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Abstract: DNA N6-methyladenine (6mA) is part of numerous biological processes including DNA
repair, DNA replication, and DNA transcription. The 6mA modification sites hold a great impact
when their biological function is under consideration. Research in biochemical experiments for this
purpose is carried out and they have demonstrated good results. However, they proved not to be
a practical solution when accessed under cost and time parameters. This led researchers to develop
computational models to fulfill the requirement of modification identification. In consensus, we have
developed a computational model recommended by Chou’s 5-steps rule. The Neural Network (NN)
model uses convolution layers to extract the high-level features from the encoded binary sequence.
These extracted features were given an optimal interpretation by using a Long Short-Term Memory
(LSTM) layer. The proposed architecture showed higher performance compared to state-of-the-art
techniques. The proposed model is evaluated on Mus musculus, Rice, and “Combined-species”
genomes with 5- and 10-fold cross-validation. Further, with access to a user-friendly web server,
publicly available can be accessed freely.

Keywords: DNA N6-methyladenine; Chou’s 5-steps rule; Convolution Neural Network (CNN);
Long Short-Term Memory (LSTM); computational biology

1. Introduction

In genomes of distinct species, DNA N6-methyladenine (6mA) illustrates a crucial epigenetic
transformation [1,2]. DNA 6mA is a non-canonical process that modifies the catalyzed adenine ring
of DNA methyltransferases [3]. Alteration occurs at the sixth position of the adenine ring where
a methyl group is additionally introduced. DNA 6mA holds a vital role in numerous biological
processes, which includes DNA replication [4], DNA repair [5], DNA transcription [6], and others.
Recent research established that uneven 6mA modification has a role in different diseases such as
cancer [7], immune systems, and others. Therefore, this makes it necessary to identify a 6mA position
in the genome sites. Mammalian 6mA largely originates from the genomic incorporation mediated by
DNA polymerase, while the methylase-generated 6mA in mice remains elusive [8].

Silico prediction is considered to be a principal approach to encounter the aforementioned
problem, while N6-methyladenine prediction is its alternative. Intensive labor with extravagant
experiments and expenses limits the use of silico prediction, making 6mA prediction an ideal solution
for tracking modifications in the genome. For the identification of 6mA, diversified techniques can
be found in the literature. Initially, ultraviolet absorption spectra, paper chromatographic movement,
and electrophoretic mobility were combined to represent a complete mechanism. Although this
method was not efficacious enough to be used for detecting 6mA transformations in animals [9],

Genes 2020, 11, 898; doi:10.3390/genes11080898 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-1952-0001
http://dx.doi.org/10.3390/genes11080898
http://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/11/8/898?type=check_update&version=2


Genes 2020, 11, 898 2 of 12

this led to an introduction of another technique for identifying 6mA modification using a restriction
enzyme, but this approach was only capable of identifying transformed adenines that are present in
the target motifs [10].

For the detection of 6mA sites in prokaryotes and eukaryotes, numerous techniques were proposed
such as single molecule real-time (SMRT) sequencing [11], methylated DNA immunoprecipitation
sequencing [12], ultra-high performance liquid chromatography with mass spectrometry [1],
and metabolically generated stable isotope-labeled deoxynucleoside code [13]. Chlamydomonas genes
carry 84% N6-methyladenine modifications, which was identified after 6mA an immunoprecipitation
sequencing experiment [14]. SMRT sequencing found out that adenines of methylated sites carry 2.8%
of initial-diverged fungi [15]. Utilization of SMRT, 6mA immunoprecipitation, and mass spectrometry
result in 0.2% of adenines being methylated [16].

The experimental techniques proved to be expensive and prolonged processes,
therefore researchers tried to come up with computational techniques for prediction of DNA
6mA modifications. For this purpose, numerous prediction tools were proposed in the literature.
iDNA6mA-PseKNC was the first ever N6-methyladenine modification prediction tool for the
Mus musculus genome [17]. iDNA6mA-PseKNC proposed sequence sample formulation for feature
extraction and employed six different classifiers to identify the modification. csDMA is another
reported tool that predicts the modification in N6-adenine methylation, which used K-mer pattern,
KSNPF frequency, nucleic shift density, binary code, and motif score matrix for extraction of the
feature vector of the sequence [18]. Further, they deployed five different classifiers to evaluate the
performance of the extracted feature set. Recently, 6mA-Finder was introduced as an online tool
for predicting 6mA modification [19]. 6mA-Finder engaged seven sequence encoding schemes to
get three types of physico-chemical features encoded. These encoded features were then embedded
in seven different classifiers to evaluate the performance of encoded features. The i6mA-Pred is an
identification tool for N6-methyladenine modification in the rice genome [20].

