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Abstract

Sickle cell disease (SCD) is characterized by deoxygenation–induced polymerization of

hemoglobin in red blood cells, leading to hemolytic anemia, vaso–occlusion, and the devel-

opment of multiple clinical complications. To characterize the clinical burden associated

with differences in hemoglobin concentration and hemolysis measures, a systematic litera-

ture review of MEDLINE, EMBASE, and related meta–analyses was undertaken. For quan-

titative analyses related to hemoglobin concentration, pooled results were analyzed using

random effects models to control for within–and between–study variability. To derive risk

ratios associated with hemoglobin concentration change, we combined ratios of means

from select studies, which reported hazard and odds ratios in meta–analyses for hemoglo-

bin concentration–related outcomes and changes between groups. Forty-one studies were

identified for inclusion based on relating hemoglobin concentration to clinical outcomes.

Meta–analyses demonstrated that mean hemoglobin concentration was significantly lower

in patients with cerebrovascular disease (0.4 g/dL), increased transcranial Doppler velocity

in cerebral arteries (0.6 g/dL), albuminuria (0.6 g/dL), elevated estimated pulmonary artery

systolic pressure (0.9 g/dL), and in patients that subsequently died (0.6 g/dL). In a risk

reduction meta–analysis, modeled increased hemoglobin concentrations of 1 g/dL or

greater resulted in decreased risk of negative clinical outcomes of 41% to 64%. In conclu-

sion, chronic anemia is associated with worse clinical outcomes in individuals with SCD and

even modest increases in hemoglobin concentration may be beneficial in this patient
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population. This systematic review has been registered on Prospero (Registration number

CRD42018096860; https://www.crd.york.ac.uk/prospero/).

Introduction

Sickle cell disease (SCD) is characterized by deoxygenation–induced polymerization of hemo-

globin in red blood cells (RBCs), leading to altered blood rheology, hemolysis and vaso–occlu-

sion. Hemoglobin concentration is one indicator of the degree of hemolysis that occurs in

SCD, as evidenced by the strong inverse correlation of hemoglobin concentration with clinical

measures of RBC destruction, such as reticulocyte count and serum concentrations of lactate

dehydrogenase, indirect bilirubin, and aspartate transaminase, and by the direct correlation of

hemoglobin concentration with serum haptoglobin concentration [1, 2]. The chronic hemo-

lytic anemia experienced in varying degrees by patients with SCD leads to reduced oxygen–

carrying capacity, tissue hypoxia, and clinical manifestations such as fatigue. Acute worsening

of anemia may occur for several reasons, including increased hemolysis related to vaso–occlu-

sive episodes, acute splenic sequestration, transient red cell aplasia, and hyperhemolysis fol-

lowing transfusion reactions [3]. Episodes of acute illness and chronic complications in SCD

lead to a decreased quality of life, making SCD one of the most clinically severe monogenic dis-

orders worldwide [4, 5].

Along with chronic hemolysis, vaso–occlusion, and tissue ischemia, SCD is characterized

by progressive end–organ damage of the heart, brain, lungs, spleen, liver, kidneys, and bones

[6, 7]. Although most patients with SCD in resource–rich countries live beyond childhood, the

median life expectancy remains low, and is reduced by 2 to 3 decades [8]. This increased risk

of early mortality is, in large part, due to the development of multiple end–organ damage [9–

12].

Individual studies have correlated low hemoglobin concentration with poor patient out-

comes. Hemoglobin concentrations less than 8 g/dL are associated with complications during

hospitalization, silent cerebral infarcts, and mortality [13–15]. Decreases in hemoglobin con-

centration of 1 g/dL are associated with approximately two–fold greater odds of microalbumi-

nuria [16]. To comprehensively quantify the clinical burden associated with low hemoglobin

concentration in patients with SCD, we conducted a systematic literature review and meta–

analysis. As a secondary analysis, we conducted a meta–analysis of risk ratios associated with

hemoglobin change across selected clinical endpoints including mortality in SCD.

