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Epilepsy (recurrent unprovoked seizures) is common, with  
50 million cases in the world1,2, often begins unpredictably and 
can lead to severe developmental and functional effects. After 

epilepsy is established, anticonvulsants are the current first-line 
treatment to attempt to control seizures by reducing neuronal 
excitability or increasing neuronal inhibition. However, one-third 
of patients have drug-refractory epilepsy (DRE), in which seizures 
persist despite the appropriate use of two or more anticonvulsants. 
DRE treatment is difficult, and currently only resective epilepsy sur-
gery, in which part of the seizure-causing brain tissue is removed, 
offers a cure. Thus, there is a critical need for a greater understand-
ing of epileptogenesis, the process that generates and perpetuates 
epilepsy3, which may enable the development of more effective and 
non-invasive therapies.

Neuroinflammation is thought to be a contributing factor to 
epileptogenesis. Activated glial cells producing inflammatory 
cytokines within 4 h after seizure induction in animal models and 
human chronic epileptic tissue have been reported4–6. Recent stud-
ies have shown brain infiltration of CD4+ and CD8+ and interleukin 
(IL)-17-producing γδ T cells from patients with pediatric epilepsy7. 
Our previous study8 using mass cytometry also showed increased 
frequency of IL-17-producing CD4+ and CD8+ T cells along with 
reduced numbers of inhibitory LAG3+CD8+ T cells in peripheral 
blood from patients with pediatric epilepsy. Case studies have 
shown effectiveness of anti-inflammatory treatments in epilepsy9–12.  

Thus, an in-depth understanding of immune mechanisms in epilepsy 
could pave the way for precise and effective immunotherapeutics.

Here, we sought to study immune mechanisms in DRE using 
single-cell genomics coupled with a systems biology analytical 
approach. We analyzed lesional brain tissues from patients with 
DRE using CITE-seq, a multimodal single-cell technology that 
captures both the transcriptome and protein expression profiles at 
single-cell resolution13. We developed network biology-based ana-
lytical approaches to define and interpret the complex relationships 
between cell types. These LR-based networks suggest enhanced 
integrin–collagen-mediated interaction as a potential mechanism 
of lymphocyte infiltration. Such recruitment of immune cells from 
the periphery creates an immune microenvironment with a striking 
resemblance to autoimmune diseases of the brain, such as multiple 
sclerosis (MS).

Results
Defining resident and infiltrating immune cells in the epileptic 
brain. To identify the immune mechanisms impacting epilepto-
genesis, single-cell suspensions from brain tissue obtained during 
resective epileptic brain surgery were subjected to the multimodal 
single-cell technology CITE-seq. Immune cells were isolated from 
11 brain tissue samples from six individual patients and sequenced 
using the 10x Genomics Single Cell platform. After quality control, 
a total of 85,780 cells and 22,968 genes were retained for further  
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analysis. The various cell types were clustered, identified and 
visualized in two-dimensional t-distributed stochastic neighbor- 
embedding (t-SNE) maps (Fig. 1a). Clustering and t-SNE were 
performed on gene expression levels using the Seurat R package14. 
Clusters were identified using surface protein markers (Fig. 1b) and 
gene expression levels (Supplementary Fig. 1 and Extended Data 
Fig. 1). Surface protein expression overlaid on clusters validates and 
improves the cluster’s phenotypic identification. CD45 protein sur-
face expression levels discriminate immune cells from non-immune 
cells. Cell clustering into subsets using graph-based Louvain clus-
tering algorithms resulted in 26 clusters. Based on CD45 expression 
levels, 13 clusters (0–7, 9–12 and 14) were identified as microglia 
(CD45lo) and six clusters (8, 15–17, 19 and 21) were identified as 
infiltrating immune cells (CD45hi). All other clusters were CD45− 
and were identified using marker gene expression levels. Clusters 
13, 20 and 22 expressed genes (CLDN5, MYH11, ABCC9, VWF and 
ACTA2) specific to cells of the neurovascular unit (NVU)15, while 
cluster 18 expressed genes (MAG and MOG) specific to oligoden-
drocytes (Supplementary Fig. 1). Among the immune cell subsets, 
cluster 19 had B cell marker proteins (CD19 and CD20) and cluster 
17 had macrophage marker proteins (CD45hi, CD14 and CD11b). 
Clusters 8, 15 and 16 were identified as T cell clusters (CD45hiCD3+) 
(Fig. 1a). Infiltrating immune cells were observed in all 11 tis-
sues from the olfactory, frontal or temporal lobes, irrespective of 
their location in the brain (Fig. 1c). Thus, our approach allowed 

simultaneous clear identification of microglia, immune cells and 
non-immune cells of the brain and enabled quantification of 
lineage-specific surface proteins along with gene expression levels.

Microglia exhibit a pro-inflammatory phenotype in DRE tissue.  
Microglia, the innate immune cells in the central nervous sys-
tem (CNS), also play a role in neurogenesis, synapse forma-
tion and pruning and in maintaining neuronal homeostasis16. 
Transcriptional heterogeneity in microglia explains their broad 
functionality17. Single-cell genomic studies have revealed diverse 
subtypes of microglia, which are thought to reflect their distinct 
functions. Here, we employed single-cell transcriptomics to inves-
tigate whether activation of inflammatory pathways could be found 
in the microglia in DRE tissue. We observed heterogeneous microg-
lial clusters in each patient, indicating the known multiplicity of 
roles (Extended Data Fig. 1a,b). AIF1 and CSF1R were the most 
widely expressed genes in all the microglial clusters (Extended Data 
Fig. 1c). Other microglial-specific genes (CX3CR1, P2RY12 and 
TREM2) showed differential expression across clusters (Extended 
Data Fig. 1c). Strikingly, the transcriptome of DRE tissue was 
characterized by a predominance of pro-inflammatory pathways. 
Indeed, the pro-inflammatory genes IL1B, IL18, CXCL8 (IL-8) and 
CCL4 were among the most widely expressed chemokine and cyto-
kine genes in DRE microglia. Although epilepsy is not considered 
a primary immune-mediated disease, DRE microglial clusters 7, 5, 
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Fig. 1 | Microglia and infiltrating immune cells in brain tissue from patients with DRE. a, Position and phenotype of clusters on the t-SNE map. Color 
represents the cluster ID. b, Surface epitope expression of lineage-specific cellular markers quantified using antibody staining with the CITE-seq protocol 
was overlaid on the t-SNE map to identify the cluster phenotype. Color intensity reflects cellular surface epitope protein expression. c, Stacked bar chart 
shows the frequency of infiltrating, resident (microglial) immune cells and NVU cells from brain tissues of patients with DRE. Bar color reflects cell types 
as indicated in the figure. OL, olfactory lobe; FL, frontal lobe; TL, temporal lobe. P1.A, occipital cortex; P1.B, occipital core; P2, frontal lobe; P3.A, posterior 
mid-temporal gyrus; P3.B, superior frontal gyrus; P4, posterior mid-temporal gyrus; P5.A, posterior mid-temporal gyrus; P5.B, lateral mid-temporal gyrus; 
P6.A, mid-temporal gyrus; P6.B, posterior temporal gyrus; P6.C, lateral temporal gyrus.
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9 and 11 were characterized by high gene expression levels of TNF, 
HLA-DRA and HLA-DPB1 and low CX3CR1 and P2RY12 gene 
expression levels (Extended Data Fig. 1c,d). Complement pathway 
genes were also highly expressed in all microglial clusters. These 
findings were homogeneously present in all DRE microglial clus-
ters regardless of differences among individuals or even spatial 
locations. To compare the findings from DRE microglial single-cell 
gene expression, data from non-neurological controls and individu-
als with autism spectrum disorder (ASD) from Velmeshev et al. 
and Masuda et al. were analyzed18,19. Single-nucleus RNA sequenc-
ing (snRNA-seq) expression from 3,331 microglial cells (Fig. 2a,b) 
was obtained from the prefrontal cortex and the anterior cingulate 
cortex from non-neurological disease controls or human individu-
als with ASD. Single-cell RNA sequencing (scRNA-seq) expression 
data were obtained from 1,098 microglia (Fig. 2c) from human 
brain cortex tissue that was pathologically assessed as normal and 
resected during epilepsy surgery. Microglia from non-neurological 
disease controls and individuals with ASD in both the snRNA-seq 
and scRNA-seq datasets expressed characteristic microglial markers 
such as P2RY12, CX3CR1, AIF1, CSF1R and IL18 (Fig. 2b,c). Microglia 
from patients with DRE showed expression of pro-inflammatory 
cytokine (IL1B, IL1A, TNF, CCL2 and CCL4) and chemokine genes 
(Fig. 2d). However, microglia from non-neurological disease con-
trols or from individuals with ASD did not show expression of these 
pro-inflammatory cytokines and chemokines in the snRNA-seq 
dataset (Fig. 2e). Also, scRNA-seq of brain tissue pathologically 
assessed as normal showed (Fig. 2f) a much lower proportion of 
pro-inflammatory cytokine- and/or chemokine-expressing microg-
lial cells (6.9% of cells with IL1B-normalized counts >3) than DRE 
microglia (33.5% of cells with IL1B-normalized counts >3). This 
is in agreement with reported increased IL-1b levels in the cortex 
of rats with pilocarpine-induced epilepsy compared with control 
mouse cortex samples4. The comparison of microglial gene expres-
sion from patients with DRE, non-neurological disease controls and 
individuals with ASD clearly demonstrates a heightened inflamma-
tory response in DRE microglia (Fig. 2d–f). The widespread expres-
sion of pro-inflammatory genes in microglial clusters from patients 
with DRE has unexpected similarities with microglial expression 
patterns found in MS, a bona fide autoimmune disease18. In particu-
lar, clusters 9–12 showed a phenotype similar to that of microglial 
cell types enriched in MS brain lesions. These clusters show high 
expression of HLA-DRA and HLA-DPB1 and low expression of 
CX3CR1 and P2RY12 (Extended Data Fig. 1c,d), characteristic of 
microglia from MS18.

