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Although its roles in the vascular space are most well-known, tissue plasminogen

activator (tPA) is widely expressed in the developing and adult nervous system, where

its activity is believed to be regulated by neuroserpin, a predominantly brain-specific

member of the serpin family of protease inhibitors. In the normal physiological state,

tPA has been shown to play roles in the development and plasticity of the nervous

system. Ischemic damage, however, may lead to excess tPA activity in the brain

and this is believed to contribute to neurodegeneration. In this article, we briefly

review the physiological and pathological roles of tPA in the nervous system, which

includes neuronal migration, axonal growth, synaptic plasticity, neuroprotection and

neurodegeneration, as well as a contribution to neurological disease. We summarize

tPA’s multiple mechanisms of action and also highlight the contributions of the inhibitor

neuroserpin to these processes.

Keywords: serine protease, serpin, neuronal migration, neurite growth, synaptic plasticity, neurodegeneration and

neuroprotection, Alzheimer’s disease, neurovascular unit

Introduction

Research of tissue plasminogen activator (tPA) in the nervous system has linked this protease to
a number of functions, including cell migration, axonal growth, and synaptic plasticity, as well
as a contribution to neurodegeneration in pathological states. The main inhibitor of plasminogen
activator proteolytic activity in the vascular space is the serpin plasminogen activator inhibitor
1 (PAI-1; SERPINE1). This serpin, however, is only weakly expressed in the brain (Sawdey and
Loskutoff, 1991; Masos and Miskin, 1997). Another serpin, protease nexin-1 (PN-1; SERPINE2) is
expressed throughout the brain (Sappino et al., 1993; Reinhard et al., 1994). Although PN-1 may
play some role in regulating tPA activity (Kvajo et al., 2004; Samson et al., 2008), its inhibitory
kinetics suggest that it mainly functions as inhibitor of thrombin (Scott et al., 1985). Instead, the
predominant inhibitor of neuronal tPA activity is believed to be the neuroserpin (SERPINI1), a
serpin that is largely specific to the nervous system (Osterwalder et al., 1996; Hastings et al., 1997;
Krueger et al., 1997). This review will focus on the interplay of these two players in the nervous
system (Figure 1).
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FIGURE 1 | Schematic summarizing the pleotropic roles of tPA in the nervous system and its interaction with the inhibitor neuroserpin. While tPA is

named for its function to proteolytically activate the zymogen plasminogen to plasmin (A), it can also act on other substrates in a plasmin-independent manner (B). In

addition, tPA can bind to cell-surface receptors and act via non-proteolytic mechanisms (C), although binding to the LRP receptor in particular is affected by formation

of complexes of tPA with serpin partners, which requires the proteolytic activity of tPA. The proteolytic activity of tPA can be inhibited by neuroserpin (D), although

tPA:neuroserpin complexes are unstable and this inhibition is only transient. There is also evidence of neuroserpin having non-inhibitory effects (E) although the

mechanism of these is unknown. The main molecular events for each mechanism are indicated; the icons indicate the cellular effects associated with these molecular

events. Effects for which there is only limited evidence are shown with a question mark.

Neuroserpin as an Inhibitor of tPA

Analysis of neuroserpin sequence indicated that it was likely
to be an inhibitor of trypsin-like serine proteases (Osterwalder
et al., 1996). Biochemical evidence subsequently showed
strong inhibition of tPA by neuroserpin and considerably less
efficient inhibition of urokinase plasminogen activator (uPA),
trypsin, NGF-γ, plasmin, and thrombin (Hastings et al., 1997;
Osterwalder et al., 1998). The function of neuroserpin as an
inhibitor of tPA is supported by their similar expression patterns
in the nervous system (Hastings et al., 1997; Krueger et al., 1997;
Teesalu et al., 2004) and data showing that tPA activity levels are
decreased by over-expression of neuroserpin in the brain (Cinelli
et al., 2001).