Materials and methods

Systematic literature searches of Excerpta Medica (EMBASE) and MEDLINE (via PubMed)

databases were conducted (January 1, 1998 to February 26, 2019) to identify studies reporting

on associations of hemoglobin concentration and other measures of hemolysis with clinical

outcomes in patients with SCD. Key search terms included “sickle cell anemia”, “sickle cell dis-

ease”, “hemoglobin”, “haemoglobin”, “hemolysis”, and “haemolysis” (see S1 Appendix of S1

and S2 Tables for full search strategies). In addition to the EMBASE and MEDLINE databases,

abstracts from the previous 2 years of 5 prominent scientific conferences, where results of stud-

ies in SCD are presented (American Society of Hematology; European Hematology Associa-

tion; Annual Sickle Cell Disease Research and Educational Symposium and National Sickle

Cell Disease Scientific Meeting; International Society for Blood Transfusion; American Society
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of Pediatric Hematology/Oncology), were evaluated to identify relevant literature yet unpub-

lished in manuscript form.

Citations identified from the database and grey literature searches were reviewed in a

2–step process by a single reviewer: first pass title/abstract evaluation followed by full text

assessment of selected papers. Studies were screened for English language publications report-

ing on a population of pediatric or adult patients with SCD. Outcomes of interest were the

associations of clinical complications with hemoglobin concentration and selected measures of

hemolysis: reticulocyte count (percentage and absolute counts); unconjugated or indirect bili-

rubin; serum lactate dehydrogenase; dense RBCs; plasma cell–free hemoglobin concentration;

and urine hemoglobin. Clinical outcomes included efficacy, safety, acute and chronic clinical

complications, and mortality. In an effort to report on a robust body of evidence, the current

analysis focuses on hemoglobin concentration and 4 key clinical outcomes, namely stroke and

silent cerebral infarction, albuminuria (defined as an albumin–creatinine ratio of� 30 mg/g;

moderately increased albuminuria: an albumin–creatinine ratio 30–299 mg/g), elevated esti-

mated pulmonary artery systolic pressure (PASP; based on tricuspid regurgitant jet velocity

[TRV]� 2.5 m/s), and mortality. Included study designs were phase 2, 3, or 4 randomized

controlled trials (RCTs), open-label trials, single-arm trials, prospective or retrospective obser-

vational studies, database studies, registry studies, or surveys. Phase 1 clinical trials, pharmaco-

kinetic/pharmacodynamic studies, preclinical or animal studies, case studies, reports or series,

guidelines, editorials, letters, commentaries, narrative literature reviews, and dissertations

were excluded. All sickle cell disease genotypes were included and studies were included

regardless of hydroxyurea or transfusion therapy use.

Data analysis

Data extraction was performed (JAC; KG) according to a predetermined format of study char-

acteristics and outcomes data. Key elements included study characteristics, patient demo-

graphics, and measures of hemoglobin concentration associated with clinical outcomes of

interest. Data were extracted by a single reviewer with select validation by a second reviewer.

Quantitative analyses were conducted specifically for hemoglobin as the key outcome of inter-

est. The study findings were separated into categories of outcomes related to hemoglobin lev-

els. The differences in the hemoglobin concentration for patients with and without each

outcome (i.e., mortality, albuminuria, etc.) were analyzed. For each category, study findings

were aggregated to perform separate meta–analyses assessing the overall magnitude of the

association. Findings were stratified by levels of hemoglobin concentration to examine hetero-

geneity. Heterogeneity was measured using I2 values and Cochran’s Q statistic. Pooled results

were analyzed using random effects models to control for within and between study

variability.

Sensitivity analyses were performed to examine potential publication bias, including jack-

knife analyses and Begg and Egger statistics [17]. These findings have been reported in the

results in addition to the primary study findings and subgroup analyses [18]. Furthermore,

meta–regression was performed to understand how study traits contributed to heterogeneity

of pooled effect estimates [19]. The meta–analytic results are displayed using forest plots [20].

For the meta–analysis evaluating risk ratios associated with change in hemoglobin concen-

tration, ratios of means from select studies and reported hazard and odds ratios in meta–analy-

ses by change in hemoglobin concentration between groups for each outcome were combined

[21]. When studies reported separate values for hemoglobin concentration outcomes in bivari-

ate and multivariate analyses, these were combined within the study prior to the overall meta–
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analysis for studies in an outcome category. Analyses were performed using STATA 13.2

(Stata, College Station, TX, USA).

Three quality assessment scales were utilized to evaluate included studies: (1) the Cochrane

Collaboration tool for assessing the risk of bias in RCTs; (2) the Newcastle–Ottawa Scale for

evaluation of quality in prospective, non–randomized studies [22], and (3) the checklist devel-

oped by the International Society for Pharmacoeconomics and Outcomes Research for evalu-

ating retrospective databases and registries [23]. Quality assessment was completed by two

researchers independently, with discrepancies in scoring discussed with a third researcher to

determine the final assessment. Results of the quality assessments may be found in the

Appendix.

