the presence of HCV

non-structural proteins, which are recruited to LDs during the

viral lifecycle and are required to form the membranous web [54],

do not affect the ability of DII-corewt to induce changes in LD

speeds and travel distances (Figure S1).

The Binding Strength of DII Dictates the Overall LD Mean
Speeds and Travel Distances

Since DII-corewt can modulate LD mobility, we postulated that

single amino acid modifications targeting the interaction between

DII-core and LD interface could variably affect LD dynamics. To

evaluate this, we mutated glycine 161 (G161) of the DII second a-

helix to alter hydrophobicity, since it is conserved among all six

HCV genotypes and is predicted to lie within the cytosol-lipid

interface [28,55,56]. We have found that increasing the hydro-

phobicity of residue 161 increases the binding strength, while a

hydrophilic substitution decreased binding strength of DII-core to

LDs (Filipe et al., manuscript in preparation). To ensure that the

DII-core161 mutations did not disrupt targeting, we first evaluated

whether these DII-core161 mutants colocalized with LDs in Huh-7

cells. As shown in Figure 3, GFP-tagged DII-core161 mutants

colocalized with LDs, and induced LD migration to the

perinuclear region, as is observed for DII-corewt. Expression of

these mutants also increased LD volumes 3–5 fold.

To investigate the effect of LD binding strength of DII-core on

LD dynamics, we next determined LD speeds of the G161

mutants. Generally, cells expressing DII-core161 mutants with

large hydrophobic side chains had slower LD mean speeds than

wt; however, all were consistently lower than the mean LD speeds

of their mock samples (Table 1). DII-coreG161F, for example,

exhibited approximately half the mean LD speed of mock, with a

ratio calculated to be 0.47. Conversely, mean LD speeds of DII-

coreG161S and DII-coreG161A were faster than wt, with both ratios

calculated to be 0.77. The LD mean speeds measured for DII-

core161 mutant expressing cells gave a general trend that appeared

to depend upon the binding strength of DII with LDs (Table 1).

Similar to what was observed for DII-corewt, populations of

core-coated and naı̈ve LDs also exist within DII-core161 mutant

expressing Huh-7 cells. Therefore, we can directly measure LD

trajectories of differential travel distances for individual LDs within

the same cell, depending on whether the LD is bound to DII-

core161. We used DII-coreG161F expressing Huh-7 cells as a

representative image to evaluate both LD populations (Figure

S2A–C). The trajectories of DII-coreG161F coated LDs ultimately

traveled shorter distances compared to non DII-coreG161F coated

LDs within the same cell (Figure S2D, box 1 vs box 2, inset 1 vs

inset 2). Correspondingly, LDs in non DII-coreG161F expressing

cells also resulted in longer travel distances (Figure S2D, box 3 and

inset 3). These observations show that the LD mean speed and

mean travel distances are affected only upon direct binding to DII-

coreG161F.

Lower Frequency of High Velocity Travel Runs and High
Frequency of Pauses Contribute to Slower Mean Speeds
for DII-core Coated LDs