Other results, however, indicate that neuroserpin does not
behave as a classical inhibitory serpin toward tPA. Unlike most
covalent serpin:protease complexes, tPA:neuroserpin is unstable
and dissociates within minutes to release cleaved neuroserpin

and active tPA (Barker-Carlson et al., 2002; Ricagno et al., 2009;
Lee et al., 2015). As complex dissociation is expected to occur
prior to clearance (Barker-Carlson et al., 2002), these data suggest
that neuroserpin is likely to function as a transient inhibitor of
tPA in vivo. Interestingly, evolutionarily conserved residues in
neuroserpin regulate the half-life of tPA:neuroserpin complexes,
suggesting that the precise half-life of the complexes may be
physiologically important (Lee et al., 2015). tPA:neuroserpin
interactions may involve other players, such as an unknown
co-factor that stabilizes the complex (Barker-Carlson et al.,
2002). Neuroserpin’s weak inhibition of other proteases, such as
plasmin, may also be physiological important (Wu et al., 2010)
and it is also possible that neuroserpin may have other protease
targets that have not yet been determined. There is evidence
of non-inhibitory functions of neuroserpin (Lee et al., 2008),
raising the alternate possibility that tPA modulates neuroserpin
activity by cleaving neuroserpin to produce a form with distinct
(non-inhibitory) biological activity.
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Expression of Neuroserpin and tPA in the
Nervous System

Both tPA and neuroserpin are expressed in neurons throughout
the developing and the adult nervous systems (Sappino et al.,
1993; Friedman and Seeds, 1994; Ware et al., 1995; Osterwalder
et al., 1996; Krueger et al., 1997; Teesalu et al., 2004), with
spatial and temporal expression patterns suggesting roles in
neuronal migration, axonal growth, synaptic development,
neuronal plasticity and regulation of neurovascular responses.
High neuroserpin expression has been shown in post-mitotic
cells undergoing neurogenesis in the adult (Yamada et al., 2010),
also suggesting a function in neuronal maturation.

Neuroserpin and tPA are targeted to the regulated secretory
pathway, being sorted to dense core secretory granules and
released in response to stimulation (Parmer et al., 1997; Lochner
et al., 1998; Hill et al., 2000; Parmar et al., 2002; Silverman
et al., 2005; Ishigami et al., 2007; Miranda et al., 2008). At a
subcellular level, tPA has been localized to neuronal growth cones
(Lochner et al., 1998; Silverman et al., 2005) and dendritic spines
(Lochner et al., 2006), while neuroserpin has been localized to
the neurite tips of differentiated PC12 cells (Parmar et al., 2002;
Miranda et al., 2008), as well as axons, dendrites and presynaptic
terminals of cultured neurons (Ishigami et al., 2007; Borges et al.,
2010). Two unique features of neuroserpin that are important for
regulated secretion are a targeting sequence at the C-terminus
(Ishigami et al., 2007) and a resistance to polymerization at low
pH (Belorgey et al., 2010).

In addition to activity-dependent secretion, it has been
shown that the expression of tPA is regulated by several
forms of neuronal activity including long-term potentiation
(LTP) (Qian et al., 1993) and long term depression (LTD)
(Napolitano et al., 1999; Calabresi et al., 2000). The expression
of neuroserpin has also been shown to be regulated by neuronal
depolarization (Berger et al., 1999), neuronal activity during
visual cortex development (Wannier-Morino et al., 2003),
and several signaling factors and hormones including nerve
growth factor (NGF), anti-Müllerian hormone (AMH), thyroid
hormone, and progesterone (Berger et al., 1999; Navarro-Yubero
et al., 2004; Lebeurrier et al., 2008; Vanlandingham et al., 2008).

Functions of tPA and Neuroserpin in
Neuronal Migration and Axonal Growth

A role for tPA in neuronal migration is supported by results
showing that migration of cerebellar granule neurons is
perturbed in tPA-deficient mice (Seeds et al., 1999). While it
has been hypothesized that tPA regulates neuronal migration by
activating plasmin to break down cell adhesions or extracellular
matrix (ECM) (Seeds et al., 1999; Basham and Seeds, 2001), there
is no direct evidence to support this role.

Evidence for a function of tPA and neuroserpin in regulating
axonal growth has come from studies of cultured cells. Inhibition
of tPA activity or tPA knockout have been shown to block
axonal growth in cultured neurons (Pittman et al., 1989; Baranes
et al., 1998; Minor et al., 2009), while exogenous tPA or tPA

over-expression causes increased neurite outgrowth (Pittman
and Dibenedetto, 1995; Baranes et al., 1998; Lee et al., 2007a).
Similarly, altered expression of neuroserpin has been shown to
trigger changes in the extension of neurite-like processes of AtT-
20 cells (Hill et al., 2000) and NGF-mediated neurite outgrowth
in PC12 cells (Parmar et al., 2002; Navarro-Yubero et al., 2004).