This systematic review has been registered on Prospero (Registration number

CRD42018096860; https://www.crd.york.ac.uk/prospero/).

Results

Initial results of the database searches returned a total of 2,820 potential publications (Fig 1).

Following the removal of duplicate citations and a review of the titles and abstracts, 322 publi-

cations remained for evaluation. Review of the full text manuscripts resulted in the inclusion

of 174 publications for qualitative synthesis. Of these analyses, 41 reported on the direct rela-

tionship between hemoglobin concentration and the key clinical outcomes of interest: stroke

and silent cerebral infarct, albuminuria, elevated estimated PASP, and mortality. Key study

characteristics are provided in Table 1.

Overall, the random effects meta–analysis showed that hemoglobin concentration was sig-

nificantly lower overall by 0.4 g/dL (95% CI: 0.3, 0.5) in patients with a history of stroke (0.4 g/

dL in patients with stroke/silent cerebral infarct and 0.4 g/dL in stroke alone) compared with

those who had no history of stroke (Fig 2). In studies reporting transcranial Doppler (TCD)

results, hemoglobin concentration was significantly lower by 0.6 g/dL (95% CI: 0.3, 0.9) in

those with, compared to those without, an abnormal TCD velocity (Fig 3).

The meta–analysis evaluating pediatric and adult patients showed a significantly lower

hemoglobin concentration by 0.6 g/dL (95% CI: 0.5, 0.6) in patients with albuminuria (Fig 4).

In a subgroup assessment of pediatric patients, individuals with moderately increased albu-

minuria had a significantly lower hemoglobin concentration by 0.7 g/dL compared with

patients with normal albuminuria (95% CI: 0.5, 0.8) (S3 Appendix of S1 Fig).

Among patients with an elevated estimated PASP, the meta–analysis showed hemoglobin

concentration was significantly lower by 0.9 g/dL (95% CI: 0.6, 1.1) than in patients without an

elevated estimated PASP (Fig 5A). Similar results were demonstrated among pediatric patients

where hemoglobin concentrations averaged 0.8 g/dL (95% CI: 0.2, 1.4) lower in those with an

elevated estimated PASP compared with patients without (Fig 5B).

Overall, hemoglobin concentration was significantly lower by 0.6 g/dL (95% CI: 0.4, 0.7) in

deceased versus living patients (Fig 6).

Using data from the included literature, an additional meta–analysis was conducted to

derive an estimation of potential reduction in risk for stroke/silent cerebral infarct, albumin-

uria, elevated estimated PASP, and mortality that might be associated with increases in hemo-

globin concentration, Fig 7. Overall, the modeled risk reduction for negative clinical outcomes

decreased at all modeled levels of increased hemoglobin concentration, most notably with

improvements in hemoglobin concentration of 1 g/dL or greater. Specifically, this analysis

demonstrated in a population with SCD that a hemoglobin concentration of� 1.0 g/dL higher

predicted a 41% reduction in the risk for stroke/silent cerebral infarct; the modeled risk reduc-

tion was 53% for albuminuria and 57% for elevated estimated PASP. An increase in
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hemoglobin of� 1.0 g/dL in SCD patients was estimated to reduce the risk of mortality by

64%. Sensitivity analyses showed no studies influenced the outcomes using a jackknife analysis

and the Begg and Egger statistics did not indicate any small sample bias.

Discussion

This report focused on understanding the associations between hemoglobin concentration

and clinical outcomes among children and adults with SCD. Among patients of all ages, lower

hemoglobin concentration was consistently associated with higher incidence or history of

stroke, silent cerebral infarcts, increased TCD velocity, albuminuria, elevated estimated PASP,

and mortality. In aggregate, the differences in hemoglobin concentration between groups of

Fig 1. PRISMA diagram for the literature selection and review process.

https://doi.org/10.1371/journal.pone.0229959.g001
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Table 1. Included studies.

