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The present study investigated the genomic constitution and antimicrobial resistance
(AMR) of 238 Campylobacter from pigs and wild boars in Italy between 2012 and 2019.
Campylobacter strains were genotyped using multilocus sequence typing (MLST) and
whole genome MLST (wgMLST), screened for antimicrobial resistance genes, and tested
for phenotypic susceptibility to six different antibiotics. C. coliwas detected in 98.31% and
91.66% of pigs and wild boars, while C. jejuni was isolated in the remaining cases. MLST
assigned 73 STs and 13 STs in pigs and wild boars, respectively, including 44 novel STs.
The predominant ST in pigs was ST-854 (12.36%), followed by ST-9264 (6.18%). ST-
1055 and ST-1417 were predominant in wild boars (30% and 13.33%, respectively). The
minimum spanning tree using 1,121 global MLST profiles showed specific Italian clusters
and a clear separation between pig and wild boar profiles. The wgMLST confirmed the
MLST clustering and revealed a high genetic diversity within C. coli population in Italy.
Minimum inhibitory concentrations (MIC) of six antibiotics revealed higher resistance in
pigs to ciprofloxacin, nalidixic acid, streptomycin and tetracycline, compared to wild boar.
In contrast, most strains were susceptible to gentamicin. Worrying levels of multidrug
resistance (MDR) were observed mostly in pig isolates. Molecular screening of AMR
mechanisms revealed the predominance of gyrA T86I substitution among
fluoroquinolone- and quinolone-resistant isolates, and the 23S rRNA A2075G mutation
among macrolide-resistant isolates. Other resistance determinants were observed: (i) tet
(O) gene was present among tetracycline-resistant isolates; (ii) rpsL and aph(3’)-III genes
conferring resistance to aminoglycosides, were identified only in streptomycin or
gentamicin-resistant pig isolates; (iii) cmeA, cmeB, cmeC, cmeR genes responsible of
pump efflux mechanisms, were observed in almost all the strains; (iv) OXA-61, encoding
b-lactamase, was found in the half of the strains. Genotypic and phenotypic AMR profiling
was fairly correlated for quinolones/fluoroquinolones. Campylobacter infection is common
also in wild boar populations in Italy, suggesting that wild boars could be a reservoir of
resistant and multi-resistant Campylobacter species, which may be of public health
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concern. The present study adds to our knowledge on the epidemiological and ecological
traits of this pathogen in domesticated and wild swine.
Keywords: Campylobacter, antimicrobial resistance (AMR), multidrug resistance (MDR), multilocus sequence
typing, resistance genes, wgMLST
INTRODUCTION

Campylobacter is known as the most common cause of bacterial
gastrointestinal infection in Europe, with the annual number of
cases exceeding those of salmonellosis and shigellosis (EFSA &
ECDC, 2019). Campylobacter jejuni and Campylobacter coli are
the main causative agents of campylobacteriosis, posing a threat
to public health worldwide (EFSA & ECDC, 2019). Fever, bloody
diarrhea, headache and abdominal pain, nausea and vomiting are
the main symptoms of campylobacteriosis in humans. Generally,
the infection is self-limiting after 3-5 days, but in
immunocompromised individuals it can spread into the
bloodstream and become potentially lethal (Whitehouse et al.,
2018). In severe cases, the antibiotic treatment is required, with
macrolides and fluoroquinolones being the drugs of first choice
(Mourkas et al., 2019). Campylobacteriosis is a mainly food-
borne disease in which foods of animal origin, such as poultry
meat, beef and pork, play a primary role (Sheppard et al., 2011).

Several studies showed the possibility of wildlife or
environmental sources to act as reservoirs of Campylobacter
infection (Sheppard et al., 2009a; Griekspoor et al., 2013; Cody
et al., 2015; Atterby et al., 2018; Marotta et al., 2019; Marotta et al.,
2020). In particular, these researchers focused on agricultural
settings, especially on wild birds (Sheppard et al., 2009a;
Griekspoor et al., 2013; Cody et al., 2015; Atterby et al., 2018;
Marotta et al., 2019) small mammals (Sippy et al., 2012)
and insects (Hald et al., 2004). However, there are little
data on potential spill-over between livestock and wild
ungulates (Navarro-Gonzalez et al., 2014). In pig farms,
campylobacteriosis often leads to a significant decrease in
animal productivity and consequent economic losses (Hansson
et al., 2018).