To investigate DII-core’s induced suppression of the mean LD

speed, we explored the frequency of low to high instantaneous

velocities of DII-corewt coated LDs compared to LDs in mock

Lipid Droplet Velocity Changes by HCV Core-DII

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e78065



cells. Since dynein and kinesin motors mediate cargo transport in

opposite directions, measured LD velocities can provide informa-

tion about whether the mobility of DII-corewt coated LDs travel

more frequently towards one direction, and thus, reveal differen-

tial activity between the two motors. The trajectories of individual

LDs were tracked using the center of the nucleus as a fixed point

Figure 2. DII-corewt coated LDs are particle tracked using simultaneous TPF and DIC microscopy. This is a representative image of DII-
corewt expressed in Huh-7 cells. Three individual LDs with dissimilar environments were selected (A–C, white arrows), and their trajectories were
measured to calculate the overall distances traveled. (D) A larger DIC image of (B) includes boxes to identify each LD trajectory (inset 1–3). The value
above each box (D) indicates their overall travel distances for (1) DII-corewt coated LD, (2) non DII-corewt coated LD within the same cell, (3) and a LD
in an adjacent cell not expressing DII-corewt. Each LD trajectory is magnified to demonstrate the LD track with selective freeze frame time-intervals
representing the LD position at their indicated times. Due to frequent bidirectional movements, the displayed trajectories represent a general
movement path, and does not portray total distance. All of the LDs are tracked according to the same start and end time. All scale bars represent
10 mm.
doi:10.1371/journal.pone.0078065.g002
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relative to the position of the LD. LD travel runs that were

directed towards the MTOC (retrograde manner) were identified

as negative displacement, while LDs that moved away from the

MTOC (anterograde motion), were identified as having positive

displacement (Figure 4A–B). The differential velocity profiles were

then segregated into low (15.7–50 nm/sec), medium (50–180 nm/

sec), and high velocity (.180 nm/sec) travel runs (Figure 4C–D).

LD particle tracking in both directions revealed that the frequency

of high and medium velocity travel runs for DII-corewt coated LDs

was lower when compared to LDs from the mock sample

(Figure 4C). This is represented as a ratio for the frequency for

DII-corewt coated LDs divided by LDs from the mock, with similar

ratios determined for both directions. For example, at high

velocity travel runs, the ratios were calculated to be 0.47 for the

anterograde direction, and 0.48 for the retrograde direction

(Figure 4C). The differential frequencies for the high and medium

velocities were also consistent with DII-corewt coated LDs in Huh-

7 cells expressing a subgenomic replicon of HCV (Figure 4D).

Therefore, the shorter travel distances of DII-corewt coated LDs is

reflected in the lower frequency of high velocity travel runs, and is

independent of the presence of non-structural HCV proteins that

are involved in membranous web formation and viral replication.

Next, we investigated the differential velocity profiles for the

DII-core161 mutant coated LDs to determine if binding strength is

reflected in the frequency of high velocity travel runs. As shown in

Figure S3, high velocity travel runs were less frequent for DII-

core161 mutant coated LDs, with relative differences in ratios

corresponding to their expected LD binding strength. This was

clear for the highest binding strength mutant DII-coreG161F, with

ratios of 0.32 and 0.31 for retrograde and anterograde velocities,

respectively (Figure S3A). Reduced strength of binding to LDs, as

seen with the DII-coreG161S mutant, demonstrated the highest

ratios of 0.95 and 0.83 for retrograde and anterograde velocities,

respectively (Figure S3D). Overall, distances traveled by mutant

DII-core161 coated LDs appear to correlate with relative frequency

of high velocity LD travel runs.

While observing LD transport, we found that not only do LDs

travel at various velocities, but they also appear to pause in a

stalled state. We postulated that higher frequencies of LD pauses

can also contribute to smaller mean distances traveled by DII-core

coated LDs. To establish the minimal threshold that would

identify LD movement by active transport, we used a microtubule

depolymerizing drug, nocadazole, which halts motor protein

dependent active transport. We have previously reported that LDs

in cells treated with nocadazole were found to move at

approximately 15.7 nm/sec [17]; velocities below this threshold

were characterized as pauses (Figure 4, Figure S3), and LD

movement above this speed was placed in a range of low, medium,

or high velocity travel runs. In general, pauses were more frequent

for all DII-core161 mutants and DII-corewt coated LDs compared

to mock controls (Figure S3A–D). Since LDs are often observed to

move back and forth in opposite directions, we further calculated

the frequency of directional switches. We observed no clear trend

that correlated directional switches with LD binding strength (data

not shown). Therefore, the higher pause frequency for DII-core

coated LDs, and not frequency of directional switching, is likely to

contribute to the shortening of mean LD travel distances and

mean LD speed.

