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Abstract

Malignant astrogliomas are among the most aggressive, highly vascular and infiltrating tumours bearing a
dismal prognosis, mainly due to their resistance to current radiation treatment and chemotherapy. Efforts to
identify and target the mechanisms that underlie astroglioma resistance have recently focused on candidate
cancer stem cells, their biological properties, interplay with their local microenvironment or ‘niche’ and their
role in tumour progression and recurrence. Both paracrine and autocrine regulation of astroglioma cell behav-
iour by locally produced cytokines such as the vascular endothelial growth factor (VEGF) are emerging as
key factors that determine astroglioma cell fate. Here, we review these recent rapid advances in astroglioma
research, with emphasis on the significance of VEGF in astroglioma stem-like cell biology. Furthermore, we
highlight the unique DNA damage checkpoint properties of the CD133-marker-positive astroglioma stem-like
cells, discuss their potential involvement in astroglioma radioresistance and consider the implications of this
new knowledge for designing combinatorial, more efficient therapeutic strategies.
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Introduction

Considering their poor prognosis and resistance to
chemotherapy and radiotherapy, brain tumours in
general, and high-grade astrogliomas in particular,
are among the most devastating types of human 

cancer. At the cell population level, brain malignan-
cies are typically heterogeneous lesions composed
of cells with diverse morphologies that express a
variety of neural lineage markers. Prognosis and
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response to treatment differ significantly not only
among histologically different brain tumours, but also
among those that appear similar in terms of morphol-
ogy and patterns of phenotypic markers. This notori-
ous heterogeneity of brain tumours likely facilitates
development of treatment-resistant clones, a process
that is further fuelled by the ability of astroglioma
cells to shift between quiescent and proliferating
states [1]. Given such unusual plasticity and the fright-
ening rate of treatment failure, it is now commonly
believed that treatment outcome and hence patients’
survival can only improve if the biology of the brain
cancer cell populations is better understood.

Classification of adult brain tumours is based on
the World Health Organization (WHO) classification
of nervous system tumours [2]. The WHO grading of
astrocytomas establishes a malignancy scale based
on histologic features of the tumour. The histological
grades are as follows: WHO grade I includes lesions
with low proliferative potential, a frequently discrete
nature, and the possibility of cure following surgical
resection alone. WHO grade II lesions are generally
infiltrating and display low mitotic activity but recur.
Some lower-grade lesions tend to progress to higher
grades of malignancy. WHO grade III includes lesions
with histological evidence of malignancy, generally in
the form of mitotic activity, clearly expressed infiltra-
tive capabilities, and anaplasia. WHO grade IV
lesions are mitotically active, necrosis-prone and
commonly associated with a rapid pre-operative and
post-operative evolution of disease. The most malig-
nant types of astrogliomas are anaplastic astrocy-
toma (grade III astrocytoma) and glioblastoma multi-
forme (GBM, grade IV astrocytoma). In this article,
we commonly use the general term astrogliomas for
simplicity, yet our discussion mainly concerns the
grade III and particularly grade IV tumours.

One of the key features of astrogliomas, affecting
their biological and clinical behaviour, is dense vas-
cularization. Since the introduction of the concept of
an ‘angiogenic switch’ as a pivotal component of
tumour growth and metastasis by Folkman et al. [3],
multiple therapies targeting the molecular regulators
of this mechanism have been tested with variable
clinical efficacy. Despite such mixed initial results,
anti-angiogenic therapy is regarded as a promising
treatment strategy, and various pre-clinical experi-
mental approaches targeting neovascularization
turned out to be effective in vivo. For example, one
study showed that systemic therapy with a mono-

clonal antibody against vascular endothelial growth
factor receptor 2 (VEGFR2) inhibited tumour growth
in mice by some 80% [4]. The ligand that operates
through VEGFRs to promote tumour angiogenesis is
VEGF, a versatile regulatory cytokine that is aber-
rantly up-regulated in a wide range of tumour types
and acts as a potent modulator of tumour growth and
metastasis in numerous pre-clinical tumour models
[5]. Particularly relevant to this review, several pieces
of evidence indicate prognostic significance of VEGF
in high-grade astrogliomas [6–8]. In this article, we
highlight the emerging role(s) of VEGF signalling in
astroglioma biology, including the possible links with
DNA damage checkpoints in response to radiation
treatment. Furthermore, we postulate and discuss a
hypothetical function of autocrine VEGF signalling in
regulation of the so-called brain tumour-derived can-
cer stem-like cells (BTCSC) and their intriguing
resistance to therapy.