Domestic pigs and wild boars belong to the same species (Sus
scrofa) making them susceptible to the same pathogens (Ruiz-Fons
et al., 2006; Ruiz-Fons et al., 2008). As a result, wild boar
populations infected with Campylobacter could pose a threat to
the pig industry. The Eurasian wild boar is widely distributed
throughout most of Europe and in the past 50 years their numbers
have increased to an estimatedpopulation of over 2.2 million wild
boars (Massei et al., 2015; Meier and Ryser-Degiorgis, 2018). In
Italy, it is the most widespread wild ungulate with a consistent
presence along the country, due to its high prolificacy, favorable
climatic conditions, and to the depopulation of Apennine and
Alpine areas (Apollonio et al., 2010; Stella et al., 2018). Wild boars
may contract Campylobacter from avian species, due to constant
contact with soil contaminated with bird droppings (Waldenström
et al., 2002; Humphrey et al., 2007; Epps et al., 2013). The
increasing communities of wild boars in the anthropized areas
as possible reservoirs of different Campylobacter species represent
a growing challenge for public and veterinary health systems
gy | www.frontiersin.org 2
(Jones et al., 2013; Miller and Sweeney, 2013). Numerous studies
showed that AMR is still very common in Campylobacter strains
isolated from farmed animals in many European countries
(EFSA & ECDC, 2019). In particular, high level of antibiotic
resistance was shown to ciprofloxacin, nalidixic acid and
tetracycline (EFSA & ECDC, 2019) followed, especially in C.
coli, by resistance to macrolides and aminoglycoside antibiotic
classes. Moreover, an alarming trend towards multidrug resistance
(MDR), particularly among C. coli, was also detected
(Luangtongkum et al., 2009; Pascoe et al., 2017; Mourkas et al.,
2019). In this study, we aimed to evaluate the genotypic diversity of
Campylobacter in wild boar and domesticated pig populations
circulating in Italy and identify AMR genes in the two species
investigated in order to understand the extent to which
Campylobacter species are common, indicating a potential inter-
species transmission.
MATERIAL AND METHODS

Bacterial Strains and Species
Identification
A total of 238 Campylobacter strains isolated using the
bacteriological ISO method 10272-1:2017 and stored at the
microbial strain collection of the National Reference Laboratory
for Campylobacter (NRL, http://www.izs.it/IZS/Eccellenza/Centri_
nazionali/LNR_-_Campylobacter) were included in the study. The
collection comprised 178 Campylobacter pig strains isolated from
carcasses and from fecal content and 60 Campylobacter wild boar
strains isolated from liver, muscle and faeces, in Italy between 2012
and 2019. The strains were cultured on Columbia blood agar plates
in microaerobic atmosphere at 42°C for 48 h and DNA was
extracted using Maxwell instrument (Promega Corporation,
Madison, WI, USA) according to the manufacturer’s instructions
and quantified using a Nanodrop Spectrophotometer (Nanodrop
Technologies, Celbio Srl., Milan, Italy). After an initial phenotypic
characterization, suspected colonies were confirmed as
thermotolerant Campylobacter and identified to species level
using a multiplex and a simplex PCR, as described previously
(Wang et al., 2002; Marotta et al., 2019). Strains used as positive
PCR controls were C. coli NCTC 11353, C. fetus ATCC 19438, C.
jejuni ATCC 33291, C. upsaliensis NCTC 11541 and C. lari
NCTC 11552.