First Author, Year Study Design Study

Country

Number of

Included Patients

Mean Patient Age (years) Included Outcomes

Al-Allawi, 2016 [24] Prospective cohort Iraq 94 �3 Elevated TRV

Aleem, 2010 [25] Prospective cohort Saudi Arabia 67 23.8 Proteinuria

Ambrusko, 2006 [26] Retrospective US 44 14.82 TRV elevation

Ataga, 2006 [27] Prospective cohort US 76 38.4 vs. 42.3 Risk of PHT�

Bakanay, 2005 [28] Retrospective US 226 16–68 Mortality

Belisario, 2016 [29] Prospective cohort (2

cohorts)

Brazil 395 At time of stroke or end of f/u: 4.67; 9.35 Risk of stroke

338 At time of high–risk TCD or end of f/u: 6.69; 8.68 High–risk TCD†

Bernaudin 2008 [30] Prospective cohort France 373 NR (children) High TCD values

Bernaudin, 2015 [14] Prospective cohort France 189 Median age at first MRI/MRA: 5.4 Median age at

MRI/MRA with cervical assessment: 8.7

SCI

Chaturvedi, 2018 [12] Retrospective US 150 Median: 25.5 Mortality

DeBaun, 2012 [31] Cross-sectional International 814 9.06 vs. 9.35 SCI

De Castro, 2008 [32] Retrospective US 125 39.3 Changes in TRV

Domingos, 2014 [33] Prospective cohort Brazil 261 NR Stroke

Feld, 2015 [34] Prospective cohort US 247 36.2 Mortality

Gladwin, 2004 [35] Prospective cohort US 195 36 Association with TRV

Gurkan, 2010 [36] Retrospective US 40 5–20 Microalbuminuria

Hsu, 2003 [37] Retrospective US 314 2–16 TCD status

Iwalokun, 2012 [38] Prospective cohort Nigeria 103 20.7 vs. 15.7 Albuminuria

Kassim, 2015 [39] Retrospective US 430 �21 Mortality

King, 2011 [40] Prospective cohort Jamaica 244 7.2 Microalbuminuria

King, 2014 [41] RCT (2 cohorts) US 150 9.2vs. 8.5 SCI

Knight-Madden,

2013 [42]

Prospective cohort Jamaica 75 23.9 vs. 23.1 Mortality

Kwiatkowski, 2009

[43]

Retrospective US 96 3.7 SCI

Kwiatkowski, 2011

[44]

Prospective cohort (2

cohorts)

US 195 10.9 vs. 7.6 Conversion to normal

TCD

Lebensburger, 2019

[45]

Prospective cohort US 91 5–21 Proteinuria

Lebensburger, 2011

[46]

Retrospective (2

cohorts)

US 144 NR Microalbuminuria

Lobo, 2015 [47] Prospective cohort Brazil 125 27.6 vs. 34.7 TRV status

Makani, 2011 [48] Prospective cohort Tanzania 1,725 Median: 8 Mortality

Mawanda, 2011 [49] Prospective cohort Uganda 305 9.7 Microalbuminuria

McBurney, 2002 [16] Retrospective US 142 2–20 Microalbuminuria

McKie, 2007 [50] Retrospective (2

cohorts)

US 191 3–20 Microalbuminuria/

proteinuria

McPherson Yee, 2011

[51]

Retrospective (2

cohorts)

US 410 11.3 CKD and albuminuria

Naoman, 2010 [52] Retrospective US 105 Median: 37 TRV

Nebor, 2010 [53] Prospective cohort Guadalupe 189 34.8 Albuminuria

Nelson, 2007 [54] Prospective cohort US 53 12.1 Elevated TRV

Rankine-Mullings,

2015 [55]

Retrospective Jamaica 40 13.9 vs. 15.3 Mortality

Sachdev, 2011 [56] Prospective US, UK 483 36 TRV

Sedrak, 2009 [57] Prospective cohort US 48 12 TRV

Silva, 2011 [58] Prospective cohort Brazil 291 6.2 Cerebrovascular disease

Sokunbi, 2017 [59] Prospective cohort Nigeria 175 8.8 TRV

(Continued)
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individuals with and without a negative event were statistically significant across all clinical

outcomes evaluated, highlighting the serious complications associated with anemia in the SCD

patient population.

Table 1. (Continued)

First Author, Year Study Design Study

Country

Number of

Included Patients

Mean Patient Age (years) Included Outcomes

Villagra, 2007 [60] Prospective cohort US 33 37 vs. 43 Elevated TRV

Voskaridou, 2007

[61]

Prospective cohort Greece 84 35 TRV

CKD, chronic kidney disease; f/u, follow-up; MRA, magnetic resonance angiography; MRI, magnetic resonance imaging; NR, not reported; PHT, pulmonary

hypertension; RCT, randomized controlled trial; SCI, silent cerebral infarct; TCD, transcranial Doppler; TRV, tricuspid regurgitant velocity; UK, United Kingdom; US,

United States.