Adult brain – a dynamic structure 

with active stem cells?

Unlike the early-stage embryonic brain harbouring
large numbers of neural stem and progenitor cells,
the adult brain is mainly composed of highly differen-
tiated and specialized cell types, including neurons,
glia (oligodendrocytes, astrocytes, microglia, ependy-
mal cells), vascular endothelium and meningeal cells
[9]. Over the past century, the brain has traditionally
been viewed as static with respect to its very limited
turnover and regenerative capacity. However, it has
recently become clear that neurogenesis continues
into adult life in restricted germinal zones [10–13]. A
small percentage of quiescent cells present in the
adult hippocampal dentate gyrus (sub-granular zone,
SGZ), sub-ventricular zone of the lateral ventricles
(SVZ) and olfactory bulbs are undifferentiated and
multipotent neural stem cells (NSC) capable of self-
renewal [14–15]. These stem cells divide to generate
rapidly cycling transit-amplifying cells with a limited
proliferation and differentiation potential. The transit-
amplifying cells give rise to restricted progenitor cells
undergoing terminal differentiation [16].

In the 1970s, an idea of specific anatomical loca-
tions termed ‘niche’ was first suggested on the basis
of transplantation studies of haematopoietic progen-
itors. It has been hypothesized that other types of
somatic stem cells reside in analogous ‘niches’ [17].
In the adult mammalian brain, we are just beginning
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to identify the cellular and molecular features that
characterize the neurogenic ‘niches’ in the SVZ and
SGZ, and the mechanisms by which the full range of
adult NSC development is regulated. NSCs are
grown in vitro either as neurospheres in suspension
or as an adherent monolayer [18]. Some of the cells
within the neurospheres proliferate as multipotent,
self-renewing NSCs upon stimulation with either epi-
dermal growth factor (EGF) or basic fibroblast growth
factor (bFGF) [18]. The NSCs residing in the adult
human brain are attractive candidates for isolation, in
vitro expansion and autologous transplantation to
replace neurons lost to neurodegenerative diseases,
stroke and traumatic brain injury [19].

Cancer stem-like cells 

in brain tumours

Recently, a small population of cancer stem-like cells
(CSCs) has been identified in adult and paediatric
brain tumours, as well as in established cell lines
[20–24]. These cells express a number of NSC mark-
ers including CD133, a cell surface protein which is
extensively exploited for enrichment of stem-like cells
using fluorescence activated cell sorting (FACS)
and/or magnetic bead separation, thereby providing
cells to be examined in diverse applications [25–26].
The human CD133 antigen, also known as AC133,
was originally identified as a marker of haematopoi-
etic stem cells, however its function has remained
unclear [27]. A characteristic feature of the CD133
protein is its rapid down-regulation during cell differ-
entiation [28–29], which makes it a cell surface mark-
er uniquely suited for the identification and isolation
of stem-like and progenitor cells. Besides expressing
the CD133 antigen, CSCs express mRNAs for several
additional recognized NSC markers, including bmi-1,
Sox2 and musashi-1 [21].