Sequence Analysis and Identification of
Antibiotic Resistance Genes
Total genomic DNA was used to prepare sequencing libraries
using Nextera XT Library Preparation Kit (Illumina, Inc., San
Diego, CA, USA). The libraries were then sequenced using
October 2020 | Volume 10 | Article 592512
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Illumina NextSeq 500 sequencer. Sequence reads (150-bp, pair-
end) were demultiplexed and the adapters were removed.
Subsequently the reads were trimmed with Trimmomatic tool
(version 0.36) and de novo assembled using SPAdes version
3.11.1 with the “careful” option selected (Bankevich et al., 2012).
The sequence reads generated in this study were deposited in
NCBI Sequence Read Archive (SRA) in Bioprojects
PRJNA638082 (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA638082) and PRJNA638084 (https://www.ncbi.nlm.nih.
gov/bioproject/PRJNA638084).

C. jejuni genome assemblies, were genotyped by MLST. The
assemblies were also investigated for the genomic AMR traits.

The MLST profiles were assigned using a C.jejuni/coli task
template MLST 7 loci, schema available at https://pubmlst.org/
Campylobacter/accessible through in Ridom SeqSphere+ v. 6.0.2.
Software (RidomGmbH,Münster, Germany). ItalianMLST profiles
were combined with MLST data of 1,121 pig isolates from Europe,
downloaded from PubMLST (http://pubmlst.org/campylobacter/)
and analyzed at the time of this analysis. MLST profiles were
analyzed using the goeBURST algorithm implemented in
PHYLOViZ, version 2.0 (Nascimento et al., 2017). Minimum
spanning trees (MST) were created using default software settings.

The wgMLST analysis was performed in Ridom SeqSphere+
v. 6.0.2. The scaffolds were analyzed using two task templates: C.
jejuni/C. coli cgMLST composed of 637 gene core gene targets
and C. jejuni/C. coli accessory MLST composed of 958 accessory
gene targets. Scaffolds that contained less than 90% good genome
targets were excluded from the analysis. UPGMA tree was
constructed by pairwise analysis of identified alleles, with
missing targets ignored using default settings. The tree and
associated metadata were visualized using iTol v5 (Letunic and
Bork, 2006).

AMR genes were identified in silico using PointFinder v. 3.1.0
and ABRicate v. 0.8 (https://github.com/tseemann/abricate/) by
querying the publicly available Comprehensive Antibiotic
Resistance Database (CARD) (Jia et al., 2016; Zankari et al.,
2017). Prokka v1.13 (Seemann, 2014) was used to annotate the
assemblies and gyrA sequences were extracted applying the
query_pan_genome function in Roary v3.12.0 (Page et al.,
2015). gyrA genes were aligned using Uniprot UGENE v1.18.0
(Okonechnikov et al., 2012), from which the gene variants were
identified. Only mutations in the quinolone resistance-
determining region (QRDR) of gyrA were assessed to be
the determinants of resistance, as only these loci have been
linked with phenotypic resistance to quinolones. In addition,
all the strains studied were deposited in PubMLST database
(http://pubmlst.org/campylobacter) and the submissions ids
are: BIGSdb_20200511094837_082196_21032, BIGSdb_
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
20200511093337_081290_49754, BIGSdb_20200508081738_
149794_16751 and BIGSdb_20200508080706_045922_07760.

Antimicrobial Susceptibility
Antim icrobial susceptibility was tested by the broth microdilution
method, using the Sensititre automated system (TREK Diagnostic
Systems, Venice, Italy) following the manufacturer’s instructions.
Briefly, colonies were subcultured on Columbia agar for 24 h and
then seeded in Mueller Hinton Broth supplemented with blood
(Oxoid, Basingstoke, UK). Then, they were dispensed into
Eucamp2 microtiter plates (TREK Diagnostic Systems, Venice,
Italy), with known scalar concentrations of the following
antibiotics: ciprofloxacin (CIP) (0.12–16 mg/ml), erythromycin
(ERY) (1–128 mg/ml), gentamicin (GEN) (0.12–16 mg/ml),
nalidixic acid (NAL) (1–64 mg/ml), streptomycin (STR) (0.25–16
mg/ml), and tetracycline (TET) (0.5–64 mg/ml). The distribution %
ofMIC are reported in brackets. Following bacterial inoculation, the
plates were incubated at 42°C in microaerobic atmosphere for 24 h,
and then screened. The strains were classified as resistant (R), and
susceptible (S) according to MIC breakpoints, by using Swin v3.3
Software (Thermo Fisher Scientific) in accordance with the
epidemiological cutoff values (ECOFFs) as defined by EUCAST
(European Committee on antimicrobial breakpoints) (www.eucast.
org) to interpret their antimicrobial susceptibilities. C. jejuni strain
NCTC 11351 was used as control. MIC breakpoints of resistance
were > 0.5 mg/ml for CIP (C.jejuni and C.coli), > 4 mg/ml for STR
(C.jejuni and C.coli), > 4 mg/ml for ERY (C.jejuni) and > 8 mg/ml
(C.coli), > 2 mg/ml for GEN (C.jejuni and C.coli), > 16 mg/ml for
NAL (C.jejuni and C.coli) and > 1 mg/ml for TET (C.jejuni) and > 2
mg/ml (C.coli). Details of the pig and wild boar isolates are
summarized in Supplementary Table 1.