To validate the transcriptomic findings, we sought to image 
the brain microenvironment using multispectral Opal dye 7 color 
immunohistochemistry (IHC) imaging analysis. This demon-
strated pro-inflammatory cytokine IL-1b production by microglia 
from DRE lesions (Fig. 2g–i and Extended Data Fig. 2). Allograft 
inflammatory factor 1 (AIF1)-stained microglial cells in DRE brain 
lesions produced IL-1b (Fig. 2h), while IL-1b was not observed in 
control brain tissue sections (Fig. 2g). Aside from microglia, astro-
cytes stained for glial fibrillary acidic protein (GFAP) also produced 
IL-1b in DRE tissue sections (Extended Data Fig. 2). Our IHC imag-
ing analysis also corroborates the findings in rat and human epi-
lepsy of Ravizza et al.4.

Purinergic receptor P2RY12 on the microglial surface responds 
to neuronal activation by sensing ATP released by activated neu-
rons and activated astrocytes20. Our data showed reduced expres-
sion of the P2RY12 gene in clusters that had higher IL1B expression 
levels (Extended Data Fig. 3a). We further analyzed the genes dif-
ferentially regulated in IL1B-expressing clusters (1, 9, 10 and 12) 
compared with P2RY12-expressing clusters (4 and 6). Differential 
gene expression analysis showed that 81 genes were significantly 
upregulated (adjusted P value < 0.05, log2 (fold change) > 1) and 
12 genes were significantly downregulated in IL1B-expressing cells 

compared with P2RY12-expressing cells (Extended Data Fig. 3b 
and Supplementary Table 1). IL1B-expressing cluster cells nota-
bly showed higher expression of pro-inflammatory cytokines, 
chemokines and adhesion molecules (Extended Data Fig. 3c). 
IL1B-expressing cluster cells also showed lower CX3CR1 expression 
than P2RY12-expressing cluster cells. Furthermore, gene ontology 
term enrichment analysis showed genes enriched for apoptosis, 
locomotion, cell migration, the immune system, cytokine produc-
tion and negative regulation of cell death (Extended Data Fig. 3d). 
Differential gene expression analysis clearly indicated changes in 
the functional and structural aspects of P2RY12-expressing micro
glia compared with IL1B-expressing pro-inflammatory microglia. 
Altogether, these findings strongly suggest an underlying primary 
immune imbalance contributed to by resident microglia, which gen-
erates a microenvironment conducive to chronic immune inflam-
mation. These observations, along with previous studies4,21, strongly 
enforce the hypothesis that epileptic foci resected in patients with 
DRE possess an immune pathogenic environment, capable of inter-
facing with the immune system to attract and elicit innate and adap-
tive immune cells. Thus, we set out to characterize the immune cells 
infiltrating the DRE focus.

Infiltration of leukocytes in the brains of patients with DRE. 
Inspired by the initial observation of Xu et al.7, who described 
immune infiltrates in the brain parenchyma of a patient with pedi-
atric epilepsy by using flow cytometry, we analyzed the data to 
show in-depth mechanistic characteristics of infiltrating immune 
cells using single-cell transcriptomic analysis. Immune cell clusters 
(8, 15–17 and 19) were identified using major lineage surface pro-
tein markers and gene expression levels (Fig. 1b). These immune 
cell clusters were reclustered to further resolve the major immune 
cell lineage into its functional subsets. Louvain clustering grouped 
immune cells into 16 clusters. The phenotypes and distributions of 
these clusters were visualized with a t-SNE map (Fig. 3a). Surface 
protein expression levels were overlaid on t-SNE maps to identify 
and visualize the cluster phenotype (Fig. 3b). Cluster phenotypes 
were further validated at the gene expression level (Extended Data 
Fig. 4a). We further validated RNA assay-based clusters with the 
antibody-derived tags (ADT) assay (protein expression) or inte-
grated joint ADT and RNA assay clusters. The similarity network 
fusion (SNF) algorithm implemented in the CiteFuse R package22 
was used for integrated data-clustering analysis. Spectral clustering 
was performed, and the optimal cluster number was obtained using 
eigen values as described in the CiteFuse package. Cluster informa-
tion was overlaid on a t-SNE map (Supplementary Fig. 2).

Spectral clustering based on ADT (Supplementary Fig. 2a) was 
able to capture the major lineages CD8+ T (cluster 2), CD4+ T (cluster 
1) and B (clusters 5 and 3) cells, while CNS-associated macrophages 
(CAMs) and natural killer (NK) and NKT cells were mixed (clusters 
4 and 6). SNF-enabled clustering improved the ADT-based clusters 
(Supplementary Fig. 2b) and was able to separate NK–NKT cells 
(cluster 3) from CAMs (cluster 2), and B cells were merged in one 
cluster (cluster 5). Major cell type clusters from SNF-based cluster-
ing were in concordance with RNA-based clustering. Altogether, 
RNA-based clustering (Supplementary Fig. 2c and Fig. 3a,b) could 
provide a higher level of granularity. Considering the similarity 
and concordance of SNF clustering with RNA clustering, we chose 
fine-resolved RNA-based clusters in further analyses. We found cell 
subsets of CD4+ and CD8+ T cells, B cells, macrophages, dendritic 
cells (DCs) and NK–NKT cells. Clusters 9 and 12 were CD3−CD16+ 
at the surface protein level, while cluster 10 was CD3+CD16−, dis-
criminating NK cells (clusters 9 and 12) from NKT cells (cluster 10) 
(Fig. 3b). NK cells had a CD56dimCD16+ cytolytic NK cell subset 
phenotype. NK cells were GZMK (encoding granzyme K) nega-
tive but expressed GZMB (encoding granzyme B) (Extended Data 
Fig. 5a). By comparison, patients with MS who have responded to 
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immunotherapy show an increase in CD56brightGZMK+ regulatory 
NK cells23. Hence, infiltration of mature cytotoxic NK cells in DRE 
may further contribute to neurodegeneration. Cluster 3 showed a 
mixed phenotype with surface protein expression of CD3, CD4, 
CD8, CD11b and HLA-DR, indicating doublets and as such pos-
sibly interacting cells. Cluster 3 was further analyzed and resolved 
(Direct interaction between microglia and T cells). All major 
immune cell subsets were found in the brain sections analyzed 
(Extended Data Fig. 4b). Infiltrating CD4+ and CD8+ T cells were 
the most abundant (Extended Data Fig. 4b). Intriguingly, DRE-M  
focus-infiltrating T cells clearly showed a pro-inflammatory function 
and expressed IFNG, TNF, CCL5 and CCL4 (Extended Data Fig. 5a).  
The cluster 6 CD4+ T cell subset expressed genes (CCR7, LEF1, 
SOX4, RPL9 and RPS6) characteristic of naive and actively prolifer-
ating CD4+ T cells. Three other CD4+ T cell subsets (clusters 4, 13 
and 15) showed an activated T cell phenotype and expressed higher 
levels of chemokines and cytokines (CCL4, CCL5, TNF, IL1B and 
IFNG) as well as adhesion and locomotion (CXCR4, VIM, ATP1B3 
and ANXA1)-associated genes (Extended Data Fig. 5b). Within the 
CD4+ T cell compartment, we observed cells with a helper T cell 
(TH)17 gene signature (CCR6, RORC and IL23R) (Extended Data 
Fig. 5a). Similar to CD4+ T cell subsets, CD8+ T cell subsets also 
showed an activated cell phenotype. CD8+ T cell subsets expressed 
higher levels of GZMK (encoding granzyme K) and GZMA (encod-
ing granzyme A), indicating their effector cytotoxic functionality. 
In addition to pro-inflammatory and activated subsets, we observed 
immature and activated CD8+ T cell subsets (cluster 0). This imma-
ture subset expressed CD2, THEMIS, IKZF1, KLRC1, ATM, GBP5 
and RAC2. Both CD4+ and CD8+ T cell subsets expressed genes 
(NFKBIA, REL, NFKB1, TNFRSF9, TNFRSF4, JUN and FOS) asso-
ciated with nuclear factor (NF)-κB-mediated signaling (Extended 
Data Fig. 5b). Despite the heterogeneity observed, most T cell sub-
sets expressed pro-inflammatory genes and showed an activated 
phenotype along with enhanced trafficking and locomotion gene 
expression. CAM clusters (clusters 8, 11 and 14), similar to micro
glia, expressed IL1B, IL8 and CCL4 pro-inflammatory genes.