Inspired by identification of cancer stem cells from
leukaemia and breast cancer [29–31], BTCSCs were
reportedly successfully cultured according to the fol-
lowing criteria: (i ) Expression of NSC markers
CD133 and nestin; (ii ) Generation of spheres morpho-
logically indistinguishable from neurospheres; (iii )
Self-renewal and proliferation and (iv) Production of
differentiated progeny in vitro or recapitulation of the
parental tumour mass growth when implanted into

immunodeficient animals [20–22, 24, 32–33]. As few
as 100 CD133-positive human cells were sufficient to
form brain tumours as xenografts in NOD-SCID mice
[22]. Importantly, the CD133-positive BTCSCs also
exhibit high resistance to current chemotherapy and
radiotherapy, in contrast to their CD133-negative
counterparts [33–34], an intriguing difference dis-
cussed in more detail later in this article. Among the
unresolved questions of BTCSCs’ biology is also
whether, or to what extent, do the CD133-positive
BTCSCs require interaction with the CD133-negative
bulk sub-population of cells. Another largely open
issue concerns the emerging role of the local
microenvironment in supporting the maintenance of
these candidate CSCs within tumour mass. As dis-
cussed below, identification of CD133-positive
BTCSCs and attempts to understand their biology
provide powerful new tools and approaches to better
understand tumourigenesis in the CNS, a research
area likely to become crucial in developing novel
therapies based on BTCSCs as a target.

Angiogenesis in astrogliomas

Angiogenesis is a highly regulated process essential
not only in early embryogenesis but also during tis-
sue growth and repair, female reproductive cycle and
diverse pathologies, such as inflammation or tumour
development and progression [35–36]. Localized
breakdown of extracellular matrix (ECM) precedes
proliferation, migration and tissue infiltration of
endothelial cells. In time these cells re-model back
into capillary structures, and a new ECM is deposit-
ed [37]. Highly malignant astrogliomas exhibit striking
angiogenesis and markedly increased expression of
VEGF (Fig. 1). VEGF expression strongly correlates
with tumour aggressiveness, metastatic potential, a
short time to relapse and, consequently, it common-
ly indicates poor prognosis in patients with cancer [6,
38–43]. Recent work [44] identified the BTCSCs to
be a key source of angiogenic factors in brain cancer,
suggesting that anti-angiogenic therapy targeting
these stem-like tumour cell sub-populations might
improve the therapy outcome. Exuberant angiogene-
sis is a key event in astroglioma progression [45–47].
Understanding angiogenesis and its relation to
tumour growth and resistance to therapy is of consider-
able interest, particularly because diffusely infiltrating
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astrogliomas are mostly refractory to current surgical
and adjuvant treatments [48].

Neovascularization in brain tumours correlates
markedly with their enhanced aggressiveness,
degree of malignancy and poor clinical prognosis
and inversely with the post-operative survival time of
patients [49–51]. Newly formed tumour blood vessels
possess an ineffective blood–brain barrier that 
contributes to the pathogenesis of tumour-associat-
ed oedema [52]. The characteristic vascularity of
astrogliomas has lead to a hypothesis that the forma-
tion of new blood vessels is crucial to tumour growth
[53]. Astroglioma cells have angiogenic activities, in
that they promote capillary morphogenesis and
endothelial proliferation in vitro [54].

As mentioned above, the pathologic features that
distinguish GBM from lower grade astrogliomas are
the presence of necrosis with pseudopalisades and
a distinct form of angiogenesis, microvascular hyper-
plasia [54–56]. These palisades are in part caused
by vessel regression [57] and increased tumour cell
proliferation [56, 58]. Analysis of the shapes and
sizes of pseudopalisades suggests that these struc-
tures evolve and enlarge overtime, giving rise to a
gradually expanding coagulative necrosis [59]. Such
features inspired formulation of a vaso-occlusive and
pro-thrombotic model of pseudopalisade formation in
GBM [60]. This emerging concept postulates hypoxic

tumour cells migrating away from the central hypoxia
that arises after a vascular insult. Hypoxia resulting
from such conditions is then thought to induce new
blood vessels that supply the tumour with necessary
metabolites [61]. VEGF is highly expressed in
pseudopalisading tumour cells adjacent to necrotic
zones and hyperplastic vessels in astroglioma. This
phenomenon reflects an elevated transcriptional
activity of hypoxia-inducible factors 1 and 2 (HIF-1
and -2) [62–64]. Secretion of VEGF, in turn, causes
endothelial cell proliferation and angiogenesis followed
by microvascular hyperplasia and formation of
glomeruloid bodies in GBM and other tumours [65–66].