Statistical Analysis
The antimicrobial resistance analysis was performed by means of
a Chi-square statistic test. All values with P<0.05 were considered
statistically significant (McHugh, 2013).
RESULTS

Genus and Species Confirmation
We analyzed 178 Campylobacter strains isolated from carcasses
(53.37%) and fecal content of pigs (46.62%), and 60
Campylobacter strains isolated from feces (83.33%), liver
(10%), and muscle (6.67%) of wild boars (Table 1). C. coli was
isolated in in 98.31% of pig and 91.66% wild boar strains, while
C. jejuni was isolated in 1.68% and 8.33% of pig and wild boar
strains, respectively (Table 1).
TABLE 1 | Percentages of Campylobacter coli and jejuni isolated from pigs and wild boars.

Carcass Feces Muscle Liver

Pigs (n=178) 92 (51.68%) C. coli
3 (1.68%) C. jejuni

83 (46.62%) C. coli – –

Wild boars (n=60) – 46 (76.66%) C. coli
4 (6.66%) C. jejuni

4 (6.7%) C. coli 5 (8.33%) C. coli
1 (1.66%) C. jejuni
October 2020 | Volume 1
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MLST Analysis of C. coli and C. jejuni
Isolates
The MLST analysis showed 5 STs among the 8 C. jejuni strains
studied (Supplementary Table 1). One ST (ST-10326) has not
been described before in the PubMLST Campylobacter database
(https://pubmlst.org/campylobacter/). The ST-10326, ST-42, ST-
21 were assigned to C. jejuni strains isolated from 3 pigs, while
ST-267 was assigned to 4 and ST-2863 to one wild boar C. jejuni
strains (Supplementary Table 1). Regarding C. coli, 67 and 8
different STs were obtained from pigs and wild boars,
respectively (Supplementary Table 1). Fifteen STs from pigs
(ST- 10304, ST-10305, ST-10307, ST-10319, ST-10323, ST-
10324, ST-10325, ST-10326, ST-10327, ST-10328, ST-10329,
ST-10330, ST-10331, ST-10332, and ST-10333) and one ST
from wild boars (ST-10334) were identified for the first time in
this study (Supplementary Table 1). In particular, the novel STs
contained one or more new allelic genes, and 12 novel alleles
were found (aspA547, aspA548, aspA549, glnA754, gltA644,
pgm1067, pgm1068, pgm1069, tkt824, tkt825, tkt826,
uncA681). Fifty-five STs obtained from both hosts, belonged to
the CC-828, only one ST isolated from one pig (ST-5392)
belonged to CC-1150, and twenty-eight STs from pigs and wild
boars did not belong to any known CC at the time of this analysis
(Supplementary Table 1). The ST-1055 was the most prevalent
ST that grouped 18 strains isolated from wild boars (30%). The
second most prevalent ST was ST-1417 assigned to 8 strains
isolated from wild boars (13.3%) (Figure 1). C. coli strains
belonging to ST-854 were instead dominant in pigs (12.4%),
followed by ST-9264 (6.18%). Out of 70 STs, 42 (60%) were
obtained from pigs, and 2 STs out of the 11 STs (18.18%) isolated
from wild boars, were represented by only one strain. Only three
STs (ST-1016, ST-1055 and ST-1417) were shared between the
two animal species (Figure 1). In detail, ST-1016 was represented
by 14 C. coli strains (9 from pigs and 5 from wild boars); ST-1055
was represented by 19 C. coli strains (1 from pig and 18 from wild
boars) and, finally, ST-1417 was represented by 13 C. coli strains (5
from pigs and 8 from wild boars). The MLST analysis with
European pig isolates found a substantial number of STs (67)
circulating only on Italian territory (Supplementary Figure 1). The
STs most commonly shared with other European countries were:
ST-854 and ST-828 shared with seven European countries
(Scotland, Switzerland, Germany, UK, Portugal, Netherlands and
Luxemburg), followed by ST-1016 shared with six European
countries (Switzerland, Belgium, Scotland, UK, The Netherlands
and Portugal). A total of 6 and 7 different STS were common with 3
and 2 other European countries, respectively, and 14 STs were
shared with one other European country (Supplementary Table 2).
The European countries with most STs shared with Italian isolates
were Scotland (13 STs), Switzerland (10 STs) and Germany (9 STs).