DII-core bound LDs Spend Equal amounts of Time
Traveling in both the Retrograde and Anterograde
Direction

We have previously used live-cell imaging by CARS and DIC

microscopy to visualize the ability of full-length core protein to

induce LD migration towards the perinuclear region associated

with HCV replication and assembly [17]. Based on these data and

published work by Boulant et al., it was suggested that core may

directly or indirectly favor a molecular motor imbalance by

perturbing the mechanics of one motor over the other [35]. Since

expression of full-length and DII-core induces LD migration

towards the perinuclear region, a molecular motor imbalance

should drive a greater frequency of travel runs in the retrograde

direction. For this reason, we counted the total frequency of travel

runs for one direction that combined low, medium, and high

velocity travel runs. However, the frequency of travel runs for wt

and mutant DII-core coated LDs were similar in both directions

over our four minute time course (Figure S3E). Finally,

directionality of LD travel was assessed against cytoplasmic

location, relative to the nucleus, since DII-core coated LDs were

also observed to be scattered throughout the cell (Figure S4). Cells

were divided into regions, as shown in Figure 5C, with regions

identified as close to the perinuclear region (close), middle of the

cytoplasm (mid), and in the cell periphery (far). However, a trend

was not observed for wild-type and mutant DII-core coated LD

velocities. This suggests that at time of analysis, movement of DII-

core coated LDs travel equally in both directions and is unrelated

to its location in the cell, except when the LDs reach the

perinuclear region. Although our time measurements last approx-

imately four minutes, we have included a large data set and

statistics measured from all regions of the cell. Importantly, we

wanted to measure the movement of LDs at a particular stage

during core expression, before core induces LD accumulation in

the perinuclear region. While it is difficult to normalize our data to

Table 1. Mean speeds and travel distances of DII-core coated LDs compared to LDs in [mock transfected] Huh-7 cellsa.

Construct Distance traveled (mm) Mean speed (nm/s) Ratio

Wild-type (n = 39) [n = 138] 9.761 [16.260.6] 40.363 [67.262] 0.60

G161F (n = 51) [n = 53] 5.860.4 [12.460.7] 24.362 [51.763] 0.47

G161L (n = 19) [n = 60] 7.460.8 [12.860.8] 30.863 [53.363] 0.58

G161S (n = 39) [n = 46] 8.960.7 [11.560.6] 36.863 [47.763] 0.77

G161A (n = 51) [n = 50] 10.260.9 [13.160.8] 42.264 [54.563] 0.77

aThe mean speeds and overall travel distances of LDs are compared in DII-core expressing Huh-7 cells and LDs in mock cells (enclosed in square brackets). The error
represents standard error of the mean. The n represents the number of LDs from eight or more cells in different fields of view, assessed by particle tracking for both
mutant (enclosed in round brackets) and mock samples (enclosed in square brackets). Live-cell imaging was conducted for duration of four minutes acquiring each
frame at rate of 1.65 sec/frame. To minimize variability for LD speeds, all of the experiments that directly compared DII-core coated LDs to LDs in a mock sample were
observed in cells of the same biological replicate. The ratios were calculated by dividing the mean speed of DII-core coated LDs by LDs in the mock cells.
doi:10.1371/journal.pone.0078065.t001
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48–72 hours during the time span of infection, LD mobility

measurements required video-rate imaging that is attainable over

a shorter time course with averaging of many trials.