Overexpression of VEGF by tumour cells frequent-
ly occurs not only in response to hypoxia [62, 67], but
also upon loss of function of certain tumour suppres-
sor genes [68–69] and oncogene activation [70].
Under hypoxic conditions, transcriptional regulation
of VEGF is dominated by HIF-1 that, together with its
target genes, plays a key role in astroglioma-induced
angiogenesis [71–72]. Chronic oncogenic stimuli,
such as activated Ras and PI3K pathways appear to
enhance HIF-1� expression and likely contribute to
GBM progression [60, 73]. The proto-oncogene ETS-
1 and the transcription factor STAT3 are also capable
of VEGF induction and/or activation. ETS-1 activates
genes for VEGF receptors, matrix metalloprotease
proteins (MMPs) and urokinase plasminogen activator
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Fig. 1 Immunohistochemical analysis of VEGF expression in a low and high-grade astroglioma. Arrows indicate very
week diffuse VEGF staining in the cytoplasm of astroglial elements of a low grade astroglioma WHO grade II (A), in
contrast to strong cytoplasmic positivity in astroglial elements in a high-grade astroglioma specimen WHO grade IV
(B). Both tumour grades exhibit certain level of cytoplasmic positivity in endothelial elements (arrowheads) (Original
magnification 200x).
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(uPA) [74], all features that can promote angiogene-
sis and tumour progression.

In addition, several cytokines and growth factors
involved in astroglioma pathogenesis, including TGF-�,
EGF, PDGF-B, bFGF, also up-regulate VEGF [48].
Genetic alterations common in astrogliomas, such as
mutational activation of the epidermal growth factor
receptor (EGFR) and loss-of-function mutations of
the PTEN tumour suppressor, lead to enhanced
VEGF expression and increased angiogenic activity
[75–76]. Astrogliomas frequently overexpress EGFR,
and its truncated mutant isoform EGFRvIII has been
implicated in relapse and poor prognosis [77].
Enhanced EGFR signalling can up-regulate VEGF
production in brain cancer, while blockage of EGFR
inhibits secretion of VEGF and other angiogenic fac-
tors [78]. Overall, this accumulating evidence sup-
ports the notion that VEGF plays a central role in the
molecular pathogenesis of astrogliomas and strong-
ly affects the biological behaviour of these tumours.

VEGF and the ‘stem cell niche’

The importance of microvasculature and proper local
microenvironment (‘niche’) including a plethora of
regulatory cytokines and growth factors for the main-
tenance of ‘stemness’ of the normal NSCs is known
[79]. Related critical issues for astrogliomas have
been whether the BTCSCs also depend on their
niche and, if yes, whether the mutual interdependen-
cies of the niche microenvironment and the stem
cells may differ between normal NSCs and BTCSCs.
If such differences exist, the specific features of the
BTCSC-niche interplay might offer potential targets
for novel therapeutic interventions.

There is little doubt that the nature of the niche
microenvironment may represent an important factor
in the behaviour of normal NSCs and CSCs in terms
of their stem cell self-renewal and cell-fate decisions.
The microenvironment composed of the ECM, stem
and progenitor cells, as well as mature, differentiated
cells secreting a range of growth factors seems to be
important in such processes. Balanced microenviron-
mental levels of various mitogens, including bFGF,
EGF and sonic hedgehog (Ssh), support the propa-
gation of adult NSC in culture and appear to perform
similar functions in vivo [80–83]. Histological and 
ex vivo cell culture studies of mouse tissues suggest