FastFeatGen is another tool present in the literature that predicts DNA N6 methyladenine sites [21].
FastFeatGen has used a parallel feature extraction technique followed by an exploratory feature
selection algorithm to get the most relevant features. These features are then fed to Extra-Tree
Classifier (ETC) for the prediction. Liang et al. proposed the i6mA-DNCP tool for the identification
of 6mA sites [22]. i6mA-DNCP used optimized dinucleotide-based features with bagging classifier
for the prediction model. Undoubtedly machine learning has illustrated high performance for many
research problems, but the neural network has its benefits that need to be investigated for every
research problem.

In recent years, Neural Network (NN)-based techniques, especially Convolution Neural Network
(CNN), have shown tremendous improvement in many different research problems, e.g., in medical
imaging [23,24] and bio-informatics [25–27], while the use of CNN for DNA-6mA modification
identification is still in the infancy. Recently, a technique called iIM-CNN was reported by Wahab et al.,
which uses a CNN-based model for the N6-adenine methylation modification identification in genomes
of different species [28]. The proposed CNN model in iIM-CNN carries two convolution layers with
two max-pooling layers and a set of fully connected layers. iIM-CN showed high performance in
prediction of N6-methyladenine modification, somehow still, a research space is available where many
aspects of CNN can be explored more.

This article aims to provide a CNN and Long Short-Term Memory (LSTM)-based efficient tool
named DNA6mA-MINT, for DNA 6mA modification identification. The proposed model uses CNN
for feature extraction while LSTM gives optimal interpretation to those features. The proposed
architecture demonstrates higher performance than the existing state-of-the-art techniques on
the “combined-species”, M. musculus genome, and rice genome benchmark datasets. For better
comparative analysis between DNA6mA-MINT and existing techniques, we have carried out
performance analysis on 5- and 10-fold cross-validation. When compared with respective models
available in the literature, Matthews Correlation Coefficient (MCC) for the “combined-species”
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benchmark dataset is noted with an increase of 20.83% for 5-fold cross-validation. The five steps
are construction of dataset, encoding samples, constructing prediction model, evaluation of the
proposed model, and establishing an online server. For the development of a useful and effective
biological predictor, Chou’s 5-steps rule needs to be followed [29,30]. These steps were followed by
the previous researchers as well [17–20,28]. This research article follows Chou’s 5-steps rule.

2. Benchmark Dataset

In this work, we used three datasets. The M. musculus genome database for DNA 6mA was
proposed in 2018 by Feng et al. [17]. The dataset consists of 1934 samples for each positive and negative
case. The 6mA sites available in the mouse genome were collected from MethSMRT database [31]
with Gene Expression Omnibus (GEO) accession number GSE71866. Another dataset was on the rice
genome, which was presented in 2019 by Chen et al. [20]. This dataset consists of 880 samples for each
positive and negative case. The 6mA sites in rice genomes were provided by Zhou et al. [16] with
GEO accession number GSE103145. Combining both aforementioned databases, a “combined-species”
dataset is generated which contains 2768 samples for the positive cases and 2716 for negative cases.
While the “combined-species” dataset did not contain sequence redundancy, which is eliminated
by CD-HIT software [32], the rigorous sequence identity threshold was 0.80. Further, the dataset
for training comprises 2214 positive samples and 2214 negative samples, while for the purpose of
independent training 554 positive samples and 502 negative samples are taken into account. The length
of all sequences in the datasets are 41 bp centered with the 6mA and non-6mA site.

3. Methodology

The proposed architecture was an efficient deep learning-based model comprised of several
convolution layers, hidden layers, LSTM layers, and dense layers. Figure 1 is a visual representation
of DNA6mA-MINT. This model holds the capability of extracting critical features from the input
raw sequence, which are then used to carry prediction. The input sequence carries a combination
of 4 nucleotides, A, T, C, and G, as can be seen in the dataset block of Figure 1. The NNs work
on the numerical data only, therefore an encoding scheme is required here which can effectively
convert the sequence-based data to a numerical representation. For the said purpose, binary encoding
was taken into account. Where A, T, C, and G are represented as (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),
(0, 0, 0, 1), respectively.