� PHT assessed by TRV and pulmonary artery systolic pressure measurement.
† Defined as a time-averaged mean of the maximal velocity�200 cm/sec in the internal carotid or middle cerebral artery on two recordings.

https://doi.org/10.1371/journal.pone.0229959.t001

Fig 2. Hemoglobin difference in patients with stroke or silent cerebral infarct. � CI, confidence interval; WMD, weighted mean difference. �A sensitivity analysis was

conducted with the study by King (2014) study removed and the meta-analysis results were essentially unchanged.

https://doi.org/10.1371/journal.pone.0229959.g002
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Our analyses are supported by data from seminal longitudinal studies, which provide evi-

dence of the relationship between hemoglobin concentration and key clinical outcomes

among patients with SCD. In an analysis of data from 3,764 patients from the Cooperative

Study of Sickle Cell Disease (CSSCD), who ranged in age at enrollment from birth to 66 years,

Fig 3. Hemoglobin difference in patients with TCD abnormalities. CI, confidence interval; TCD, transcranial

Doppler; WMD, weighted mean difference.

https://doi.org/10.1371/journal.pone.0229959.g003

Fig 4. Hemoglobin difference in patients with albuminuria. CI, confidence interval; WMD, weighted mean difference.

https://doi.org/10.1371/journal.pone.0229959.g004
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Platt et al demonstrated that patients with sickle cell anemia with hemoglobin below the 10th

Fig 5. (A) Hemoglobin difference in patients with elevated estimated PASP. (B) Hemoglobin difference in pediatric patients with elevated estimated PASP. CI,

confidence interval; PASP, pulmonary artery systolic pressure; WMD, weighted mean difference.

https://doi.org/10.1371/journal.pone.0229959.g005
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percentile (� 7.1 g/dL) had a higher risk of death than all other patients (2.8 vs 1.1 deaths per

100 person–years) [9]. In a subsequent analysis of data from the CSSCD included in our

review, the relationship between anemia and stroke was further elucidated [62]. The relative

risk of infarctive stroke significantly increased by a factor of 1.85 per 1 g/dL decrease in hemo-

globin concentration and the relative risk of hemorrhagic stroke increased by a factor of 1.61

per 1 g/dL decrease in hemoglobin concentration [62]. In the Jamaican Cohort Study of Sickle

Cell Disease, in 17 of 310 children with homozygous SCD followed from birth in whom a

stroke occurred, an acute decrease of hemoglobin concentration was a risk factor for stroke

Fig 6. Hemoglobin difference in living and deceased patients. CI, confidence interval; WMD, weighted mean difference.

https://doi.org/10.1371/journal.pone.0229959.g006

Fig 7. Modeled increase in hemoglobin and associated reduction in risk for negative clinical outcomes. CI,

confidence interval; ePASP, estimated pulmonary artery systolic pressure; SCI, silent cerebral infarct.

https://doi.org/10.1371/journal.pone.0229959.g007
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[63]. Additionally, Powars and colleagues described a single–center prospective cohort study

of 725 patients with sickle cell anemia and 209 patients with sickle hemoglobin C disease in

whom hypertension, proteinuria, and increasingly severe anemia predicted end–stage renal

failure [10].

The present meta–analyses attempt to quantify the potential risk reduction that might be

associated with increasing hemoglobin concentration in SCD patients. This analysis suggests

that a hemoglobin increase of at least 1 g/dL might confer a 41% risk reduction for stroke and

silent cerebral infarct. This prediction model is indirectly supported by evaluation of individu-

als with varying anemia severity based on SCD genotype. In patients with sickle cell anemia,

co-existing alpha thalassemia yielded a relative risk reduction of 0.44 for stroke, with a multi-

variate analysis showing that the protective effect of alpha thalassemia is largely due to the

improvement in hemoglobin concentration; alpha thalassemia was not a significant predictor

of stroke after adjusting for hemoglobin concentration [62]. Further, the plausibility of the

present findings is rational given the underlying pathophysiologic mechanism of ischemic

cerebrovascular injury in SCD, where severity of anemia is associated with increased cerebral

blood flow, decreased compensatory reserve, and a greater risk of stroke during periods of

stress when the brain oxygen supply and demand are imbalanced [31].

The early onset of end–organ damage in SCD suggests the need for timely screening and

appropriate intervention in children. Kwiatkowski et al noted that by 3.7 years of age, 27% of

children with SCD had a silent cerebral infarct [43]. In addition, children with SCD suffer cog-

nitive impairment, with low hematocrit being an independent predictor of intelligence scores

and impaired cognitive functioning in patients with a history of stroke or silent stroke [64, 65].