that NSC lie within a ‘vascular niche’ in which
endothelial cells regulate stem cell self-renewal
[84–87]. Growth factors, such as VEGF, bFGF, PDGF
and EGF represent the mitogenic and trophic factors
that regulate neurogenesis, while exerting direct neu-
rotrophic and neuroprotective activities [88]. bFGF
together with EGF are crucial growth factors neces-
sary for NSC, as well as for CSC proliferation and
maintenance of their self-renewal properties in vitro
[22, 89–90]. For example, VEGF stimulates neuroge-
nesis both in mouse brain cultures in vitro and in
neuroproliferative regions (Sub-Granular Zone and
Sub-Ventricular Zone) of the non-ischaemic mouse
brain in vivo [91]. Naturally coupled to astrocytes
through astrocytic end-feet, endothelial cells are also
important components of the ‘niche’ structure and
closely co-operate with astrocytes to regulate adult
neurogenesis [84–85]. BTCSCs also interact with
endothelial cells that secrete factors supporting the
maintenance of these cells in stem-like cell state [92].

While current evidence supports the idea of VEGF
as a regulator of neuronal cell fate and a key ingredi-
ent of such stem-cell niche in both, normal brain and
astroglioma scenarios, one possibly important differ-
ence may reflect the plausible role of the VEGF as an
autocrine factor in astrogliomas, as opposed to only
paracrine role under the normal niche conditions.
Tumours known to overexpress VEGF have strong
angiogenic potential which, in turn, could explain the
documented importance of VEGF in astroglioma pro-
gression. Since VEGF and both VEGFRs are co-
expressed in tumour cells in the majority of nascent
primary GBM lesions (Fig. 2), an autocrine role of the
VEGF in GBM might significantly contribute to tumour
growth and invasivity [93–95]. On the other hand, in
contrast to VEGFs well-established paracrine effects
on endothelial cells, less is known about such poten-
tial autocrine role of VEGF in glioblastoma. While
some authors [96] reported that exogenous VEGF
not only stimulates endothelial cells, but also directly
enhances astroglioma cell motility, invasion and pro-
liferation (Fig. 3A), others published virtually opposite
effects [97] and this issue remains controversial.

Despite our effort to understand the stem cell
niche is in its infancy, particularly with regard to the
BTCSC niche and its potential aberrant features,
recent studies in this area are encouraging and sup-
port a crucial role of a perivascular niche for brain
tumour stem-like cells [92, 98]. The emerging signifi-
cance of this concept for development of new
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Fig. 2 Schematic representation of membrane VEGF receptors expressed by astroglial tumour cells. Known receptor
types are indicated and identified ligands/ligand isoforms are listed directly in the figure above. Cell membrane (GC
membrane) receptors of the VEGF tyrosine kinase receptor family consist of seven Ig-like domains, transmembrane
region and an intracellular tyrosine kinase binding domain interrupted by a kinase-insert sequence. The aberrant sFlt-
1 receptor form lacking one Ig-like domain as a result of VEGFR1 truncation is also shown. The neuropilin receptor
acts as a co-receptor for VEGFR2, enhancing binding and biological activity of VEGF165. Ligand binding through elec-
trostatic interactions with specific sequences of sulphation within the HS chains leads to receptor dimerization and
tyrosine domain phosphorylation, thereby activating the corresponding signalling pathway.

Fig. 3 Autocrine and paracrine effects of VEGF signalling in astrogliomas. (A) VEGF secreted by tumour endothelial
cells (orange) induces angiogenesis in an autocrine manner, while VEGF secreted by astroglial tumour cells (pink)
stimulates tumour angiogenesis in a paracrine manner. As reports on other biological effects of the autocrine VEGF
function in astroglial tumour cells are currently contradictory, this aspect remains to be clarified by further studies. (B)
Hypothetical distinct effects of VEGF on the CD133-positive (VEGF secreting and radioresistant [34,44]) versus
CD133-negative (radiosensitive) astroglial cell population. IR-induced VEGF secretion by the CD133-positive astroglial
cells (cancer stem-like cells) could enhance tumour angiogenesis and protection of endothelial cells against apopto-
sis. Furthermore, IR-induced VEGF could modulate proliferation of the CD133-positive cells, thereby regulating their
sensitivity to IR. IR-induced VEGF, massively secreted by the CD133-positive astroglial cell sub-population, might also
help to protect these cells from apoptosis and increase their migration in an autocrine manner.
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astroglioma treatment strategies is discussed in the
ultimate section of this article.