Using IHC imaging analysis, we observed infiltrating CD3+ 
T cells from formalin-fixed paraffin-embedded (FFPE) brain sec-
tions from patients with DRE and no infiltrating CD3+ T cells from 
control brain sections (Extended Data Fig. 2). Conventionally, FFPE 
sections and immunofluorescence and/or IHC staining is used to 
demonstrate infiltration of lymphocytes and other characteristics. 
However, analysis is often limited to an exceedingly small slice of 
brain (often thin brain tissue slides of 5–7 µM) and is further limited 
by availability of IHC-compatible antibodies. Analysis restricted to 
such a small tissue section could be a possible reason for identifying 
few infiltrating immune cells in our IHC analysis. The CITE-seq 
analysis approach precisely overcomes the limitations of IHC and 
FFPE tissue analysis. Together, most infiltrating immune cells also 
displayed pro-inflammatory and cytotoxic function, further cor-
roborating inflammation as an underlying pathogenic mechanism. 
The functional interface between the resident pro-inflammatory 
microenvironment and the infiltrating immune cells was our next 
area of investigation.

Functional LR interactions between NVUs and immune cells. We 
hypothesized that the pro-inflammatory DRE-M interfaces with 
circulating immune cells and induces their extravasation by modu-
lating chemokine receptors and adhesion molecules, which would 
induce higher and coordinated expression of integrins, selectins 
and chemokine and cytokine receptors by infiltrating immune cells. 
These interactions facilitate adhesion, rolling and diapedesis of 
immune cells from the vasculature into the brain tissue24–26. Indeed, 
within the DRE-M, typical adhesion genes ITGA (ITGA1, ITGA5, 
ITGA9), ITGB (ITGB2, ITGB7, ITGB8), VEGFA and ICAM1 and 
chemokine and cytokine receptor genes CCR5, CCR1, IFNGR1, 

TNFRSF13C and TNFRSF1B had enriched expression in microg-
lial clusters (Extended Data Fig. 6). We also analyzed NVU (clus-
ters 13, 20 and 22) cells from brain tissue. Based on known specific 
marker genes14, cluster 13 (ACTA2, PLN and MYH11) was identi-
fied as smooth muscle cells (SMCs), cluster 20 (ABCC9 and LPL) 
was identified as pericytes and cluster 22 (VWF and CLDN5) was 
identified as endothelial cells (Extended Data Fig. 7). NVU cells also 
showed enriched expression of ITGA, ITGB, VCAM1, genes encod-
ing collagens and CCR10 among the prominent adhesion and che-
mokine receptor genes (Extended Data Fig. 8). Altogether, the data 
above clearly depict a strong fertile environment generated by the 
DRE-M for chemokine- and cytokine-mediated immune cell infil-
tration. This potential LR chemoattractive DRE-M was functionally 
effective. Indeed, the infiltrating immune cells expressed various 
chemokine- and cytokine-mediated trafficking (CXCR4, CXCR3, 
CXCR6, CCR6, CCR4, CXCR5 and CCR7) and integrin receptor 
(ITGB1, ITGB2, ITGA1 and ITGA5) genes (Extended Data Fig. 8) 
that facilitate immune surveillance and infiltration into brain tissue.

To study the interactions between NVUs from the DRE-M and 
infiltrating leukocytes, we created a cellular network based on the 
LR interaction27 between the cell clusters within NVUs and infiltrat-
ing immune cells (Fig. 3c). Enriched ligand and receptor genes from 
each cluster were obtained, and the interaction network was created 
as described in the Methods. LR pairs between three NVU and 15 
immune cell clusters were obtained to create the interaction net-
work between neurovascular and immune cell subsets. If an LR pair 
was found between the clusters, an edge was established between 
the clusters. The cluster ID represents nodes, and the interacting LR 
pair represents the edge between the nodes. Of a maximum possible 
90 edges between three NVU clusters and 15 immune cell clusters, 
we observed 68 edges. We counted the number of LR pairs between 
the clusters to represent the strength of interaction between the 
cells and considered a higher number of LR pairs between two cell 
clusters to indicate a stronger possibility of interaction between 
them. We found a total of 809 LR interactions among nodes, with 
265 unique LR pairs. The majority of LR pairs (206 of 265) were 
found between NVU and CAM clusters, and these 206 unique LR 
pairs between CAMs and NVUs accounted for 657 of 809 total LR 
interactions and are reflected in the network (Fig. 3c) as thick green 
arrows. NK cell clusters (9 and 12) had higher numbers of interact-
ing LR pairs with NVUs than T and B cell clusters. These results 
indicate increased infiltration potential of innate cells and high 
interaction potential with DRE-M. The greater LR-mediated inter-
action between macrophages and NVUs corroborates and explains 
previous reports of substantial macrophage infiltration in brain tis-
sue from rodent and human epilepsy4,6. We further explored such 
relational mechanisms and analyzed LR pair genes. Accordingly, the 
LR gene network was created from 265 unique LR pairs observed 
between the NVU and immune cell clusters (Fig. 3d). Ligand and 
receptor genes are shown as nodes, and edges between the nodes 
show the interaction between nodes. Edge color shows the count 
of the LR pair genes found between any two inter-NVU and 
immune cell clusters. The LR gene network showed many collagen–
integrin-mediated interactions as indicated by red edges (Fig. 3d). 
Many of the collagen proteins were expressed by NVUs (Extended 
Data Fig. 8a) that interact with integrins on immune cells (Fig. 
3d and Extended Data Fig. 8b). Among the LR pairs, ITGB1 was 
enriched in NVUs, while its cognate ligands (encoded by CD14, 
ICAM4 and ADAM17) were expressed on CAMs (Extended Data 
Fig. 8a). ITGA1 was enriched in NVUs but also in CD8+ clusters. 
The ITGA1 cognate ligand COL8A1 was expressed in SMCs and 
endothelial cells. All three CD4+ nodes had enriched IL7R expres-
sion (Extended Data Fig. 8b), and TSLP, encoding its potential 
cognate receptor (IL-7-like cytokine) was enriched in NVUs, partic-
ularly in SMCs and pericytes (Extended Data Fig. 8a). Many chemo-
kines and cytokines expressed by immune cell clusters had cognate 
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Fig. 3 | Infiltrating immune cells in the epileptic human brain and their interaction with NVU cells. a, Cluster positions are shown on a t-SNE map where 
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receptors enriched in NVUs (Fig. 3d and Extended Data Fig. 8). 
Interestingly, TNF, CCL5 and TGFB1 were expressed by immune 
cell clusters (Extended Data Fig. 8a), while their cognate receptors 
TNFRSF21, ACKR1 and ACRL1 were expressed by NVUs (Extended 
Data Fig. 8b). We further validated our interactome results 
using a recently published method in the CellChat R package28  

(Supplementary Fig. 3). We extended our interactome analysis 
in a pilocarpine-induced mouse model of temporal lobe epilepsy 
(TLE). We analyzed the ligand and receptor genes that we found 
enriched in our DRE dataset (Fig. 3d) and compared them to the 
mouse TLE model and control mouse hippocampal brain tissue 
RNA-seq data generated by Srivastava et al.29 to determine whether 
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the observed perturbations in ligand and receptor genes from our 
human DRE dataset were also present in the mouse TLE model. 
RNA-seq data were preprocessed and analyzed as described in the 
Methods. We found 1,600 genes (Supplementary Table 2) that were 
significantly modulated (false discovery rate (FDR) < 0.05 and fold 
change >2 or <0.5) in TLE mice (n = 100) brain tissue compared 
with that of control mice (n = 100). Among differentially modu-
lated genes, 122 were LR genes that were enriched in human DRE  
(Fig. 4a,b). Among these LR genes, many key LR pairs, such as colla-
gen (COL1A2, COL3A1, COL4A5 and COL5A3)–integrin (ITGA2, 
ITGB2 and ITGAX) and chemokine and cytokine (CCL4, CCL2, 
CXCL10, IL1B, IL1A and TNF)–chemokine and cytokine receptor 
(CXCR4, CXCR6, IL1R2 and TNFRSF9) genes, were upregulated 
in the TLE mouse brain compared to in the control mouse brain. 
The data from the experimental animal epilepsy model further cor-
roborate our findings in humans. Altogether, our LR interactome 
network defines the mechanism of immune cell infiltration pivoting 
on the DRE-M and capable of attracting immune cells with a clear 
pro-inflammatory bias.