WgMLST Analysis of C. coli
The wgMLST analysis of 213 genomes of C. coli revealed wide
diversity among the strains circulating in Italy (Figure 2). The
maximum distance between the pair of wgMLST profiles was 583
genes. The strains isolated from domesticated pigs were scattered
along most branches of the phylogenetic tree and few clusters of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
genetically closely related genotypes could be identified.
Interestingly, even within these clusters, we did not observe
clear geographic separation as they often contained strains
isolated in two or more different locations. Similarly, C. coli
isolates from wild boar, even though all collected in the Tuscany
region, were divided into several separate lineages. The biggest
cluster was found in Grosseto province and contained strains
assigned to ST-1055. This sequence type was one of the three
shared by both, C. coli strains from domesticated pigs and from
the wild boarHowever, the isolate from the pig was distant from
the wild boar ST-1055 complex by more than 400 genes
demonstrating that ST determination was not sufficient to find
real genetic connections between the strains. Moreover, we did
not identify any clusters of closely related wgMLST profiles that
contained strains from both the domesticated pig and the
wild boar.

Antimicrobial Resistance Phenotypes
The resistance levels of pig isolates to six antibiotics were
compared to genomic resistance profiles of isolates of wild
boar origin in Table 2 and Figures 3 and 4. Statistically
significantly higher levels of AMR in pig isolates in respect
to wild boar isolates were observed for TET (89.9% vs 26.7%),
CIP (73.1% vs 16%), NAL (68.9% vs 26%) and ERY (36.5% vs
3.3%) (Chi-square test; p<0.01). The MIC test revealed that
86.5% of pig and 61.6% of wild boar isolates were resistant to
STR. Lower resistance levels were observed for GEN (11.6% for
pig isolates; 13.5% for wild boar isolates) (Figure 3). MDR,
considered as the resistance to at least three different classes of
antibiotics (EFSA & ECDC, 2015), was very common (Figure
4). Strains isolated from pigs were more often found to display
MDR than the strains from the wild boar. The most common
MDR profiles were CIP-STR-TET (56% pig isolates; 3% wild
boar isolates), followed by NAL-STR-TET (53% pig isolates;
7% wild boar isolates). CIP-ERY-TET was found in the 32%
and 3% of pig and wild boar isolates, respectively, while CIP-
ERY-STR-TET was present only in 29% of pig isolates
(Figure 4).