Resistance to DNA-damaging

therapy in astrogliomas

Given the severity of the health problem posed by
astrogliomas to the society, embarrassingly little is
known about the biological basis and molecular
mechanisms that allow brain tumours to survive
treatment and recur. Apart from surgery and some
newly tested targeted therapies, the major modalities
presently used in the clinic to treat astrogliomas are
DNA damaging treatments by ionizing radiation (IR)
and chemotherapy. In this section, we briefly highlight
how the cancer stem cell concept and recent
advances in understanding the cellular machinery
that responds to DNA damage are beginning to con-
verge to shed more light on the notoriously difficult
issue of the treatment resistance. Although chemother-
apeutics, particularly DNA alkylating drugs, such as
temozolomide are currently widely used in combina-
tion with traditional radiotherapy to treat astrogliomas,
the molecular basis of sensitivity versus resistance to
such drugs is relatively well understood [99–100],
and it will not be further discussed here. Rather, we
focus our discussion on IR and cellular responses to
the most toxic IR-induced lesions, the DNA double
strand breaks (DSBs).

In response to DSB-causing insults such as IR,
human cells activate their DNA damage response
machinery, a sophisticated network of signalling and
effector pathways that co-ordinate cell cycle check-
points with DNA repair and cell death mechanisms
[101–102]. Relevant for our discussion on cancer
cells, DSBs can be generated not only through exter-
nal genotoxic insults, but also from events within the
cell itself, for example, due to metabolic reactive oxy-
gen species, or errors during DNA replication. The
latter insult, often referred to as replication stress, is
commonly caused by various activated oncogenes
and loss of some tumour suppressors, leading to
constitutively activated DNA damage checkpoint sig-
nalling in tumours [102–104]. Such constitutive acti-
vation of the DNA damage checkpoints is particular-
ly apparent in borderline pre-malignant and early
malignant lesions, resulting in enhanced apoptosis or

induction of senescence as an inducible biological
barrier against tumour progression [102–107].
Despite the existence of such physiological barrier
response has been demonstrated for multiple types
of human solid tumours, particularly carcinomas and
melanomas, it is largely absent in testicular germ cell
tumours [108], and its relevance for astrogliomas
remains to be explored. What is important for our dis-
cussion about sensitivity versus resistance to DNA-
damaging therapies is the fact that during their pro-
gression, many malignant tumours, at least partially,
disable the activated checkpoint barrier through
mutations or epigenetic changes in relevant genes,
such as p53 [102, 109]. Alternatively, malignant cells
might progress in the face of constitutive DNA dam-
age by enhancing the efficiency of their DNA repair
pathways, in either case altering the overall sensitiv-
ity towards potential subsequent therapy by DNA
damaging modalities, such as IR.

At the molecular level, the key element of the cel-
lular DSB response is activation of the apical sig-
nalling kinase ATM (and also the ATR and DNA-PK
kinases), which rapidly phosphorylate a wide range
of substrates including the effector kinases Chk2 and
Chk1 [110]. Chk2 and Chk1 become activated upon
their phosphorylation by ATM and ATR, respectively,
and further propagate the DNA damage alert signal
to diverse effectors such as the tumour suppressor
p53, or other checkpoint and DNA repair proteins.
The severity of the DNA damage, the effectiveness of
the activated cell cycle checkpoint and DNA repair
mechanisms, as well as other parameters including
the protective signals from the microenvironment,
then jointly affect the final outcome and cell fate 
of the irradiated cell. In cancer cells, such a cell-fate
decision may be widely variable due to the hetero-
geneity of tumour cell populations, and it may also
reflect alterations in the DNA damage machinery
acquired during cancer progression (see above).