Direct interaction between microglia and T cells. The combi-
nation of the following crucial elements: (1) a chemoattracting 
environment, which leads to an effective interactome (Fig. 3c,d 
and Extended Data Fig. 8), (2) production of pro-inflammatory 
cytokines from microglia (Fig. 2) and (3) brain infiltration of 
pro-inflammatory and cytotoxic immune cells (Fig. 3a,b) led to 
the next logical step of determining whether we could demonstrate 
direct interactions between infiltrating immune cells and microglia 
in the DRE microenvironment (DRE-M). These functional inter-
actions would further elucidate the pivotal role for the DRE-M in 
maintaining and enhancing the pathogenic process. We discovered a 
mixed doublet cluster (cluster 3) by immune cell analysis (Fig. 3a,b).  
Cluster 3 clearly showed CD3, CD11b and HLA-DR surface  
protein expression, indicating doublets of T cells and microglia  
and/or macrophage cells. Transcriptomics coupled with epitope 
staining enabled us to clearly identify the doublets based on surface 
expression of lineage markers. Cluster 3 expressed microglial-specific 
genes, for example, C3, CSF1R, APOE and CX3CR1, while mac-
rophage and DC immune cell clusters expressed higher levels of 
CD68, FCER1G, SPI1 and CD36 (Extended Data Fig. 9), clearly 
establishing a microglial phenotype for the doublet cluster. We fur-
ther analyzed the components of these doublet clusters to segregate 
them into cell subsets of major immune cell lineages in direct inter-
action with microglia. We reclustered cluster 3 doublet cells using 
major lineage protein expression markers and obtained six clusters 
(Fig. 5a). Cluster phenotypes were identified using protein (Fig. 5b 
and Extended Data Fig. 10a) and gene (Fig. 5c) expression levels. A 
CD8+ T cell cluster (cluster 0) and a CD4+ T cell cluster (cluster 1)  
were the two main clusters (73% of the total doublet cells).  

We also observed B cell (cluster 4), NK cell (cluster 2) and macro-
phage clusters (cluster 5).

These results clearly showed microglial cells in direct contact with 
CD4+ and CD8+ T cells. As most doublets observed were microglial 
and T cell doublets, we examined the hypothesis that direct inter-
action between microglia and T cells reciprocally enhances their 
inflammatory function. We used a recently published method, 
sequencing of physically interacting cells (PICs) (PIC-seq)30, to find 
genes modulated due to physical interaction and to further dissect 
the gene signal specificity to the contributing interacting partner. 
The PIC-seq method estimates the mixing factor of contributing 
PICs and then calculates the expected counts of contributing cells 
and interacting cells. The χ2 test was performed to find significantly 
modulated genes using real versus expected counts of PICs. In 
microglial–CD4+ T cell PICs, 143 genes (Supplementary Table 3)  
were significantly modulated (FDR < 0.05), while, in microglial–
CD8+ T cell PICs, 164 genes (Supplementary Table 4) were signifi-
cantly modulated (FDR < 0.05). The differentially expressed genes 
were compared to their microglial and T cell expected contribution 
using relative distributions derived from both cell types. Each of the 
top ten genes from T cells and microglia are shown in a heatmap 
(Fig. 5d–g). We identified CCL4 (encoding a chemokine) and IL1B 
(encoding a cytokine) from microglial cells, while IFNG and GZMA 
were from CD4+ T cells in CD4+ T cell–microglial PICs (Fig. 5d). 
CD8+ T cell–microglial PICs also upregulated XCL1 (encoding a 
chemokine) and GZMB (encoding a cytotoxic product) as T cell 
genes, while CCL4 (encoding a chemokine) and IL8 (encoding a 
cytokine) were microglial genes (Fig. 5f). PIC dissection of signals 
suggests mutual enhancement of pro-inflammatory and cytotoxic 
function after physical interactions.

Finally, we validated the T cell–microglial doublet immune com-
plex using IHC and flow cytometry (Fig. 5h–k). We clearly showed 
T cells (CD3+) in physical interaction with microglia (AIF-1+) and 
that the immune complex produced IL-1b (Fig. 5h–j). Indeed, based 
on PIC-seq (Fig. 5d–g) and IHC analysis (Fig.5h–j), microglial 
immune cell doublets clearly showed increased pro-inflammatory 
function when compared to microglia and T cells that were not in 
direct contact (Fig. 5d–i).

Discussion
We used CITE-seq to characterize the DRE focus in the human 
brain as a pro-inflammatory microenvironment. Here, we charac-
terized the immune milieu of DRE tissue and identified a potential 
mechanism of lymphocyte infiltration in the brain. Furthermore, we 
found physically interacting T cells with microglia. Using PIC-seq 
analysis, we further showed enhanced pro-inflammatory function 
in both the physically interacting microglia and T cells compared to 
cells not in direct physical interaction. Overall, microglial transcrip-
tional similarity, infiltration of pro-inflammatory lymphocytes and 

Fig. 5 | Direct interaction of microglia and infiltrating T cells in brain tissue from patients with refractory epilepsy. a, Doublet cell clusters are shown 
on the t-SNE map. Numbers and colors on the t-SNE map show the cluster ID. b, Surface epitope protein expression of major lineage markers are overlaid 
on the t-SNE map. c, Gene expression specific to NK cells is overlaid on the t-SNE map. d,f, Gene expression profile of physically interacting CD4+ T and 
microglial cells (d) and CD8+ T and microglial cells (f). The bar at the bottom (blue, microglia; yellow, T cells) shows the estimated mixing factor. Heatmap 
and mixing factor bars are ordered with increasing mixing factor value for T cells. Left, colored bar indicates the ratio of expected gene expression in 
microglia versus T cells. The top ten genes specific to T cells (lower microglial/T cell ratio) and specific to microglia (higher microglial/T cell ratio) are 
shown in the heatmap. e,g, Real gene expression values in microglia and T cells. Heatmaps were plotted for 500 randomly drawn cells, 250 each from 
microglia and T cells. h,i, Immune cells isolated from DRE tissue were formalin fixed, and cells were cytocentrifuged with Cytospin on slides for staining of 
CD3, AIF-1 and IL-1b. DAPI was used for the nuclear stain. Stained slides were imaged using a Vectra 3.0 imaging microscope. h, T cell (CD3+)–microglial 
(AIF-1) immune cell complex. i, Representative T cell–microglial immune cell complex producing IL-1b from the brain tissue of three patients with DRE. 
j, T cell–microglial immune cell complex from one of the FFPE tissue sections stained with a panel of six antibodies. A CD3+ T cell (orange) in physical 
interaction with an AIF-1+ microglia (yellow) is indicated with a white arrow, and IL-1b proteins are shown (red). k, Bivariate flow cytometry plot with gating 
for CD45, CD11b and CD3. Left, live gated cells with SSC on the y axis and CD45 expression on the x axis. Right, CD45hi-gated cells with CD3 expression 
on the y axis and CD11b expression on the x axis. CD115 levels were overlaid on the bivariate plot, where expression is indicated from low (green) to high 
(red). Flow cytometry analysis and plots were created using FlowJo software.