A role of tPA in axonal growth has also been shown in vivo.
In one study, tPA-knockout mice show abnormal growth of
mossy fiber axons in the dentate gyrus following seizure (Wu
et al., 2000). Other reports have focused on the role of tPA in
axonal regeneration following damage. In studies using the sciatic
nerve crush model of peripheral nervous system regeneration,
tPA is induced in the neurons and supporting cells of the
nerve following crush damage, while axonal regeneration and
functional recovery is reduced in tPA or plasminogen knockout
animals and improved with exogenous tPA or tPA/plasminogen
(Akassoglou et al., 2000; Siconolfi and Seeds, 2001, 2003; Zou
et al., 2006).

Multiple mechanisms have been suggested to mediate the
effects of tPA on axonal growth. Proteolysis of ECM components
may create channels for neurites to extend through (Pittman and
Dibenedetto, 1995) and/or remove the inhibitory effects of these
components (Wu et al., 2000; Bukhari et al., 2011). This is likely
to involve activation or induction of additional downstream
proteases such as matrix metalloproteinases (MMPs) (Siconolfi
and Seeds, 2003; Wang et al., 2003; Hu et al., 2006; Zou et al.,
2006). During axonal regeneration, the removal of fibrin deposits
by tPA/plasmin also appears to be important (Akassoglou et al.,
2000; Zou et al., 2006), as well as macrophage recruitment to
remove cellular debris (Zou et al., 2006), which may involve tPA
binding to the LDL-related protein (LRP) receptor (Cao et al.,
2006). Binding of tPA to the LRP receptor and the annexin
II receptor has also been shown to mediate non-proteolytic
effects of tPA on neurite outgrowth (Lee et al., 2007a; Shi et al.,
2009). Finally, tPA may regulate neurite growth via proteolytic
processing of neurotrophins (Pang et al., 2004; Bruno and Cuello,
2006).

The mechanism of neuroserpin’s effects on neurite outgrowth
are largely undetermined. Neuroserpin may act by modulating
tPA activity, for example, neuroserpin has been shown to regulate
proteolytic processing of the neurotrophin NGF (Bruno and
Cuello, 2006). Interestingly, the neurite outgrowth effects of
neuroserpin could be triggered by non-inhibitory mutant forms
of neuroserpin (Lee et al., 2008), suggesting neuroserpin may also
act independently of tPA, possibly by binding to a cell surface
receptor such as LRP (Makarova et al., 2003).

Effects of tPA and Neuroserpin on
Neuronal Plasticity

Deficits in hippocampal late phase LTP are seen in tPA-knockout
mice (Frey et al., 1996; Huang et al., 1996; Calabresi et al.,
2000). Conversely, LTP is increased by exogenous tPA or tPA
overexpression (Baranes et al., 1998; Madani et al., 1999).
Knockout of the tPA gene also leads to defects in both LTP
and LTD in the striatum (Calabresi et al., 2000; Centonze et al.,

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 October 2015 | Volume 9 | Article 396

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Lee et al. Roles of tPA and neuroserpin

2002). Numerous studies have also shown a role of tPA in
memory and learning. For example, tPA-knockout mice exhibit
deficits in hippocampal-dependent and striatum-dependent tasks
(Huang et al., 1996; Calabresi et al., 2000; Pawlak et al., 2002;
Benchenane et al., 2007) and cerebellar motor learning (Seeds
et al., 2003), while transgenic mice over-expressing tPA were
found to have improved spatial learning (Madani et al., 1999).
tPA is also required for altered amygdala- and hippocampal-
dependent behavioral responses that occur in mice subjected to
restraint-stress (Pawlak et al., 2003, 2005b; Norris and Strickland,
2007).

At the cellular level, tPA’s involvement in LTP has been
associated with the formation of new presynaptic varicosities
(Baranes et al., 1998), while activity-dependent formation of
perforated synapses in cultured neurons can be blocked by tPA
inhibitors (Neuhoff et al., 1999). In animals subjected to restraint
stress, induction of the plasticity-related gene GAP43 (Pawlak
et al., 2003) and changes in dendritic spine number were absent
in tPA knockout mice (Pawlak et al., 2005b). During visual cortex
development, experience-dependent plasticity and pruning of
dendritic spines is also reduced in tPA-knockout mice and can
be partly restored by exogenous tPA (Mataga et al., 2002, 2004).