LDs at the Extreme Perinuclear Region Demonstrate
Limited Mobility

Two general localizations of DII-core coated LDs were revealed

by CARS and DIC imaging for wild-type and all the DII-core

mutants: scattered throughout the cell (Figure S5, white arrow-

heads), and tightly aggregated in the perinuclear region (Figure S5,

red arrowheads). Perinuclear LD aggregation was not observed in

Figure 3. Simultaneous CARS and TPF microscopy captures LD changes induced by single amino acid mutations in GFP-tagged DII-
core161 expressing Huh-7 cells. All images were collected approximately 20 hours after Huh-7 cells were transfected with (A) DII-coreG161F, (B) DII-
coreG161L, (C) DII-coreG161S, and (D) DII-coreG161A. CARS imaging identifies DII-core161 induced LD biogenesis and redistribution towards the
perinuclear region under the expression of all DII-core161 mutants (A–D, panel 4, arrowheads). The two values in panel 2 represent the average LD
volume for cells expressing DII-core161 (top value, double asterisks) and non-expressing DII-core161 cells (single asterisks) within the same field of view
(bottom value) as measured by voxel analysis. The error represents standard error of the mean. The n represents the number of cells that were
quantified for LD density. This experiment was conducted under two biological replicates. Panel 4 is a magnified image selected by a region of
interest from the merged image to project a clearer view of colocalization between DII-core161 mutants and LDs. The scale bar represents 10 mm.
doi:10.1371/journal.pone.0078065.g003

Lipid Droplet Velocity Changes by HCV Core-DII
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mock cells, where LDs were generally observed to be scattered

throughout the entire cell. Up until this point, particle tracking was

focused on DII-core coated LDs scattered throughout the cell to

investigate dynamics of LD mobility resulting from differential

binding strengths of DII-core. Therefore, using DII-coreG161A as a

representative image, we measured the velocities of the perinuclear

aggregates (Figure 5G). We found that these large LD aggregates

were tightly localized together and had limited mobility

(Figure 5C&G). In contrast, DII-core coated LDs outside of this

region experienced bidirectional travel runs (Figure 5D–F). These

observations suggest that, although DII-core coated LDs remain

mobile at areas outside the perinuclear region, mobility is

abrogated once they reach the perinuclear region.

Discussion

Molecular motors, such as dynein and kinesin, function by a

mechanoenzyme core containing ATPase activity that facilitates

active transport along the plus-end (towards cell periphery) and

minus-end (towards nucleus) of microtubules [15,57]. Upon entry,

viruses are capable of binding to molecular motor proteins that

move on microtubules to achieve transport. This is common for

adenovirus, herpes simplex virus (HSV), and human immunode-

ficiency virus (HIV), which have capsid and tegument viral

proteins on the surface of their viral particles that, upon entry into

the cell, bind and travel by motor-induced transport to ensure that

viral particles are properly delivered to specific cellular regions to

establish infection [58,59,60,61,62]. Likewise, HCV is able to

directly use the microtubule network upon cell entry [63], as well

as indirectly after viral RNA translation whereby viral proteins are

the likely components that mediate interactions with motor

proteins [37]. As such, the binding of HCV core protein to LDs

is critical in manipulating LD transport towards the perinuclear

region, and is required in the early stages of viral assembly [35].

However, our understanding of core-induced modulation of

dynamic LD trafficking is limited.

DII-core Coated LD Dynamics
LDs migrate towards the perinuclear region as early as 20 hours

post-expression of core protein [17,35]. Based on this evidence, we

aimed to capture the dynamics of LD motions just prior to this

time point at a pertinent stage when LDs are targeted by DII-core

Figure 4. DII-corewt coated LD velocities measured in naı̈ve Huh-7 cells and Huh-7 cells stably expressing an HCV subgenomic
replicon. (A–B) Average representative measurement of a much larger data set, LD velocities in retrograde or anterograde directed transport are
measured in Huh-7 cells expressing (A) DII-corewt and (B) mock transfected. The velocity amplitudes at each time point are divided into parameters of,
low, medium, and high velocities for both directions. The pink parameter line is indicated by a paused event, which was determined by obtaining the
average speed of LDs from nocadazole treated Huh-7 cells. (C–D) The frequency of low (15.7 nm/sec –50 nm/sec), medium (50.1 nm/sec –180 nm/
sec), and high velocity (.180.1 nm/sec) measurements, expressed as a percentage, in both directions, are plotted after particle tracking LDs in DII-
corewt expressing (C) Huh-7 cells, and (D) Huh-7 cells harbouring an HCV subgenomic replicon. The velocities are measured for DII-corewt coated LDs
in DII-corewt expressing cells, and LDs from mock cells not expressing DII-corewt. The ratios above each set of columns are calculated by dividing the
frequency for each velocity interval of DII-corewt coated LDs by their respective mock LDs.
doi:10.1371/journal.pone.0078065.g004
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for viral induced trafficking. In this study, molecular imaging was