Detection of Resistance Genes, Mutations,
and Levels of Concordance
The genome assemblies of allCampylobacterwere investigated for the
genomic AMR genes, 23S rRNA and gyrA-associated pointmutations
and RpsL substitutions. The analysis revealed the presence of 7 AMR
genes including: tet(O), cmeA, cmeB, cmeC, cmeR, OXA-61, aph(3’)-
III. The resistance genes for the corresponding antibiotic were
observed in most but not in all resistant isolates. Regarding
resistance to aminoglycosides, resistance traits associated with GEN
and STR (aph(3’)-III) resistance were exclusively found in 9 and 23
pig C. coli resistant strains, respectively. RpsL substitution at amino
acid 88, involved in STR resistance, was found in only two pig C. coli
isolates. The concordance rate between the two types of resistances
was of 37.5% and 16.3% (Table 2). Although we did not test
resistance to beta-lactams antibiotics class phenotypically, we
detected the OXA-61 gene in the half of the pig and wild boar
isolates. Tet(O) gene, conferring resistance to TET, was detected in 88
October 2020 | Volume 10 | Article 592512
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pig and 11 wild boar isolates resistant to TET. The concordance rate
resulted, respectively, of 55% and 68.7%. The ERY resistant strains
were screened for the presence of mutations in 23S rRNA gene. The
A2075G mutation was identified in 51 and 2 isolates from pig and
wild boar resistant isolates, showing a concordance rate of 78.5% and
100%, respectively. The cmeA, cmeB, cmeC, and cmeR genes,
associated with efflux pump function, were present in almost all
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
the strains. Finally, isolates resistant to fluoroquinolones and
quinolones were screened for mutations in the gyrA gene. T86I
mutation was detected in 99 and 6 pig and wild boar isolates with CIP
resistance phenotype, showing a concordance rate of 76.7% and 60%,
respectively, and in 95 and 5 pig and wild boar isolates with NAL
resistance phenotype, showing a concordance rate of 78.5% and
31.2% (Table 2).
FIGURE 1 | Minimum spanning tree (MST) generated for 238 Italian strains isolated from pigs and wild boars. The tree was generated using the goeBURST
algorithm in PHYLOViZ software. The distance labels correspond to the number of discriminating alleles. The blue nodes correspond to pig isolates and the green
nodes to wild boar isolates.
October 2020 | Volume 10 | Article 592512
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DISCUSSION

Here we presented a cross-sectional study on Campylobacter
from Italian fattening pigs and wild boars using a multiplex
approach that included antimicrobial susceptibility test, MLST,
wgMLST, and genetic determination of AMR. The analyzed
strains were representative of the Italian pigs and wild boars
for the period 2012–2019. A high genomic diversity was observed
among C. coli isolates in the Italian pig and wild boar
populations, with 67 and 11 different STs within 175 and 55
analyzed isolates, respectively. These data are in line with other
recent studies (Egger et al., 2012). In this study, MLST revealed
the existence of the dominant C. coli CC-828 containing 76% of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
pig and wild boar isolates while the CC-1150 was detected only in
one pig isolate. In addition, we observed that C. coli strains from
pig and wild boar constituted two separate populations.
Interestingly, only 3.7% (3/81) of STs were shared between pig
and wild boar isolates. However, wgMLST analysis showed that
pig isolates belonging to these three STs were genetically distant
from the wild boar strains, demonstrating that ST determination
was not sufficient to find real genetic connections between the
strains of the two animals. In general, we did not identify any
clusters of closely related wgMLST profiles that contained strains
from both hosts suggesting that no exchange of Campylobacter
spp. occurred between pigs and the wild boars, possibly due to
the segregation of traditional pig farming and wild boar
FIGURE 2 | Phylogenetic tree generated for 213 strains of C. coli from Italy. The UPGMA tree was constructed based on wgMLST analysis results. The presence
and allelic diversity of antimicrobial resistance genes substitutions in C. coli genomes are indicated. Strains isolated from domestic pigs are marked with blue color
bar and from wild boar with green bar. The isolates highlighted in yellow, green and pink, strains obtained from the two different hosts and belonging to the same
MLST sequence types. The isolates in red are of Hungarian origin, those in blue of Danish origin and the only one in fuchsia of French origin. The rest of isolates in
black are of Italian origin.
October 2020 | Volume 10 | Article 592512
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TABLE 2 | Comparison of genotypic and phenotypic resistance to antibiotics in C. coli isolated from Italian pigs and wild boars.