Nature Neuroscience | VOL 25 | JulY 2022 | 956–966 | www.nature.com/natureneuroscience 963

http://www.nature.com/natureneuroscience


Resource NaTuRE NEuROSCIEnCE

KLRB1
PTPRCAP

ITM2A
CST7
CD96

GZMA
CD247

IQGAP2
RAC2
IFNG

EIF4E
CCL2

CCL4L2
PTGS2

IFI30
USP53

G0S2
PDK4
CCL4
IL1B

CD4+ T cells Microglia

CD4+ T cells Microglia

NKG7
SYNE2

XCL1
GZMB

BICDL1
GIMAP7

CD27
H1-3

GPR65
CMC1

HLA-DQA1
HLA-DQB1

PTGS2
EIF4E
CCL4

HLA-DRB5
SERPINE1

MAFB
G0S2

IL8

CD8+ T cells Microglia
0

1

PICs

NKG7
SYNE2

XCL1
GZMB

CCDC64
GIMAP7

CD27
HIST1H1D

GPR65
CMC1

HLA-DQA1
HLA-DQB1

PTGS2
EIF4E
CCL4

HLA-DRB5
SERPINE1

MAFB
G0S2

IL8

M
ix

in
g

CD8+ T cells Microglia

KLRB1
PTPRCAP

CST7
CD96

GZMA
CD247

IQGAP2

EIF4E

CCL4L2
CCL2

USP53
G0S2
PDK4
CCL4
IL1B

0

PICs

Overlaid

DAPI+IL-1b

AIF1+CD3

CD11b

C
D

3

CD45

S
S

C
 (

×
10

3 )

250

200

150

100

50

10–3 103 104 105 103

103

102

102

101

101

104

104

105

105

0

Q5
40.7

Q6
6.67

Q7
43.6

Q8
9.02

CD45mid

88.8

CD45hi

4.81

0

0

1

2

3

4
CD19+

B cells

5

CD8+ 
T cells

CD4+ 
T cells

CD16+

NK cells

CD11b+

macrophages  

t-SNE1

t-
S

N
E

2

t-SNE1

t-
S

N
E

1

t-SNE1

t-
S

N
E

2

CD4 CD8a CD3

CD19 CD11b CD16P
ro

te
in

ex
pr

es
si

on

G
en

e
ex

pr
es

si
on

a b c

d e

gf

h

i

j k

20 µm

20 µm

ITM2A

RAC2
IFNG

PTGS2
IFI30

M
ix

in
g 1

1

0

2

–1

3
2
1
0
–1
–2

M
icroglial/C

D
4

+

T
 cell ratio

Z
 score

Z
 score

1 

0 

2 

–1

2

0

–2

M
icroglial/C

D
8

+

T
 cell ratio

RNA (NKG7 )

RNA (GNLY)

1
2
3
4
5
6
7

1
2
3
4
5
6
7

RNA (GZMB)

50 µm

DAPI GFAPAIF-1 MAP2 CD3 IL-1b CD68

CD45lo

2.44 

Nature Neuroscience | VOL 25 | JulY 2022 | 956–966 | www.nature.com/natureneuroscience964

http://www.nature.com/natureneuroscience


ResourceNaTuRE NEuROSCIEnCE

direct interaction of microglia with T cells essentially place DRE 
closer to an immune-mediated disease, with many functional and 
transcriptional characteristics similar to MS18,31

Despite increasing evidence of neuroinflammation in ani-
mal models of epilepsy and human studies4,6–8, the benefits of 
anti-inflammatory therapy have been only anecdotally reported9,10,12, 
Treatment options for DRE reflect the limited knowledge on its 
etiopathogenesis. Hence, medical needs and scientific knowledge 
gaps coexist. These observations have led us to comprehensively 
investigate the general hypothesis that inappropriate, immuno-
logically driven pro-inflammatory mechanisms contribute to the 
pathogenesis of DRE in humans, as in other brain inflammatory 
diseases such as MS and autoimmune encephalitis. In our previous 
study8, we employed a high-dimensionality mass cytometry, artifi-
cial intelligence-driven approach32 to examine the peripheral blood 
immunome in DRE in comparison with an age-matched standard 
dataset. We found DRE-specific aberrations, with an imbalance 
toward pro-inflammatory T cell subsets and a marked IL-17 signa-
ture8 as shown by another report7.

These aberrations raised the key question as to whether 
immune-mediated mechanisms directly affect the diseased tissue 
and, importantly, whether such immune-mediated inflammatory 
mechanisms are generated and sustained in the DRE-M. In this cur-
rent work, we employed CITE-seq technology to comprehensively 
unravel the immune mechanism in the brain of patients with DRE.

CITE-seq allowed accurate identification of cellular identity 
and functional modality at single-cell resolution, with a clear sep-
aration between resident cells and infiltrating immune cells. Our 
analysis underscored microglia as a major source in inducing a 
pro-inflammatory microenvironment, both by primarily produc-
ing pro-inflammatory mediators and reduced microglial puriner-
gic receptor-mediated signaling. Recent studies in mouse models 
demonstrated negative feedback control of neuronal activity by 
microglial purinergic (P2RY12) G protein-coupled receptor sig-
naling33,34. Reductions in P2RY12-expressing microglia observed 
in DRE brain lesions (Extended Data Fig. 3) may lead to loss of 
negative feedback control and may contribute to hyperexcitabil-
ity of neurons in an epileptic seizure. In a recent study, Badimon 
et al.33 showed enhanced expression of chemokine and motility 
genes upon selective activation of neurons in the mouse forebrain, 
indicating neuronal–microglial communication. Our data from 
patients with DRE show a similar expression profile in microglia, 
in which we observed an increase in pro-inflammatory, chemokine 
and motility-associated genes (Fig. 2 and Extended Data Fig. 3). Xu 
et al.7 had reported memory CD4+ and cytotoxic CD8+ T cells in 
human epileptic foci. We further extended this finding and showed 
transcriptional heterogeneity in T cell subsets and showed gene sig-
natures specific to these T cell subsets. Increased frequency of TH1 
and TH17 pro-inflammatory T cells from MS lesions is associated 
with disease activity35,36. TH1 and TH17 T cell signatures from DRE 
(Extended Data Fig. 5a) suggest a similarity in T cell-mediated sig-
naling in MS and DRE. Single-cell transcriptomics further allowed 
us to study potential interactions with other cell subsets in the brain. 
Changes in leukocyte trafficking and blood–brain barrier perme-
ability to immune cells have been implicated in human DRE and in 
animal models37–39 of seizure. In humans, improved epilepsy control 
has been reported in two patients with epilepsy and MS following 
treatment with natalizumab, a humanized anti-4 integrin antibody 
that mediates T cell migration in the brain and intestine40. In the 
mouse TLE model, blockade of colony-stimulating factor 1 receptor 
(CSF1R) was effective in attenuating seizures29. Our LR interactome 
network analysis supports and elucidates this complex relation-
ship in the DRE brain. By developing and applying LR interactome 
network analysis, we unraveled the interface between resident and 
infiltrating cells. Within this interface, our new approach uncov-
ered integrin–collagen-mediated interactions as the most common 

interaction mode between the immune and DRE resident cells. 
The integrin–collagen interaction was also validated by CellChat28 
cellular interaction inference analysis (Supplementary Fig. 3). 
Integrin–collagen-mediated interactions in DRE and an effective 
anti-integrin therapeutic in MS41,42 further suggest functional simi-
larity of T cells in MS and in DRE. Many inflammatory genes such 
as IL1B, IL1A, TNF, CCL4, CCL2 and IL15 were upregulated in the 
brain tissue of mice with TLE (Fig. 4 and Supplementary Table 2). 
Moreover, LR pairs enriched in human DRE were also upregulated 
in the brain of mice with TLE compared to control mouse brain tis-
sue. Conservation of the LR interactome across species suggests its 
specificity to epilepsy.

Further, we clearly demonstrated a direct interaction between 
T cells and microglia inside epileptic brain tissue. We also showed 
enhanced pro-inflammatory activity in the directly interacting 
T cell–microglial immune complex. The microglia in direct con-
tact with T cells showed an antigen-presenting cell phenotype that 
indicates a direct antigen-presenting role of microglia inside the 
brain. A previous study43 has reported colocalization of activated 
microglia and T cells in MS lesions and suggests physical interaction 
between them. This study shows a transcriptional profile of directly 
interacting microglia and T cells forming a mechanistically relevant 
stromal–immunological synapse within human brain tissue.

Our study was focused on brain-resident and infiltrating immune 
cells, and, in addition to a few key lineage surface markers, we ana-
lyzed cells at the transcriptional level. All the transcriptional-level 
information may not be translated to the protein level, and thus 
further validation at the protein level will be required before inter-
ventional therapeutic targeting. Astrocytes also contribute to neu-
roinflammation in epilepsy and are known to interact with and 
modulate cells of NVUs44,45. Whether a specific subset of astrocytes 
contributes to neuroinflammation in DRE and how it interfaces 
with other cells cannot be answered with our current data and is a 
limitation of the presented study. However, within these limitations, 
our dataset is a rich resource for future studies in neuroinflamma-
tion and may serve as a guide for interventional therapeutic devel-
opment for DRE and possibly other neuroinflammatory diseases.
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Methods
Selection of patients and acquisition of brain samples. Pediatric patients with 
DRE and who had a focal lesion amenable to surgical resection were identified 
through detailed seizure semiology, neuroimaging, electroencephalography 
monitoring studies and functional imaging (D.C.). The epileptogenic zone was 
identified in each patient, and epilepsy surgery was performed (D.C.Y.L.) to resect 
the epileptic brain to achieve seizure control. Histopathological examination was 
performed to identify etiologies such as neuronal migration disorders, cortical 
dysplasia, etc. A section of the excised sample was collected in RPMI medium 
and immediately processed to isolate brain-resident and infiltrating immune cells. 
Eleven samples were collected from six individual patients.