used to track LD trajectories in live hepatocytes in the presence

and absence of bound DII-core protein, as well as bound mutant

DII-core having variable binding strength to LDs. As seen with

full-length core [17], expression of wt and G161 mutant GFP-

tagged DII-core protein colocalized with LDs and induced LD

migration to the perinuclear region (Figure 1D and Figure 3A–D).

Supporting earlier evidence of full-length core’s ability to modulate

LD dynamics [17], LDs coated with wt and mutant DII-core

showed slower mean speeds and a decrease in mean travel

distances (Table 1). In this work, the ability to directly compare

naı̈ve and GFP-tagged DII-core coated LDs was imperative in

understanding finer details LD dynamics, such as decreased high

velocity travel runs and more pauses for DII-core coated LDs

compared to LDs in cells not expressing DII-core (Figure 4 and

Figure S3).

Mutations in DII-core that impact protein structure and/or LD

affinity influence viral assembly and, hence, virion production

[44,45,64]. Since core mobility, as reflected in its ability to

associate and be released from the LD, appears to be important for

virion assembly [45], we investigated mobility of LDs bound to

DII-core containing mutations at a glycine residue predicted to lie

at the membrane interface [55]. We have found that mutations at

G161 impacted DII-core LD binding strength with respect to the

hydrophobicity of the residue (Filipe et al., manuscript in

preparation). Similarly, our results revealed a trend in LD mobility

ranging from slower speeds and decreased travel distances when

the LD binding strength of DII-core is increased (Table 1). This

trend of reduced mobility upon increased LD binding appears to

follow the whole residue free energies determined for the transfer

from water to a unilamellar vesicle interface (reported in [65]).

Furthermore, distances traveled by mutant DII-core161 coated

LDs correlated with relative frequency of high velocity LD travel

Figure 5. Tracking LD mobility at distinct locations of the cell. While all of the mutants were tracked accordingly, Huh-7 cells expressing DII-
coreG161A is a representative image acquired from a large data set. Huh-7 cells expressing DII-coreG161A is shown as (A) a merged image of DIC and
TPF, and (B) TPF. DII-coreG161A coated LDs are selected, and indicated by the arrows, to demonstrate fluorescence overlap between TPF and DIC. (C)
LDs localized at different areas within the transfected cell (green outline) were segregated into regions relative to the center of the nucleus, such as
close (orange shading), mid (blue), and far (no shading). Each black arrow represents a DII-coreG161A coated LD for each of the segregated region, and
the velocities were measured for each direction in the close (D), mid (E), far (F) regions. The red arrow selects for a region of dense LDs in the
perinuclear region with higher levels of DII-coreG161A. (G) The velocity of the LD, identified by the red arrow was measured. All scale bars represent
10 mm.
doi:10.1371/journal.pone.0078065.g005

Lipid Droplet Velocity Changes by HCV Core-DII

PLOS ONE | www.plosone.org 8 November 2013 | Volume 8 | Issue 11 | e78065



runs. These results suggest that the greater the time DII-core

protein spends on the LD surface, the greater LD dynamics

deviate from normal. Consistent with this, Counihan et al. also

observed that core coated LDs decreased in their motility [66].

Previous mutations in this region of core have been shown to be

critical in viral particle assembly [64]. Our results suggest that

core’s LD binding strength and effect on LD speed may play a role

in virion assembly.