Recent work on human glioblastomas now indi-
cates that the CD133-positive stem-like cells may
have an enhanced checkpoint response to radiation,
and this may contribute to their selective survival and
radioresistance [34]. After irradiation, the CD133-
positive fraction of human GBM cultures and
xenografts was enriched up to fivefold compared with
CD133-negative cells. This was not attributable to
induction of CD133 expression in CD133-negative
tumour cells, but to lower rates of apoptosis among
the CD133-positive subset. Analysis of the checkpoint
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machinery pointed to an augmented activation of the
Chk2 and Chk1 kinases, faster repair of the IR-
induced DSBs, and overall better survival and ability
to recur among the CD133-enriched BTCSCs [34].
Furthermore, the authors used a chemical inhibitor to
block the activities of the checkpoint kinases Chk1
and Chk2 after IR, and this treatment radiosensitized
the CD133-positive subset more than the CD133-
negative astroglioma cells from the same tumour.
Collectively, these intriguing results identify a possi-
ble mechanism that contributes to radioresistance of
BTCSCs and thereby of the tumour, and suggest that
targeting the DNA damage checkpoints may be
worth considering as an option in the GBM radiother-
apy scenario. Whether this mechanism may be in any
way linked with the effects of VEGF or other cytokines
in the BTCSC niche, and how to exploit these new
insights into therapy resistance for improved treat-
ment strategies in the future, is discussed in the fol-
lowing section.

VEGF and DNA damage

response: implications for

astroglioma therapy

In response to IR, VEGF secretion by GBM cell lines
was highly increased in a radiation dose-dependent
manner [94, 111]. Among all the cell lines tested, the
U87MG is highly radioresistant and expresses the
highest IR-induced VEGF levels [111], a correlation
that inspired a hypothesis about a potential involve-
ment of IR-enhanced VEGF secretion in radioresis-
tance. Based on observations of decreased GBM cell
proliferation in response to exogenous VEGF [97], it
was proposed that expression of VEGF would at the
same time induce growth of new blood vessels
ensuring a better supply of oxygen and nutrients and
reduce GBM cell proliferation resulting in decreased
sensitivity to IR. Since proliferating cells are more
sensitive to irradiation than quiescent cells [112] and
since VEGF protects tumour blood vessels from irra-
diation-mediated toxicity [94], this suggests a possi-
ble mechanism through which GBM cells can escape
the consequences of radiation treatment.

After irradiation, the VEGF gene promoter becomes
stimulated via multiple mitogen-activated protein
kinase (MAPK) dependent pathways in both cultured

normal human astrocytes and GBM cell lines [113].
Since HIF-1 was not overexpressed under such con-
ditions, hypoxia doesn’t seem to be involved in this
mechanism [113]. Given the radioresistance of
BTCSCs discussed in the previous section [34],
could these data jointly indicate a connection
between radiation-induced VEGF secretion, increased
angiogenesis and selective survival of the CD133-
positive BTCSCs? Could IR-induced VEGF secretion
by BTCSCs selectively regulate their own migration
and/or proliferation in an autocrine manner while pro-
tecting them from IR-induced apoptosis (Fig. 3B),
possibly through some so-far unidentified link with
DNA damage checkpoint signalling or repair?
Despite speculative at present, this idea seems indi-
rectly supported by recent analysis of the so-called
bystander effects of radiation [114]. This study
showed that conditioned media from irradiated
human glioblastoma cells contained factors including
cytokines, whose membrane-mediated signalling to
non-irradiated cells resulted in activation of the
checkpoint kinase ATR and cellular DNA damage
response without direct exposure of such bystander
cells to radiation. These results imply that secreted
cytokines may be capable of inducing DNA damage
checkpoints, and that such bystander response dif-
fers in GBM cells compared with normal astrocytes
[114], suggesting that these effects might be exploit-
ed through therapeutic targeting.