Patient clinical information is provided in Supplementary Table 5. Patients 
were recruited at the KK Women’s and Children’s Hospital, Singapore. The study 
was reviewed and approved by the SingHealth Central Institutional Review Board. 
Informed consent was obtained according to SingHealth Central Institutional 
Review Board requirements.

Control brain FFPE tissue sections were obtained from the UK Brain Bank. 
FFPE sections were from post-mortem brain tissue samples without neurological 
disorders.

Isolation of human brain cells. Immune cells were isolated from brain tissues 
removed during brain surgery for the treatment of epilepsy. Only tissues from 
epileptic lesions were removed and used for the study. Within 2–6 h after resection, 
tissues were processed to isolate brain immune cells. Tissues were kept in cold 
RPMI medium with 10% serum during transportation. Immune cells were 
isolated as described previously29. Briefly, tissues were minced into small pieces 
and incubated with collagenase A (1 mg ml−1) and DNase 1 (100 U ml−1) for 1 h 
at 37 °C. Subsequently, digested tissue was mechanically dissociated using 5-ml 
syringe plungers and filtered through a 70-µm filter. Cells were washed with PBS 
and resuspended in 20 ml RPMI 10 medium. Percoll mix (10 ml; 9 ml Percoll and 
1 ml 10× PBS) was added slowly through the wall of the tube on top of the cell 
suspension, and samples were centrifuged at 4,000 r.p.m. (3,750g) for 30 min with 
0 acceleration and deceleration at 4 °C. Three layers appeared, and a middle layer 
that contained all the immune cells and microglia along with some other cells was 
collected, washed, counted and stored in freeze-mix medium (10% DMS in serum) 
for future use.

CITE-seq library preparation and sequencing. PBMCs were thawed and 
stained with live–dead stain (Thermo Fisher Scientific). Live cells were then 
sorted using the FACSAria II SORP instrument (Becton Dickinson). A cocktail 
of 16 TotalSeq-B antibodies (BioLegend) was prepared at 1 µg ml−1, and staining 
was performed using the ‘TotalSeq-B with 10x Feature Barcoding Technology’ 
protocol according to the manufacturer’s recommendation. Single cells were 
encapsulated into droplets with a gel bead in the emulsion (GEM) method 
using the 10x Chromium controller. For gene expression and protein detection, 
the Chromium Single Cell 3ʹ Gene Expression protocol (version 3 chemistry, 
10x Genomics) and the Chromium Single Cell 3ʹ Feature Barcode Library kit 
(10x Genomics) were used, respectively. Downstream library construction was 
performed using the 10x 3ʹ Gene Expression Library Construction kit, and 
barcoding was carried out with i7 Illumina adaptor indexes. Pooled libraries were 
then sequenced on the Illumina HiSeq 4000 platform using paired-end 151-bp 
reads to achieve 50,000 reads per cell for gene expression and 5,000 reads per 
marker for cell surface protein detection. Library construction and sequencing 
were performed in two batches (Supplementary Fig. 4).

Multispectral immunohistochemistry and microscopy. For spatial analysis, 
brain tissues were fixed with 10% neutral buffered formalin, and paraffin blocks 
were prepared. A 5-µM-thin section was mounted on slides. For staining tissue 
sections, the Opal multiplexing assay was used, and imaged was performed with 
the Vectra 3 system46. Briefly, slides were deparaffinzed, and antigen retrieval was 
performed in citrate buffer (for anti-MAP2 antibody) or Tris–EDTA buffer (for 
all other antibodies). For protein stabilization and background reduction, goat 
serum (Dako) was used for blocking. Slides were then stained with the following 
antibodies: anti-AIF-1 (clone EPR16588, dilution 1:2,000, Abcam), anti-CD3 
(polyclonal, dilution 1:300, Dako), anti-CD68 (clone PG-M1, dilution 1:50, Dako), 
anti-MAP2 (clone AP20, dilution 1:100, Thermo Fisher Scientific), anti-IL-1b 
(polyclonal, dilution 1:200, Thermo Fisher Scientific), anti-GFAP (clone GA5, 
1:200, Thermo Fisher Scientific). Subsequently, slides were stained with anti-mouse 
or anti-rabbit secondary antibodies, and Alexa Fluor tyramides (PerkinElmer) 
from the Opal 7 color kit were used to detect antibody staining. Slides were 
counterstained with DAPI for 5 min, mounted with Glycergel (Dako) and imaged 
using the Vectra 3 imaging microscope.

Cytospin sample preparation. Cells were fixed using 10% neutral buffered 
formalin (Sigma-Aldrich) for 1 h at 37 °C and washed with PBS. Cell were diluted 
to 1 × 106 cells per ml and cytocentrifuged at 700 RCF for 30 min in a StatSpin 
Cytofuge 2. The slides were air dried for 20 min before they were used for multiplex 
IF staining. The slides were stained with the same primary antibodies at the same 
dilutions as the FFPE tissues.

Flow cytometry. Cells were thawed and kept at 37 °C for 30 min. Cells were washed 
and suspended in ice-cold flow cytometry buffer (PBS supplemented with 0.2 mM 
EDTA and 0.5% BSA). Samples were stained using an antibody mix (anti-CD3–
AF647, anti-CD45–AF488, anti-CD11b–PE-Dazzle and anti-CD115–PE). DAPI 
was used for live–dead staining. All antibodies were purchased from BioLegend. 
Cells were acquired using the FACSAria II instrument (BD Biosciences), and data 
were analyzed using FlowJo software (FlowJo).

Single-cell transcriptomics and feature barcode analysis. Raw reads for 
transcriptome and protein markers were aligned to the human genome (hg19-
3.0.0) using Cell Ranger version 3 software with feature barcoding methods; 
Cell Ranger’s count utility was used to count the features. Cell barcodes and 
feature count matrices were created by aggregating filtered feature counts of each 
sample using the Cell Ranger aggregate utility. Subsequent data normalization 
and analysis were performed using the Seurat R package and custom R code. Cell 
data were quality controlled and filtered based on cellular complexity (number 
of genes per cell) and mitochondrial reads. Cells with between 300 and 5,000 
genes and mitochondrial percent reads less than 20 were kept for analysis. Data 
scaling, normalization, variable gene identification and clustering were performed 
using the Seurat pipeline. Principal-component (PC) analysis was performed 
on the 2,000 most variable genes, and the first 20 PCs were used for t-SNE and 
UMAP for data embedding into two dimensions. The nearest neighbor graph 
(SNN) was created from the first 20 PCs, and the SNN graph was used for 
clustering the cells. The cellular identity of the clusters was determined by finding 
cluster-specific genes using the FindMarkers function. This function implements 
the Wilcoxon rank-sum test to find the most differentially modulated genes in a 
cluster. Data were analyzed for batch effects by plotting cells on t-SNE coordinates 
(Supplementary Fig. 4a), where samples from both batches were mixed, and no 
batch effect was observed. We quantified the batch effect using Shannon entropy 
as described in the CellMixS R package47. Mean entropy of the transcript data 
was 0.91 and 0.92 for ADT data (Supplementary Fig. 4c,d). We observed that cells 
from a single cluster (indicated by the black arrow) had lower entropy values and 
contributed most to the batch effect. This cluster is for the most part from a single 
patient (P3.A and P3.B in Supplementary Fig. 4b), explaining its lower entropy 
value. Mean entropy was high and above 0.9 (0.91 and 0.92); therefore, no batch 
correction of raw data was performed.

Ligand–receptor interaction network. To find the potential interaction between 
clusters, networks of clusters created based on known LR pairs were enriched in 
clusters. LR pairs from the dataset described by Ramilowski et al. were used27. The 
LR pairs that had literature-supported evidence (1,894 LR pairs) were included 
for network creation. To find ligand and receptor genes that were enriched in a 
cluster, we collapsed the single-cell profile into a bulk RNA-seq profile by summing 
the count of each gene, and then each cluster count was normalized to library size 
using the ‘library.size.normalize(data)’ function from the phateR package. This 
function normalizes for sequencing depth of each cluster. A combined matrix of 
normalized gene counts for 13 microglial and three NVU clusters and 16 immune 
cell clusters was created. A subset of normalized gene count matrices with genes 
that were in the LR pair gene list was kept for LR-enrichment analysis. Fold change 
for gene expression in each cluster was calculated in comparison to genes expressed 
in the rest of all clusters for each sample. Average fold change was calculated for 
each gene, and genes that showed log2 (fold change) greater than 1 were considered 
enriched ligand or receptor genes.