Bidirectional Movement of DII-core Coated LDs
Current models propose that both dynein and kinesin remain

associated with cargo during transport, even if only one motor is

active [12,16,67]. Our data supports bidirectional movement for

both naı̈ve and DII-core coated LDs, which confirms that both

molecular motors remain bound and functional (Figure 4 and

Figure S3). Bidirectional movement was observed for both wt and

mutant DII-core coated LDs, which suggests that overall

directional movement initiated by core is likely not based on LD

binding strength. Furthermore, the prevalence of retrograde and

anterograde directed transport of DII-core coated LDs was equally

observed (Figure S3E). Since we showed localization of LDs to the

perinuclear region, as well as equal bidirectional movements, it is

unlikely that motor imbalance is the sole cause for core-mediated

LD localization to the perinuclear region of the cell. It is possible

that our imaging experiments over a four minute time course was

too short to adequately capture an imbalance between active

motors. However, since we observed many LDs at different

locations within the cell, it is possible that perinuclear localization

is driven by detachment from microtubules at the destination

rather than a dramatic change in motor protein function.

Perinuclear localization and bidirectional movement is not

limited to core-bound LDs, since it has been shown for other

pathogens as well. For example, Suomalainen et al. demonstrated

that despite observation of bidirectional motions, overall net

movement of newly entered adenovirus particles was directed

towards the perinuclear region [68]. The authors showed that

localization to the perinuclear region was dependent on transient

activation of protein kinase A (PKA) and the p38/mitogen-

activated protein kinase (MAPK) pathway. Similar mechanisms

may be involved in core protein induced perinuclear localization

and bidirectional movement of LDs, since core expression has

been shown to activate the p38/MAPK pathway in hepatocytes

[69,70,71].

DII-core Limits LD Mobility within the Perinuclear Region
We highlighted important dynamics of core-directed mobility

for DII-core coated LDs, and demonstrated that bidirectional

motion is observed for all other DII-core coated LDs that are

located outside of the critical perinuclear region (Figure 5). This

prompted us to investigate the movement of LDs within

perinuclear regions that also have higher levels of localized DII-

core protein (Figure 5C & G). Our results revealed minimal LD

movement, indicative of exclusively paused or trapped LDs. The

ability of DII-core to limit LD mobility within the perinuclear

region could be the result of molecular motor disengagement,

allowing DII-core coated LDs to accumulate. Indeed, Miyanari

et al. reported that LDs are required at the replication and

assembly sites [49], where LD accumulation could effectively link

early and late viral assembly stages.

Alternatively, DII-core coated LDs may be stabilized in the

perinuclear region by the recruitment of additional host proteins.

One method of stability could be mediated through hijacking the

autophagic pathway that forms aggresomes within sites of

replication and assembly [72,73]. The accumulation of aggre-

somes sequestered around the MTOC could prevent motors from

binding and result in densely packed LDs that are stabilized

without accessible motor proteins. Alternatively, host proteins that

are recruited to LDs by core protein at the perinuclear regions

may play a role in stabilizing LDs at these sites. Recently, a subunit

of host clathrin adaptor protein complex 2 (AP2M1) has been

shown to bind core by recognizing a highly conserved tyrosine-

based sorting signal along the DII region [74]. These proteins sort

intracellular cargo via a clathrin adaptor and can mediate

endocytic functions. Importantly, interference of the AP2M1-core

interaction prevents viral assembly [74]. The same AP2M1

binding motif was also identified in the region of the viral E1

glycoprotein. Such a feature supports the idea that AP2M1 is

recruited to LDs via DII of core protein, and likely mediates

intracellular trafficking of core to sites of assembly where E1 and

E2 proteins reside, prior to the envelopment of the viral particle.

This engagement can possibly stabilize the LD from being bound

to motor proteins once LDs reach this critical area at the

perinuclear region.

Aggregation of DII-core coated LDs in the perinuclear region

may also result in disconnection from normal metabolic processes.

The increased LD volume detected in the periphery of wt and

mutant DII-core expressing cells is consistent with a reduction in

core-induced TG turnover in LDs, opposed to TG synthesis, as

previously determined by Harris et al [75]. Based on our

identification of restricted LD mobility of perinuclear aggregates,

it is tempting to hypothesize that this mechanism of aggregation

could further limit normal lipid turnover. We have also recently

shown that DII-core is sufficient to initiate a significant change in

NAD(P)H levels, as measured by fluorescence lifetime imaging,

which may also influence LD biogenesis and localization (71).