Table 1 shows the architecture details of DNA6mA-MINT. The DNA6mA-MINT includes three
convolution layers that use different parameters to extract the features from the input binary encoded
sequence. The first convolution layer uses 32 filters with a filter size of five, followed by another
convolution layer which uses 32 different filters with a filter size of four. The last convolution layer
uses 16 filters of size four. Features extracted by the first two convolution layers undergo Batch
normalization, Max-pooling layer, and a dropout layer discarding 40% of features, while the features
extracted by the last convolution undergo Max-pooling and dropout of 20%. The number of filters for
the convolution layer with their filter size, Stride length, pool-size, and the dropout ratio is decided
after hyperparameter tuning. Therefore, the selected values of the parameters were capable of giving
the best performance from the model.
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Figure 1. DNA6mA-MINT architecture for identification of DNA 6mA modification.
Acronyms: Convolution 1 Dimension (Conv1D), BatchNormalization (BatchNorm), MaxPool (Max
Pooling), Convolution Neural Network (CNN), Conv1d (number of filters, size of the filters, number of
strides), MaxPool (pool size, number of strides), Dropout (ratio of features which needs to be discarded),
and Long Short-Term Memory (LSTM).

Table 1. Architecture details of DNA6mA-MINT.

Layer Output Shape Number of Parameters

Input (41,4) -
Conv1D (32,5,1) (37,32) 672

Batch Normalization (37,32) 128
Max Pooling (4,2) (17,32) 0

Dropout (0.4) (17,32) 0
Conv1D (32,4,1) (14,32) 4128

Batch Normalization (14,32) 128
Max Pooling (4,2) (6,32) 0

Dropout (0.4) (6,32) 0
Conv1D (16,4,1) (3,16) 2064

Max Pooling (2,1) (1,16) 0
Dropout (0.2) (1,16) 0

LSTM (1,4) 336
Flatten 4 0
Dense 32 160
Dense 1 33

In CNN models a greater number of convolution layers represents the extraction of deeper
features, but for the research problem under consideration, we cannot use more number of convolution
layers, as by further increasing the convolution layers, the overfitting problem is observed. Using three
convolution layers was an ideal solution to classify the input data we have, as this leads us to a
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high-performance architecture. All the convolution layers used ReLU as an activation function which
eases the training process. At this stage, sigmoid or tanh are not used as an activation function,
the reason being their vanishing gradient problem. The vanishing gradient problem makes the training
process difficult, where ReLU solves this problem due to its unbounded nature.

The set of features extracted from the CNN model was fed into LSTM, which is a recurrent
neural network (RNN). Here, the LSTM supports the sequence prediction. Therefore, the proposed
model consists of two sub-models: the feature extractor which is the CNN model and the feature
interpreter, which is the LSTM layer. In the proposed model, LSTM is used with a filter size of four,
which is selected after hyperparameter tuning. The optimally interpreted feature set was converted to
a single feature column by using a flattened layer. A single column feature set undergoes two dense
layers with 32 and 1 neurons respectively to give the final classification output. The first dense layer
uses the ReLU activation function while the second dense layer uses the sigmoid activation function.
Sigmoid activation function makes the output range between 0 and 1 which is required for a binary
classification problem. Below are the equations for ReLU and sigmoid functions.

ReLU(z) = max(0, z) (1)

Sigmoid(z) =
1

1 + exp(−z)
(2)

DNA6mA-MINT is implemented on the Keras framework [33]. The output of the sigmoid
activation function will be an input to the objective function. Binary cross-entropy is used as an
objective function [34] and its equation is as follows,

BCE = −y1log(Sigmoid(z))− (1− y1)log(1− Sigmoid(z)) (3)

where y1 is the label for class sample. The loss can also be expressed as

BCE =

{
−log(Sigmoid(z)) if y1 = 1

−log(1− Sigmoid(z)) if y1 = 0
(4)

Stochastic gradient descent is used for optimizing the objective function. The equation below is used
for calculating stochastic gradient descent,

θi+1 = θi − α · 5θ Loss(θi, y) (5)

where θi is the current estimation of θ at iteration ′i′, α is the learning rate, and 5θ Loss(θi, y) is
computed gradient of the loss function.