A number of different mechanism underlying tPA’s effects
on synaptic plasticity have been proposed. Firstly, tPA may
contribute to LTP by regulating plasmin-mediated processing of
BDNF from its precursor proBDNF to mature BDNF (mBDNF)
(Pang et al., 2004; Barnes and Thomas, 2008). It has been shown
that tPA is secreted from neurons in response to high-frequency,
but not low-frequency, stimulation of neurons, leading to
changes in the proBDNF/mBDNF ratio (Nagappan et al., 2009).
Since proBDNF has been linked to LTD (Woo et al., 2005) while
mBDNF has been linked to LTP, these results suggest that tPA
may mediate the differing cellular responses to different patterns
of neuronal activity. Secondly, there is general agreement in the
literature that tPA can potentiate NMDA-receptor signaling. The
manner in which it does so, however, remains unclear. Results
from the Vivien group suggest that tPA may act by interacting
with the GluN1 subunit of NMDA receptors, particularly in
GluN2D-containing receptors (Benchenane et al., 2007; Macrez
et al., 2010; Obiang et al., 2012). Other results suggest that tPA
modulates NMDA signaling through GluN2B subunits (Pawlak
et al., 2005a; Norris and Strickland, 2007; Noel et al., 2011; Ng
et al., 2012) or by amechanism involving LRP (Martin et al., 2008;
Samson et al., 2008). The importance of LRP in tPA-mediated
neuronal plasticity was also reported in an earlier study on LTP
(Zhuo et al., 2000).

Experiments in culture systems have provided some evidence
that neuroserpin is involved in cellular plasticity. Firstly, altered
neuroserpin expression in PC12 cells has been linked to changes
in cell-cell adhesion mediated by the synaptic adhesion molecule
N-cadherin (Lee et al., 2008). In addition, overexpression of
neuroserpin in cultured neurons has been found to lead to
changes in the number and shape of dendritic spines (Borges
et al., 2010). Altered neuroserpin expression in vivo has also
been shown to lead to behavioral changes, with both neuroserpin
overexpression and neuroserpin-knockout leading to increased
phobic and anxiety-like responses (Madani et al., 2003). Localized

overexpression of neuroserpin in the adult rat hippocampus
did not cause any changes in learning and memory, but it
altered the expression of postsynaptic scaffolding protein PSD-
95 (Tsang et al., 2014). Overall, little is known about neuroserpin’s
mechanism of action for these effects, however, the results from
the PC12 studies show that inhibition of tPA was not required
(Lee et al., 2008), and the changes in behavior in neuroserpin-
knockout animals were not correlated with altered tPA activity
(Madani et al., 2003).

Neuroserpin and tPA in Neurodegeneration
and Neuroprotection

Initial evidence for a contribution of tPA to neuronal death came
some years ago, when it was shown that tPA knockout mice were
resistant to excitotoxin-induced neuronal degeneration (Tsirka
et al., 1995) and had reduced ischemic damage in a stroke
model (Wang et al., 1998). These results have been independently
confirmed by a number of other groups (Strickland, 2001; Kaur
et al., 2004).

Three main mechanisms for tPA’s effects on neuronal death
have been proposed. Firstly, tPA may cause ECM breakdown
by proteolytically activating plasmin and/or MMPs (Chen and
Strickland, 1997; Tsirka et al., 1997; Sumii and Lo, 2002;
Wang et al., 2003). Secondly, the ability of tPA to potentiate
NMDA receptor-mediated calcium influx may also contribute
by promoting excitotoxic neuronal death (Nicole et al., 2001).
In support of this, immunotherapy to block interaction of tPA
with NMDA receptors has been shown to reduce neuronal
damage in stroke models (Benchenane et al., 2007; Gaberel et al.,
2013). Thirdly, tPA may signal through the LRP receptor to
trigger a number of inter-related effects including induction
of MMP expression (Wang et al., 2003, 2004; Lee et al.,
2007b; Sashindranath et al., 2012), opening of the blood-brain
barrier (Yepes et al., 2003; Sashindranath et al., 2012) and
recruitment and activation of microglia (Rogove and Tsirka,
1998; Rogove et al., 1999; Siao and Tsirka, 2002; Zhang et al.,
2009). Paradoxically, the tPA inhibitor PAI-1 has been shown to
exacerbate, rather than reduce, some of these effects of tPA, as
tPA:PAI-1 complexes bind more strongly to LRP than tPA itself
(Sashindranath et al., 2012). The instability of tPA:neuroserpin
complexes could therefore be a mechanism to temporarily reduce
tPA activity without excessive LRP activation.