Antibiotic class Antibiotics Genes Animals No. of isolates with R
phenotypea (n=178)

No. of isolates with
R genotypeb

Concordance rated

Aminoglycosides Gentamicin (GEN) aph(3’)-III Pig n=24 n= 9 37.5
Wild boar n=7 n=0 0

Streptomycin (STR) rpsL- aph(3’)-III Pig n=154 n=2; n=23 1.3–15
Wild boar n=37 n=0 0

Beta-lactamsc – OXA-61 Pig – n=89 –

Wild boar – n=27 –

Fluoroquinolones/
Quinolones

Ciprofloxacin (CIP)/
Nalidixic acid (NAL)

gyrA Pig n=129; n=121 n=99; n=95 76.7–78.5
Wild boar n=10; n=16 n=6; n=5 60–31.2

Macrolides Erythromycin (ERY) 23S rRNA Pig n=65 n=51 78.5
Wild boar n=2 n=2 100

Tetracyclines Tetracycline (TET) Tet(O) Pig n=160 n=88 55
Wild boar n=16 n=11 68.7

Multidrug CmeABC efflux system and
cmeR

cmeA,cmeB,cmeC, cmeR Pig – n=153; n=132; n=130; n=129 –

Wild boar – n=60; n=58; n=57; n=57 –
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aNumber of isolates expressing the resistance phenotype for the corresponding antibiotic;
bNumber of isolates expressing the resistance phenotype for the corresponding antibiotic, that have the indicated gene;
cAntibiotic class does not tested for resistance phenotype;
dConcordance rate (%).
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FIGURE 3 | (A) Antibiotic resistance pattern between pig and wild boar isolates. CIP, ciprofloxacin, ERY, erythromycin, GEN, gentamicin, NAL, nalidixic acid, STR,
streptomycin, TET, tetracycline. *statistically significant vs. wild boar isolates (c2-test, p<0.01). (B) Percentages of resistance determinants between pig and wild boar
antibiotic resistant isolates.
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population. Interestingly, we noted that three pig strains (ST-
829), isolated from pigs born in Denmark, had related wgMLST
profiles, although were fattened in 2 different farms located in
Pescara and Torino. Similarly, we showed several clusters in pigs
with strictly related wgMLST profiles belonging to fattening
farms located in different Italian regions. It is likely that
fattening farms in Italy and in Europe may share the same
feeder pig supplier, which would explainthe genomic relatedness
observed in the distant farms. Comparison of our dataset with
the strains obtained from Campylobacter MLST database
revealed that C. coli population in Italian pigs and wild boars
was different from other European countries. The C. coli strains
featured with ST circulating only in Italy amounted for 82.7%
(67/81) of the entire Italian collection, suggesting a geographical
difference between the Italian and European populations.
Furthermore, twenty STs were novel, likely representing
geographically restricted clones, as reported also by other
authors (Stone et al., 2013). Although the lack of WGS data
hampered the verification of the genomic relatedness, it was
surprising to observe a numerous STs shared between Italy and
Scotland, indicating a possible internationally spread driven by
the pig industry. However, a limitation of the study was the
underrepresentation of Campylobacter isolates from wild boars
in the PubMLST. As suggested in many studies we likely found
several host-associated alleles that are present in Campylobacter
(French et al., 2005; Miller et al., 2006; Litrup et al., 2007).

In this study, we revealed a clear separation between pig and
wild boar Campylobacter, as shown by the presence of only three
shared STs out of 83. It was also previously suggested that host
preference or niche adaptation for certain STs play a role in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
acquisition and maintenance of specific clones in different host
species (Schouls et al., 2003). Although our study did not allow us
to draw conclusions on host association, it is likely that wild boars
harbour Campylobacter STs that are rarely, if ever, transmitted to
domestic pigs, possibly due to rare contact between the two hosts.
Although wild boars are an environmentally destructive invasive
species acting as a reservoir for zoonotic pathogens, our findings
suggest that they might not be the primary source of infection of
Campylobacter for traditional bio-secured domestic pig farms
in Italy.