In the LR interaction network, clusters are nodes and, if two nodes contain an 
enriched LR pair, then a potential interaction between the nodes is established and 
an edge between the nodes is created. To represent the strength of the network, the 
number of enriched LR pairs between each pair of nodes is counted, and the count 
is represented as color and thickness of the edge in the network. Ligand-to-receptor 
signaling is indicated using the edge direction represented with an arrow. Arrow 
tail indicates the enriched ligand, and arrowheads show enriched receptors, thus 
clearly visualizing LR association with the clusters. To create, analyze and visualize 
the network, igraph, visNetwork and ggplot2 R packages were used.

PIC-seq analysis. PICs were analyzed using PIC-seq methods30. Scripts 
provided by authors of the PIC-seq study were used for analyzing PICs; briefly, 
a gene-over-cell expression matrix for PICs and two background single-cell 
nonconjugated cells were fed as input in addition to a MetaCell48 background 
model for each singlet cell subset to the PIC-seq algorithm. The algorithm 
calculates mixing factor α using linear regression trained on simulated doublets. 
The algorithm also returns MetaCell assignment for each PIC. MetaCell IDs and 
mixing factors were subsequently used for estimating expected counts of PICs and 
singlet cells. The χ2 test was performed to find genes modulated in real PICs versus 
expected PIC counts.

Mouse brain tissue RNA-seq analysis. Raw data (accession number 
PRJEB18790) in FASTQ format were downloaded from the ENA repository. 
QC on FASTQ data was performed using FastQC software, and sequences were 
aligned to the mouse genome (mm.GRCm38.97 version) using the STAR2 
aligner with default parameters. Aligned BAM files were used for counting gene 
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expression using the featureCounts utility in the subread R package. Differential 
gene expression was performed using the edgeR R package. The exact test as 
implemented in the edgeR package was used for differential gene expression 
analysis between mice with TLE and control mice. Genes with FDR < 0.05 
and greater than 1-fold (100%) upregulated or 0.5-fold (50%) downregulated 
expression were considered significant.

Statistics and reproducibility. For statistical programming and data 
visualization, R version 4.0.3 and R studio version 1.3 were used. The following R 
packages were used: Seurat (version 3.2), edgeR (3.32), igraph (1.26), visNetwork 
(2.0.9), CellChat (1.1), CiteFuse (1.1), ggplot2 (3.3.2). Appropriate statistical 
tests, procedures and software have been described in Methods. No statistical 
method was used to predetermine sample size, and no data were excluded from 
the analyses.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw count data are deposited in the GEO public repository (GEO accession 
number GSE201048), and raw counts and analyzed R objects are also available 
at https://epicimmuneatlas.org/NatNeu2022. Associated data used to produce 
figures are also deposited in the Zenodo repository (https://doi.org/10.5281/
zenodo.6477100).

Code availability
Code used for the analysis and to produce figures is deposited in the Zenodo 
repository (https://doi.org/10.5281/zenodo.6477100).

References
	46.	Stack, E. C., Wang, C., Roman, K. A. & Hoyt, C. C. Multiplexed 

immunohistochemistry, imaging, and quantitation: a review, with an 
assessment of Tyramide signal amplification, multispectral imaging and 
multiplex analysis. Methods 70, 46–58 (2014).

	47.	Lutge, A. et al. CellMixS: quantifying and visualizing batch effects in 
single-cell RNA-seq data. Life Sci. Alliance 4, e202001004 (2021).

	48.	Baran, Y. et al. MetaCell: analysis of single-cell RNA-seq data using K-nn 
graph partitions. Genome Biol. 20, 206 (2019).

Acknowledgements
We thank all patients and their families who gave consent for the use of tissue 
samples. This study was supported by grants from the NMRC (NMRC/
MOHIAFCAT2/005/2015, S.A.; NMRC/TCR/0015-NCC/2016, S.A.; NMRC/
OFLCG/002/2018, S.A.; MH 095:003\016-0002, S.A.; MH 095:003\016-0001, S.A.; 
CIRG19may0052, S.A.; MOH-CSAINV19nov-0004, D.C.; NMRC/TA/0059/2017, J.G.Y.), 
PAEDSCAP-COLLABORATION-2021-002 (P.K.), Duke-NUS and SingHealth AMC core 
funding (S.A.). This research was also supported by the National Research Foundation 
Singapore under its NMRC Centre Grant Program (NMRC/CG/M003/2017, S.A.) and 
administered by the Singapore Ministry of Health’s National Medical Research Council.

Author contributions
P.K. performed experiments and bioinformatic analysis. A.L., S.L.P., N.B.S., C.J.H.C., 
N.B.S. and J.G.Y. performed experiments. D.C., S.L., A.N., T.H.Y., J.L. and D.C.Y.L. 
recruited patients, and D.C., A.N. and D.C.Y.L. obtained the relevant brain samples. 
L.Z. and E.-K.T. provided the control brain tissue section. E.P. advised and participated 
in mouse RNA-seq data analysis. T.A., J.G.Y. and F.G. participated in study design and 
manuscript preparation. P.K., S.A. and D.C. conceived and led the study and wrote the 
manuscript. D.C. and S.A. arranged funding for the study.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41593-022-01095-5.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41593-022-01095-5.

Correspondence and requests for materials should be addressed to Pavanish Kumar.

Peer review information Nature Neuroscience thanks Matthew Anderson and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Neuroscience | www.nature.com/natureneuroscience

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE201048
https://epicimmuneatlas.org/NatNeu2022
https://doi.org/10.5281/zenodo.6477100
https://doi.org/10.5281/zenodo.6477100
https://doi.org/10.5281/zenodo.6477100
https://doi.org/10.1038/s41593-022-01095-5
https://doi.org/10.1038/s41593-022-01095-5
http://www.nature.com/reprints
http://www.nature.com/natureneuroscience


ResourceNaTuRE NEuROSCIEnCE

Extended Data Fig. 1 | Microglia heterogeneity and differential abundance across the epilepsy patients brain tissue. (a) Stacked bar chart shows the 
frequency of various microglia clusters in each patient’s brain tissue. Color of bar shows the cluster identity. (b) Distribution of all the cells from each 
patient’s brain tissue was plotted as t-SNE map. Stacked bar chart and 2-D t-SNE map both shows differential abundance of microglia clusters across the 
patient’s brain. (c, d) To identify the phenotype of microglia clusters, normalized gene expression for each cluster was plotted as violin plot. (c, d) shows 
the gene expression profile of selected microglia specific, inflammatory and activation marker genes y-axis show normalized expression levels and x-axis 
shows cluster id.
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Extended Data Fig. 2 | See next page for caption.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ResourceNaTuRE NEuROSCIEnCE

Extended Data Fig. 2 | Multispectral 7 color immunohistochemistry (IHC) imaging analysis. Multispectral OpalTM dye immunohistochemistry (IHC) 
imaging of brain tissue section from (a) DRE lesion tissue and (b) Control tissue. 5 µm FFPE (Formalin Fixed Paraffin Embedded) tissue sections from  
4 DRE patients’ brain and 4 control brain tissue were stained with panels of antibody for microglia (AIF1), macrophage (CD68), T cells (CD3), Neurons 
(MAP2), Astrocytes (GFAP), Pro-inflammatory cytokine (IL-1b). After staining with all the antibodies sections were stained with DAPI for nuclear stain. 
Tissues were imaged using Vectra-3.0TM imaging system with 40X view finder. Figure legend shows the colors that represent the antibody and nuclear 
stain. White arrow shows IL-1b staining, red arrowhead shows CD68 stain and thin cyan arrow shows CD3 stain.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Resource NaTuRE NEuROSCIEnCE