There is also evidence of neuroprotective effects of tPA, first
shown some time ago (Kim et al., 1999; Yi et al., 2004; Liot et al.,
2006) but highlighted by a series of recent results from the in vitro
oxygen and glucose deprivation (OGD) model of ischemic death,
as well as in in vivo models of excitotoxic neuronal death (Haile
et al., 2012; Wu et al., 2012, 2013). These studies have suggested
that lower concentrations of tPA mediate survival instead of
neuronal death, through both plasmin-dependent and LRP-
dependent/plasmin-independent mechanisms involving NMDA
signaling.

In animal models of stroke, administration of exogenous
neuroserpin alone, neuroserpin in combination with tPA and
neuroserpin overexpression have been shown to reduce ischemic
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damage in vivo (Yepes et al., 2000; Cinelli et al., 2001; Zhang
et al., 2002). In these studies, the effects of neuroserpin
were associated with reductions in tPA and uPA activity,
ECM degradation, microglia activation and blood brain barrier
leakage. Conversely, neuroserpin-knockout mice have worse
ischemic damage and neurological outcomes than controls, with
the effects attributed to tPA-mediated activation of microglia
(Gelderblom et al., 2013). Similarly, studies in the OGD model
and a mouse model of motoneuropathy have also shown
neuroprotective effects of neuroserpin with results suggesting
a mechanism involving tPA inhibition (Simonin et al., 2006;
Rodríguez-González et al., 2011). However, neuroserpin has been
shown to promote neuronal survival in tPA knockout mice,
indicating it can also act through a tPA-independent mechanism,
possibly through inhibition of uPA or plasmin (Wu et al.,
2010).

Functions of tPA and Neuroserpin in the
Neurovascular Unit

There is considerable evidence that tPA in the central nervous
system side of the neurovascular unit increases the permeability
of the blood-brain barrier (e.g., Yepes et al., 2003; Su et al., 2008;
Sashindranath et al., 2012). This effect of tPA may contribute
to neurodegeneration following stroke, and recent results also
suggest a contribution to seizure propagation (Fredriksson et al.,
2015). tPA has also been shown to regulate functional hyperemia
(Park et al., 2008). A number of downstream events have
been identified for the neurovascular effects of tPA including
activation of neuronal nitric oxide synthase (Parathath et al.,
2006; Park et al., 2008), proteolytic activation of platelet-derived
growth factor-CC (PDGF-CC) and platelet-derived growth
factor receptor alpha (PDGFRα) signaling (Su et al., 2008;
Fredriksson et al., 2015), LRP signaling and induction of MMPs
(Sashindranath et al., 2012). While most of the neurovascular
effects of tPA are considered to be plasmin-independent (Yepes
et al., 2003), there is also evidence for an involvement of
plasmin (Freeman et al., 2014; Niego and Medcalf, 2014). As an
inhibitor of tPA, neuroserpin can act as an antagonist of tPA
in the neurovascular unit (Yepes et al., 2003; Fredriksson et al.,
2015).

Contributions of tPA and Neuroserpin to
Neurological Disease

Mutations in the neuroserpin gene cause a rare autosomal-
dominant dementia accompanied by epilepsy called Familial
Encephalopathy with Neuroserpin Inclusion Bodies (FENIB),
characterized by polymerization of neuroserpin, formation of
inclusion bodies and subsequent neuronal degeneration (Davis
et al., 1999, 2002; Takao et al., 2000; Gourfinkel-An et al., 2007;
Coutelier et al., 2008; Hagen et al., 2011). Other studies have
suggested a role for neuroserpin in Alzheimer’s disease, with
neuroserpin hypothesized to be either beneficial by interacting
with amyloid-beta peptides and altering their oligomerization
(Kinghorn et al., 2006) or detrimental by reducing tPA-mediated
clearance of amyloid-beta (Fabbro and Seeds, 2009; Fabbro et al.,
2011). Changes in the expression of neuroserpin have also been

linked to schizophrenia (Hakak et al., 2001; Vawter et al., 2004;
Brennand et al., 2011). A recent study also suggests that the
expression of neuroserpin by tumor cells may inhibit plasmin-
mediated death signals and allow metastasis into the brain
(Valiente et al., 2014).

Conclusion

Research over the years has shown that tPA has pleiotropic effects
in the nervous system and can act through multiple mechanisms.
It is also clear that neuroserpin does not function as a classical
serpin inhibitor for tPA and this must be considered when
making inferences regarding its function and mode of action.
Future research should take a broad view and consider all possible
mechanisms of these two players to provide a more complete
understanding of their roles in the nervous system.
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