Conclusions

In this study, we have revealed insight into HCV core protein’s

dynamic control of LD migration. We showed that DII-core

causes a decrease in LD speed similar to full-length core, with

limited effect on directionality within the time frame of our

experiments. We also found that the binding strength of DII-core

further impacted LD mobility, indicating that DII-core has a

temporal impact on the LD with respect to time associated with

the LD. Moreover, the observed bidirectional transport of DII-

core coated LDs may suggest that additional host proteins are

essential in directing transport of core-coated LDs, and these

potential interactions will be the focus of future studies.

Nevertheless, live-cell imaging has revealed several novel aspects

of core-induced LD mobility.

Materials and Methods

Tissue Culture
Human hepatoma cells (Huh-7) were grown in DMEM medium

supplemented with 100 nM nonessential amino acids, 50 U/mL

penicillin, 50 mg/mL streptomycin, and 10% FBS (CANSERA,

Rexdale,ON). Huh-7 cells harboring the pFK-I389neo/NS3-39/

5.1 subgenomic replicon were maintained in the same culture

medium supplemented with 250 mg/mL G418 Geneticin

(GIBCO-BRL, Burlington, ON). The pFK-I389neo/NS3-39/5.1

subgenomic replicon was kindly provided by Ralf Bartenschlager

(University of Heidelberg, Germany).

Overexpression of HCV DII-core Protein
Huh-7 cells were seeded at 8.06104 cells/well in borosilicate

Lab-Tek chambers (VWR, Mississauga, ON). After 24 h, at a
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confluency of 60–70%, cells were transfected with plasmids that

expressed wild-type (wt) and mutant DII-core suspended in

transfection media including lipofectamine 2000 (Invitrogen

Canada Inc., Burlington, ON). After 4 h, DMEM in 20% FBS

was added in equal volume to the chambers. Details of the GFP-

tagged DII-corewt construct are described elsewhere [47].

QuikChange site-directed mutagenesis (Stratagene) and primer

design were performed according to the manufacturer’s guidelines,

and confirmed by sequencing.

Coherent Anti-Stokes Raman Scattering, Two-photon
Fluorescence and Differential Interference Contrast
Microscopies

The CARS microscopy system employed a single femtosecond

Ti:sapphire oscillator as the excitation source, as previously

described [51,52]. An Olympus FV300 laser scanning microscopy

system on an IX71 inverted microscope was utilised for imaging

experiments. A 40x Uapo 1.15NA water immersion objective and

a long working distance 0.55 NA condenser were used. The

FV300 was adapted for TPF. Source was a Coherent Mira 900

Ti:sapphire laser producing pulses of approximately 100 fs at

800 nm wavelength with an 80 MHz repetition rate. Laser

scanning microscopy can be readily adapted to DIC by taking

advantage of the high inherent polarization in most laser sources.

The DIC optics were adjusted as they would typically be for

transmitted light use: with the prisms removed the condenser

polarizer was adjusted to cross with the objective polarizer. For

laser scanning, the analyzer, which is in a fluorescence cube in the

IX71, was removed from the beam path. To optimally align the

polarization of the laser with that of the microscope optics, a 700–

1000 nm achromatic half wave plate (WPA1212 Casix) was placed

in the laser path before entering the FV300 scan-box. The

polarization of the laser was adjusted by rotating this wave plate to

minimize the amount of light collected through the condenser

polarizer. The DIC prisms were inserted and the path and the bias

of the objective prism adjusted to the optimal image.

Particle Tracking of LDs in Huh-7 Cells
Particle tracking of LD motion for both speed and distance was

captured using spot tracker add-on with ImageJ, as previously

described [17]. The spot tracker followed the light shaded halo

contrast of LDs as a result of changes in refractive index captured

by DIC imaging. The measurement of directional motion was

calculated from a fixed reference point in the center of the nucleus

relative to the LD at each frame.