The arguments discussed so far point to critical
roles of VEGF and BTCSC niche, as well as the sta-
tus of the DNA damage response machinery, both of
which show unique features in the treatment-resist-
ant astroglioma stem-like cells. These accumulating
results identify both VEGF-mediated and DNA dam-
age signalling cascades as promising targets for
treatment of astrogliomas, a notion that is supported
also by recent successful attempts to experimentally
target either VEGF signalling alone [4, 115], or com-
bine such vascular niche-targeting treatment with
DNA-damaging chemotherapy (see below). Formation
of multiple ‘vascular BTCSC niches’, each possibly
capable of giving rise to a recurrent tumour, may
strongly facilitate tumour growth and invasion
[116–118]. If BTCSC are true tumour-initiating cells,
then drugs selectively killing these cells could 
prove highly effective treatments for astrogliomas.
Encouraging are recent data providing proof of prin-
ciple that selective targeting of CSCs is possible, at
least in some types of malignancies [34, 44, 119].
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There is no doubt that additional factors of
astroglioma biology may hinder attempts to success-
fully introduce combined VEGF- and DNA damage
checkpoint-targeting treatment strategies. For exam-
ple, infiltration of tumour cells into surrounding 
brain contributes to the treatment-refractory nature of
malignant astrogliomas [120]. Moreover, the blood–
brain barrier represents a significant obstacle, prevent-
ing the delivery of large-molecular-weight polar com-
pounds to brain tumour cells. In addition, brain tissue
is highly sensitive to cytotoxic treatments [121], and
our own data show that inhibition of checkpoint kinas-
es such as Chk1 causes endogenous DNA damage in
proliferating human cells, thereby raising concerns as
to the suitability of this approach for therapy [122].With
the exception of the modest activity associated with
temozolomid, there is no standard chemotherapy
available for patients with high-grade astrogliomas,
and resistance to chemotherapy is common [123].

On the optimistic side Bevacizumab (Avastin®), a
recombinant, humanized monoclonal antibody tar-
geting VEGF, has been recently approved for use in
colorectal carcinoma-based on significant survival
benefit observed following its addition to fluorouracil-
based chemotherapy [124]. Preliminary results from
single-arm phase II study of Bevacizumab with
Irinotecan (CPT-11), currently underway at the Preston
Robert Tisch Brain Tumor Center at the Duke
University Medical Center for patients with recurrent
malignant astroglioma, indicate that the most effec-
tive therapy of GBM identified to date could be a
combined treatment by Bevacizumab with a DNA-
damaging drug such as CPT-11 [125].

Thus, despite possible numerous obstacles that
must not be underestimated, we believe that the
available evidence justifies attempts to identify a clin-
ically feasible, effective combination of therapeutic
approaches that would allow complementary target-
ing of the VEGF/niche, and the DNA damage check-
point aspects of malignant astrogliomas, with special
emphasis on targeting the unique features of the
candidate astroglioma stem cells (Fig. 4). In general
terms, such a combined strategy may include avail-
able or future drugs or antibodies to inhibit VEGF
and/or its receptor-mediated signalling, along with
standard DNA damaging treatment modalities, such
as IR and alkylating drugs, complemented by 
selective inhibitors of checkpoint signalling or 
DNA repair to counteract the mechanisms underlying
astroglioma resistance to such treatments. In any

case, given the close relationship between tumour
microenvironment, vascular architecture and tumour
response to therapy, it seems logical to investigate
the potential role of VEGF not only as an angiogenic
factor stimulating formation of ‘pathological vascular
niche’, but also as a potential regulator of BTCSC
cell-fate. Perhaps in concert with acquired defects
within the apoptotic machinery and/or selective regu-
lation of DNA damage signalling/repair, VEGF and
‘vascular niche’ might help BTCSCs escape from the
toxic effects of chemotherapy and radiotherapy by
protecting them from DNA damage-induced apopto-
sis [126–129]. Better mechanistic understanding of
these biological processes appears to be more plau-
sible based on the recent advances in the field, and
such research will hopefully help to improve the
presently dismal prognosis of astroglioma patients.
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