Adults with SCD also show poorer performance on cognitive tests relative to controls, and

anemia and increasing age is associated with lower neurocognitive performance [66]. The

prevalence of albuminuria is up to 27% in children with SCD [36, 40, 51, 67, 68], with King

and colleagues detecting this complication as early as 2.8 years of age [40]. Further, in a pro-

spective cohort study in Minnesota, 31% of children over 10 years of age had evidence of ele-

vated estimated PASP by Doppler echocardiography [54]. Although the investigators

recommended screening children for pulmonary hypertension starting at age 10 [54], the clin-

ical significance of elevated TRV in children remains uncertain.

The interventions available to increase hemoglobin concentration in individuals with SCD

are limited. RBC transfusions, hydroxyurea, erythropoiesis stimulating agents and bone mar-

row transplants are therapeutic options with demonstrated effect. Increasing hemoglobin con-

centration via chronic RBC transfusions reduces stroke, silent cerebral infarcts, and abnormal

TCD [14, 44, 69]. Hydroxyurea also reduced TCD velocity with an overall increase in hemo-

globin concentration from baseline [70]. However, concerns regarding the long-term safety

profile of these interventions suggest a need for additional therapeutic options to reduce ane-

mia and hemolysis in SCD. The mechanism of hemoglobin concentration increase may be

important. Raising hemoglobin concentration with an erythropoiesis stimulating agent may

have a different clinical profile compared to increasing hemoglobin concentration with a ther-

apy that reduces hemolysis. Voxelotor, a hemoglobin S polymerization inhibitor recently

approved by the US FDA, demonstrated a sustained increase in hemoglobin levels and reduced

hemolysis in patients with SCD [71, 72].

There are limitations to this study. Decisions regarding a priori inclusion/exclusion criteria,

influenced by key research objectives, resulted in a rigorous selection process applied during

the search, title/abstract, and full–text review phases. As a result, studies without specific quali-

fying information at a review phase were excluded, most notably during the screening of publi-

cation titles and abstracts. Additionally, few RCTs were identified for inclusion in the

systematic review. Only 1 RCT met the a priori inclusion/exclusion criteria, evaluating
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outcomes in response to prophylactic blood transfusions [41]. Also, some individual patients

may be represented in more than 1 cohort or publication, as several publications have arisen

from landmark data sets. There was some heterogeneity between studies; high heterogeneity is

often a realistic expectation for modeling real-world outcomes. Statistically we have controlled

this variability by using random effects models to ensure that the overall reported effect size is

valid and adjusted for within and between study variability. Beyond controlling for heteroge-

neity, we conducted analyses to identify possible sources of variability as reported in our sensi-

tivity and subgroup analyses [73, 74]. Meta–analyses were not conducted for measures of

hemolysis, as insufficient uniform data in analyzable form were identified from the studies

that met inclusion criteria to inform the quantitative assessments. Lastly, the identified publi-

cations primarily evaluated the associations between hemoglobin concentration and clinical

outcomes. While the consistency of findings across studies support the robustness of potential

implications drawn from this data, we caution against the conflation of association and causa-

tion, and cannot explicitly state that raising the hemoglobin concentration will cause clinical

improvement. Given the highly complex pathophysiology of SCD, addressing multiple factors

such as RBC rheology, hemolysis, and vasculopathy warrants consideration. Further, con-

trolled studies are required to confirm the effects of raising hemoglobin concentrations on

clinical complications in patients with SCD.

In conclusion, comprehensive evaluation of peer–reviewed literature published over the

last 20 years demonstrates a significant relationship between degree of anemia and worse clini-

cal outcomes in individuals with SCD. While some heterogeneity existed among the studies,

the pattern of lower hemoglobin concentration and higher risk of cerebrovascular disease,

albuminuria, cardiopulmonary disease, and mortality was consistent for pediatric and adult

patients with SCD. Meta–analyses further demonstrate that even relatively modest differences

in hemoglobin concentration may be clinically meaningful. In aggregate, these results support

that interventions to reduce anemia may confer clinical benefit in this patient population.

Indeed, these results underscore the therapeutic importance of agents that increase hemoglo-

bin and which have the potential to modify disease severity. Given that the multi–organ dam-

age associated with hemolytic anemia begins at a young age, novel therapeutic options that can

be used early in life are needed to interrupt the underlying pathogenic mechanisms of SCD.
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