Stochastic gradient descent reduces the computational complexity by achieving faster
iterations [35]. In the optimization process, the learning rate and momentum were set to 0.004
and 0.9 respectively.

4. Figure of Merits

Evaluation of the DNA6mA-MINT is carried out using k-fold cross-validation where the value of
k in our case is kept five and ten. In both cases, the whole dataset was divided into k subset. A single
subset is chosen iteratively for the testing purpose where remaining subsets are used for training
purposes. For the final performance estimation of the model, an average of k-trials is taken.

The figure of merits used in recent publications are listed with equations below,

Sensitivity = TPR =
TP

TP + FN
(6)
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Speci f icity = TNR =
TN

TN + FP
(7)

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

where

TP = True Positive = 6mA correctly identified as 6mA
FP = False Positive = Non 6mA incorrectly identified as 6mA

TN = True Negative = Non 6mA correctly identified as Non 6mA
FN = False Negative = 6mA incorrectly identified as Non 6mA

Sensitivity, also known as True Positive Rate (TPR), is a statistical measure which calculates
the ratio of positive samples identified as positive samples by the model. Specificity, also known as
True Negative Rate (TNR), is also a statistical measure which calculates the ratio of negative samples
identified as negative samples by the model. Accuracy measures the closeness of the model to the
idle situation. While the Matthews correlation coefficient (MCC) depicts the quality of the model as
a binary classifier, another figure of merit used in this study is the area under Receiver Operating
Characteristics (auROC). It measures the performance of the model at various thresholds. The auROC
indicates the capability of the model to distinguish two classes from each other.

5. Results and Discussion

The proposed model was evaluated on three datasets: M. musculus genome, rice genome,
and “Combined-species”. The state-of-the-art techniques in the literature carried out their results either
using 5-fold cross-validation or 10-fold cross-validation. Therefore, we validated DNA6mA-MINT
by using both numbers of folds so that a better comparative analysis can be derived. Therefore, it is
important to compare 5-fold cross-validation results with the models that have reported their results on
5-fold cross-validation. Similarly, 10-fold results should be compared with the 10-fold cross-validated
model in the literature. A greater number of folds depicts higher performance, the reason being that
by increasing the number of folds, the training dataset gets a higher ratio of the data which increases
the model performance.

Table 2 shows a comparison of the proposed model with existing techniques, while Figure 2
shows the graphical visualization of performance differences between existing techniques and the
proposed technique in this study. In the case of M. musculus genomes, the DNA6mA-MINT achieved
high results in all figures of merit when compared with models validated on 5-fold cross-validation.
On the other hand, compared on 10-fold cross-validation, the 6mA-Finder exhibits higher auROC
then the proposed model. However, in all other figures of merit the proposed model remains higher
in performance.

For Rice genomes with 5-fold cross-validation, the DNA6mA-MINT depicts an increase in all
figures of merit, while in 10-fold cross-validation, 6mA-Finder has not reported results for all figures of
merit, but the reported auROC achieved by 6mA-Finder is lower than that achieved by the proposed
model in 10-fold cross-validation.
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(a)

(b)

(c)

Figure 2. Graphical comparison of DNA6mA-MINT with state-of-the-art tools using five fold cross
validation on different species. (a) Mus musculus, (b) Rice, (c) “Combined-species”. Acronyms are
Sensitivity (SN), Specificity (SP), Accuracy (ACC), Matthews Correlation Coefficient (MCC), and area
under the Receiver Operating Characteristics (auROC).
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Table 2. Performance comparison of DNA6mA-MINT with existing techniques on different species
with 5- and 10-fold cross-validation.