Extended Data Fig. 3 | IL-1b expressing microglia genes expression profile compared with P2RY12 expressing microglia. (a) Dotplot shows the 
normalized expression P2RY12 and IL1B in microglia clusters from DRE patient’s brain. Dot size reflects the percentage of cells that showed genes while 
color shows the expression levels of genes. (b) Heatmap of genes significantly modulated in IL-1B expressing clusters compared to P2RY12 expressing 
clusters. For heat map 100 random sampled cells were shown for both IL1b and P2RY12 cluster. c) IL1B, P2RY12 clusters marker, Chemokine CCL4, CCL3 
cell adhesion genes ICAM1 and chemokine receptors CXCR4 and CX3CR1 were shown as violin plot. (d) GO gene set enrichment analysis results was 
shown as lollipop plot where on x-axis -log of FDR adjusted p-value for GO terms were shown. Top 20 GO term were shown in the figure.
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Extended Data Fig. 4 | Infiltrating immune cell clusters phenotype and abundance across patients and brain tissues. (a) Heatmap shows the expression 
of cell type specific genes. Heatmap was plotted with normalized mean expression levels of genes in the clusters. Black color shows the low expression 
while red show higher levels. (b) Distribution of infiltrating immune cells shown as stacked bar chart. Clusters were merged into major cell type as shown 
in figure legend. Figure legends color shows major cell types and numbers in brackets shows clusters id that were grouped together to plot stacked  
bar chart.
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Extended Data Fig. 5 | Pro-inflammatory cytokines and chemokine production by infiltrating immune cells. (a) Gene expression overlaid on t-SNE map 
to shows the expression levels of pro inflammatory, cytolytic genes in brain infiltrating immune cells. (b) Heatmap of genes expressed in CD4+ and CD8+ 
T cell clusters. Each column of heat map shows one single cell. Log normalized values are used for heat map and t-SNE overlay plots.
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Extended Data Fig. 6 | Enriched Ligands and Receptor in microglia clusters. Enriched Ligands (a) and Enriched receptors (b) in microglia clusters were 
shown as tilemap, where filled rectangle (yellow color) shows enrichment of ligand/receptor in clusters indicated on x-axis. Expression of ligand/receptor 
in a cluster compared to all other clusters with log2fold > 1 was considered enriched.
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Extended Data Fig. 7 | Neurovascular unit (NVU) clusters phenotype. (a) Top10 genes specifically expressed genes in NVU clusters (cluster 13, cluster 
20 cluster 23) were displayed as Heatmap. Rows of Heatmap shows genes expression and columns shows randomly sampled 100 cells from each cluster. 
Top of the Heatmap colorbar shows cell type identity (red- smooth muscle cell (SMC), green- pericytes (PC), Blue- Endothelial cells (EC)) and in brackets 
cluster id was shown. Top 10 genes were found using FindMarker function of Seruat R package. (b) Dotplot of key genes specific to endothelial cells  
(EC- MYH11+ACTA2+), pericytes (KCNJ8+ABCC9+) and smooth muscle cells (CLDN5+VWF+) along with some other known specific markers were 
shown as dot plot. Color of dots represent expression of genes while size of the dot shows percentage of cells genes expressed. Heatmap and Dotplot are 
plotted using Seurat R package.
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Extended Data Fig. 8 | Enriched Ligands and Receptor in NVU and Immune cell clusters. Enriched Ligand (a) and Enriched Receptors (b) in immune 
cells and NVU cells clusters were shown as tile Heatmap, where filled rectangle (yellow color) shows enrichment of ligand in clusters indicated on x-axis. 
Expression of ligand/receptor in a cluster compared to all other clusters with log2fold > 1 was considered enriched.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Resource NaTuRE NEuROSCIEnCE

Extended Data Fig. 9 | Microglia and macrophage specific genes. Gene expression were overload on t-SNE map to shows the expression of microglia and 
macrophage/DC specific cells and clusters.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ResourceNaTuRE NEuROSCIEnCE

Extended Data Fig. 10 | Phenotype of re-clustered doublets cells. (a) Protein expression density plot for major lineage marker proteins were visualized as 
overlaid density plots. Color fill shows the cluster identity. X-axis shows expression of proteins and y-axis shows cluster id. (b) Figure shows bivariate flow 
cytometry plots with gating strategy for doublets. Isolated immune cells from DRE brain tissue from 3 patients were stained with fluorochrome labeled 
antibodies and cells were analyzed using FACS ARIA IITM Flow cytometer (BD biosciences). Flow cytometry analysis and plots were created using FlowJoTM 
software. S1-S3 shows the doublet FlowJo gated plots for 3 samples analysed.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Single cell CITE-Seq sequence data was collected using Illumina Hi-Seq platform. Raw sequence reads were obtained and analyzed.

Data analysis For 10x single cell sequence analysis, 10x Genomics CellRanger v3 software were used. For clustering and downstream analysis  R version 
4.0.3 and R studio version 1.3 were used. Mouse reads were aligned to mouse genome (mm.GRCm38.97 version) using STAR2 (STAR_2.4) 
software. Following R packages were used : Seurat (v-3.2), edgeR (3.32), igraph(1.26), visNetwork(2.0.9), CellChat(1.1), CiteFuse(1.1), 
ggplot2(3.3.2)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Raw counts data is deposited in GEO public repository (GEO accession number: GSE201048) and Raw counts and analyzed R object is also available at https://
epicimmuneatlas.org/NatNeu2022 
 
Masuda et al, data was accessed from GEO (accession number: GSE124335) 
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Velmeshev et al data was downloaded from https://autism.cells.ucsc.edu 
Shrivastava Pk et al data accessed from GEO (accession number: GSE77578)
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Its a proof of  concept basic research study and no sample size calculation was performed.

Data exclusions No data excluded

Replication Multiple samples were analyzed to ensure reproducibility.

Randomization study did not required randomization

Blinding Blinding is not relevant for the study

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used  

Anti-Iba1 antibody [EPR16588] : (Abcam) 
Polyclonal Rabbit Anti-Human CD3 (Dako Omnis) 
Monoclonal Mouse Anti-HumanCD68 (clone PG-M1, Dako Omnis) 
Anti-MAP2 Antibody, clone AP20 (MAB 3418, Thermo Fisher Scientific) 
IL-1 beta Antibody (P420B, Thermo Fisher Scientific) 
GFAP Antibody, clone GA5 (14-9892-82, Thermo Fisher Scientific) 
 
 
 
TotalSeq™-B Barcode 0034 Specificiy CD3 Clone UCHT11 10 μg  
TotalSeq™-B Barcode 0050 Specificity CD19 Clone HIB19 10 μg 
TotalSeq™-B Barcode 0072 Specificity CD4 Clone RPA-T4 10 μg 
TotalSeq™-B Barcode 0080 Specificity CD8a Clone RPA-T8 10 μg 
TotalSeq™-B Barcode 0081 Specificity CD14 Clone M5E2 10 μg 
TotalSeq™-B Barcode 0083 Specificity CD16 Clone 3G8 10 μg 
TotalSeq™-B Barcode 0084 Specificity CD56B (NCAM) Clone QA17A16 10 μg 
TotalSeq™-B Barcode 0085 Specificity CD25 Clone BC96 10 μg 
TotalSeq™-B Barcode 0100 Specificity CD20 Clone 2H7 10 μg 
TotalSeq™-B Barcode 0101 Specificity CD335 (NKp46) Clone 9E2 10 μg 
TotalSeq™-B Barcode 0146 Specificity CD69 Clone FN50 10 μg 
TotalSeq™-B Barcode 0148 Specificity CD197 (CCR7) Clone G043H7 10 μg 
TotalSeq™-B Barcode 0154 Specificity CD27 Clone O323 10 μg 
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TotalSeq™-B Barcode 0159 Specificity HLA-DR Clone L243 10 μg 
TotalSeq™-B Barcode 0161 Specificity CD11b Clone ICRF44 10 μg 
TotalSeq™-B Barcode 0391 Specificity CD45 Clone HI30 10 μg 
 
Catalog Number 
300477 
302263 
300565 
301069 
301857 
302063 
392423 
302647 
302361 
331939 
310949 
353249 
302851 
307661 
301357 
304066 
 
All antibodies were purchased from Biolegend

Validation Antibodies were validated for research purpose use only

Human research participants
Policy information about studies involving human research participants

Population characteristics Pediatric patients (n=6) with drug-refractory epilepsy and who had a focal lesion amenable to surgical resection were 
identified through detailed seizure semiology, neuroimaging, electroencephalography (EEG) monitoring studies and 
functional imaging (DC)

Recruitment Pediatric patients with drug-refractory epilepsy and who had a focal lesion amenable to surgical resection were identified 
through detailed seizure semiology, neuroimaging, electroencephalography (EEG) monitoring studies and functional imaging 
(DC). The epileptogenic zone was identified in each patient and epilepsy surgery performed (DL) to resect the epileptic brain 
to achieve seizure control. Histopathological examination was performed to identify aetiologies such as neuronal migration 
disorders, cortical dysplasia etc

Ethics oversight The study was reviewed and approved by the SingHealth Central Institutional Review Board. The Informed consent was 
obtained according to the SingHealth Central Institutional Review Board requirements.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents
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