Quantitative Voxel Analysis
Quantitative data from the CARS images was determined using

a voxel counting routine in ImageJ as previously described

[17,76,77]. In each image, multiple cells within the same field of

view were counted to generate an average percentage of lipid

volume.

Supporting Information

Figure S1 Particle tracking DII-corewt coated LDs in
Huh-7 cells stably expressing an HCV subgenomic
replicon. (A) CARS and TPF microscopy captures colocalization

between DII-corewt and LDs, and captures DII-corewt-induced

LD localization at the perinuclear region. Panel 4 is a magnified

image selected by a region of interest from the merged image to

project a clearer view of colocalization between DII-corewt and

LDs. (B) Particle tracking DII-corewt coated LDs and LDs in mock

cells not expressing DII-corewt. The overall mean travel distance

and mean speeds were measured. The ratio is calculated by

dividing the mean speed of DII-corewt coated LDs by LDs from

the mock sample. The n represents the number of LDs that were

particle tracked. Live-cell imaging was conducted for duration of

four minutes with each frame interval acquired at 1.65 sec/frame.

All scale bars represent 10 mm.

(TIF)

Figure S2 DII-coreG161F coated LDs are particle tracked
using simultaneous TPF and DIC microscopy. This is a

representative image of DII-coreG161F expressed in Huh-7 cells.

Three individual LDs with dissimilar environments were selected

(A–C, white arrows), and their trajectories were measured to

calculate the overall distances traveled. (D) A larger DIC image of

(B) includes boxes to identify each LD trajectory (inset 1–3). The

value above each box (D) indicates their overall travel distances for

(1) DII-coreG161F coated LD (2) non DII-coreG161F coated LD

within the same cell, (3) and a LD in an adjacent cell not

expressing DII-coreG161F. Each LD trajectory is magnified to

demonstrate the LD track with selective freeze frame time-

intervals representing the LD position at their indicated times. Due

to frequent bidirectional movements, the displayed trajectories

represent a general movement path, and does not portray total

distance. All of the LDs are tracked according to the same start

and end time. All scale bars represent 10 mm.

(TIF)

Figure S3 LD velocities are measured in Huh-7 cells
expressing DII-core161 mutants. (A–D) The frequency of

pauses (,15.7 nm/sec), low (15.7 nm/sec –50 nm/sec), medium

(50.1 nm/sec –180 nm/sec), and high velocity (.180.1 nm/sec)

measurements, expressed as a percentage, in both directions are

plotted for LDs in cells expressing (A) DII-coreG161F, (B) DII-

coreG161L, (C) DII-coreG161A, (D) DII-coreG161S. The ratios above

each set of columns is calculated by dividing the frequency for

each velocity interval of DII-core coated LDs by their respective

mock LDs. (E) The total frequency of retrograde, anterograde, and

pauses were also collected and presented as a fold-change

measurement that compared LDs in all DII-core161 mutants with

each of their respective mocks.

(TIF)

Figure S4 Frequency of LD velocities at three different
regions in Huh-7 cells expressing DII-coremut and in the
mock. The average frequency of low, medium, and high velocity

runs for each direction was calculated for LDs bound to (A) DII-

corewt, (B) DII-coreG161F, (C) DII-coreG161L, (D) DII-coreG161S, (E)

DII-coreG161A. The data was separated according to where the LD

was located at a position that was relative to the nucleus, either at a

close, medium, or far location.

(TIF)

Figure S5 Two populations of DII-coreG161A coated LDs
was observed. This is a representative image with a pattern that

is typically observed in all other DII-core constructs. The white

arrow represents a LD population of individual LDs that are

bound to DII-coreG161A. The red arrow corresponds to tightly

packed LDs with a high abundance of DII-coreG161A colocalized

at the same region. Individual LDs are indistinguishable at this

region. All scale bars represent 10 mm.

(TIF)
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