Model Species Folds SN SP ACC MCC auROC

iDNA6mA-PseKNC
M. musculus 5 0.869 1 0.935 0.877 0.974

Rice 5 0.569 0.721 0.641 0.394 0.896
Combined-species 5 0.762 0.769 0.765 0.531 0.844

csDMA
M. musculus 5 0.932 1 0.966 0.935 0.974

Rice 5 0.842 0.880 0.861 0.723 0.923
Combined-species 5 0.863 0.735 0.799 0.603 0.879

ilM-CNN
M. musculus 5 0.938 1 0.969 0.941 0.971

Rice 5 0.841 0.914 0.875 0.752 0.934
Combined-species 5 0.869 0.780 0.824 0.651 0.892

6mA-Finder
M. musculus 10 0.9349 1 0.9674 0.935 0.9954

Rice 10 - - - - 0.9394
Combined-species 10 - - - - 0.9207

DNA6mA-MINT
M. musculus 5 0.9531 1 0.9766 0.9543 0.980

Rice 5 0.8621 0.9195 0.8908 0.7829 0.950
Combined-species 5 0.9182 0.9409 0.9295 0.8593 0.950

DNA6mA-MINT
M. musculus 10 0.9427 1 0.9714 0.9444 0.98

Rice 10 0.9425 0.908 0.9253 0.8511 0.950
Combined-species 10 0.9318 0.9321 0.932 0.8639 0.960

“Combined-species” is another benchmark dataset for the evaluation of the proposed model.
In “combined-species”, the proposed model has shown a tremendous increase in performance when
compared with existing techniques. In 5-fold cross-validated models, the DNA6mA-MINT increased
the sensitivity, specificity, accuracy, MCC, and AuROC by 4.92%, 16.09%, 10.55%, 20.83%, and 5.8%,
respectively. For 10-fold cross-validation, the proposed model illustrated an increase of 3.93% in
auROC when compared with 6mA-Finder. The sharp increase in MCC depicts the higher quality of
the DNA6mA-MINT in comparison to existing state-of-the-art tools.

Figure 3 shows the auROC curves for three species. As can be determined by the curves,
the proposed model curves are approaching the ideal scenario. Especially in the case of M. musculus,
which is almost near to ideal. Upon evaluation of DNA6mA-MINT on the “combined-species”
independent dataset with 10-fold cross-validation, a massive increase of 8.99% is observed in auROC.
The 6mA Finder has reported 87.01% auROC while the proposed model has achieved 96% auROC
for “combined-species” independent dataset. The high performance shown by the DNA6mA-MINT
depicts the reliability of the proposed tool.

For functional genomics, such an architecture should be used which can effectively model the
DNA motifs with some insertion/deletion (indels). Keeping it in mind to unfold the quality of
DNA6mA-MINT, the silico mutagenesis method is adopted. Nucleotides in the benchmark dataset
are computationally mutated. The effect of this mutation in model prediction is studied. One by
one the data at position “1-41” is mutated and the corresponding absolute difference is stored.
Last, the averaged predicted score for all the mutations over all the sequences in the benchmark dataset
is computed to construct the heat map. Figure 4 represents the constructed heat map illustrating the
important position of the input sequence. As can be seen, the final prediction is more affected by
the mutations occurring at the center of the sequence than the mutations happening on both sides of
the sequence.
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Figure 3. AuROC for M. musculus, Rice, and “Combined-species” genomes.

Figure 4. Heat Map to study the effect of mutation in model prediction.

In order to study the generalization of DNA6mA-MINT we have prepared additional dataset
for Rice genome (which is a part of our future work) from the NCBI Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE103145. We have prepared
from this repository 10,000 positive sequences and 10,000 negative sequences that are not 6mA.

https://www.ncbi.nlm.nih.gov/geo/
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Obtained values for sensitivity, specificity, and accuracy are 84.77, 82.78, and 83.76, respectively.
The obtained results show that proposed model generalizes well to the new sequences.

6. Conclusions

DNA modification results in presiding form which is DNA N6-methyladenine (6mA). DNA-6mA
identification is necessary to explore different biological functions. This study proposed an effective
computational tool for the identification of DNA-6mA using a Neural Network framework.
The proposed model uses a CNN for feature extraction followed by the LSTM layer, which gives
interpretation of the high-dimensional feature vector so that they can be optimally utilized for
classification of methylated or non-methylated sites. For comparison purpose results are computed
on five and ten folds for three datasets. The proposed model outperformed the results achieved
by existing state-of-the-art models in the case of all the datasets. The aim to introduce this
model is to utilize it for different research fields working in the development of medicine
and bioinformatics. For the said reason, a web server is created which is publicly available at:
http://home.jbnu.ac.kr/NSCL/DNA6mA-MINT.htm.
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