Despite the ban on the application of antibiotics as growth
promoters in animal farms in the EU, C. jejuni and coli isolated
from humans and animal sources show high levels of resistance
to the most important antimicrobials used to treat
campylobacteriosis (Castanon, 2007; EFSA & ECDC, 2019). As
well as fluoroquinolones and tetracyclines, C. coli strains show a
higher resistance to macrolide erythromycin and to
aminoglycoside streptomycin, compared to C. jejuni (EFSA &
ECDC, 2019). This is worrying because the use of
fluoroquinolones, known to be the first-choice treatment for
campylobacteriosis, has been recently shifted to erythromycin,
against which Campylobacter resistance seemed to develop more
slowly, in respect to fluoroquinolones-resistance (Lapierre et al.,
2016). Campylobacter resistance mechanisms against the
principal antibiotic classes are well known. Fluoroquinolone
resistance is rapidly developed in Campylobacter strains
because it requires only a single point mutation in gyrA gene
(Luangtongkum et al., 2009). On the contrary, erythromycin
resistance is due to specifics mutation in 23S rRNA and also
depends on an rRNA methylation enzyme (erm B) (Wang et al.,
FIGURE 4 | Percentages of resistant isolates to tested antibiotics among Campylobacter pig and wild boar isolates. CIP, ciprofloxacin, ERY, erythromycin, GEN,
gentamicin, NAL, nalidixic acid, STR, streptomycin, TET, tetracycline. The antibiotic numbers are reported in parenthesis. *= MDR profiles.
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2014). Tetracycline resistance is associated with the presence of
tet(O) gene, encoding for a ribosomal protection protein
(Sougakoff et al., 1987), while aminoglycosides resistance is due
to several genes including rpsL and aph(3’)-III (Iovine, 2013;
Zhao et al., 2016). Campylobacter is also known as a bacterium
naturally resistant against Beta-lactams, (owning the ubiquitous
gene OXA-61)used in combination with beta-lactamase
inhibitors, when fluoroquinolones and macrolides are
inefficacious (Griggs et al., 2009). Furthermore, among C. coli,
which usually harbor AMR genes, a worrying trend towards
MDR have been displayed. For all these reasons, Campylobacter
has been categorized as a high priority pathogen on the list of
bacteria for which new antimicrobials are urgently needed
(WHO, 2017). In the present study, high levels of resistance to
streptomycin, ciprofloxacin and tetracycline were detected in C.
coli isolated from pigs, with resistance to streptomycin frequently
found also among C. coli isolated from wild boars. Although the
erythromycin resistance levels were lower, the existence of 36%
of pig strains resistant to this antibiotic, which is the first-choice
drug in the treatment of campylobacteriosis, is alarming. These
resistance rates are in line with those reported by other European
studies (Garcıá-Fernández et al., 2018; Di Donato et al., 2020).

In our study, we found a good correlation between phenotypic
resistance to erythromycin, tetracycline, fluoroquinolones and
quinolones and the presence of one or more resistance genes or
nucleotide polymorphisms expected to confer resistance to the
respective antimicrobials. For erythromycin, we found a
correlation of 100% and 78.5% between the two types of
resistances in pigs and wild boars, respectively. It is possible,
that determinants of erythromycin resistance that were not
analyzed in our study, such as mutations in L4 and L22 or in
the regulatory region of CmeABC efflux pump, could be
responsible for enhanced resistance in absence of mutations in
23S rRNA genes (Bolinger and Kathariou, 2017). For tetracyclin,
the correlation varied between 68.7% and 55% of the presence of
putative resistance genes and observed resistance phenotype
respectively in pigs and wild boars. For fluoroquinolones
and quinolones, the concordance rate varied between 77% and
45%, in pigs and wild boars. Discrepancies were found for rpsL
mutation and the observed phenotype and for aminoglycosides,
which could be explained with the existence of the efflux pump
mechanisms or other unknown resistance mechanisms. These
results suggest that, on one hand, the incidence of AMR in C. coli
isolated from wild boars could be still considered low, showing
that pigs, animals reared for food production, are much more
exposed to antimicrobials. On the other hand, the results
obtained show us the hazardous spread of AMR genes through
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
the environment. A reassuring finding from our study was that
C. coli isolated from wild boars have MDR profiles lower than
10%, in respect to MDR profiles of pigs, which were 5
times higher.

In conclusion, a rational and moderate use of antimicrobials,
combined with a continuous monitoring of AMR bacteria spread
in the environment, should be guaranteed to fight the increase in
antibiotic resistance rates, extremely dangerous for human and
animal health.
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