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The growth of bubbles within the body is widely believed to be the cause of

decompression sickness (DCS). Dive computer algorithms that aim to prevent

DCS by mathematically modelling bubble dynamics and tissue gas kinetics are

challenging to validate. This is due to lack of understanding regarding

the mechanism(s) leading from bubble formation to DCS. In this work, a bio-

mimetic in vitro tissue phantom and a three-dimensional computational

model, comprising a hyperelastic strain-energy density function to model

tissue elasticity, were combined to investigate key areas of bubble dynamics.

A sensitivity analysis indicated that the diffusion coefficient was the most influ-

ential material parameter. Comparison of computational and experimental

data revealed the bubble surface’s diffusion coefficient to be 30 times smaller

than that in the bulk tissue and dependent on the bubble’s surface area.

The initial size, size distribution and proximity of bubbles within the tissue

phantom were also shown to influence their subsequent dynamics highlight-

ing the importance of modelling bubble nucleation and bubble–bubble

interactions in order to develop more accurate dive algorithms.
1. Introduction
A reduction in ambient pressure leading to bubble formation is a process that is

ubiquitous in nature and widely exploited in industrial processes [1,2]. Since

the concentration of dissolved gas in a liquid is proportional to the ambient

pressure, when the pressure is reduced, gas is forced out of solution and, under

energetically favourable conditions, may form bubbles. Unfortunately, this pro-

cess can also have deleterious effects. In marine mammals and human SCUBA

(self-contained underwater breathing apparatus) divers, the accumulation of dis-

solved gas in tissues while at depth and subsequent ascent can lead to bubble

formation within the body and ultimately to decompression sickness (DCS).

The mechanisms through which bubble formation causes DCS [3] are highly

contentious [4]. Evidence for inflammatory mechanisms [5,6] and direct

biomechanical insults [3,7] have been proposed but there remains little consensus.

Given this lack of a clear biological mechanism, current approaches for treat-

ing and preventing DCS are based on the physical mechanisms of bubble

formation and growth. Dive algorithms, which calculate safe ascent rates, are

typically comprising a mechanistic computational model of tissue gas kinetics

and/or bubble dynamics and a probabilistic DCS risk estimation model [8].

Despite the wide use of such algorithms, every year divers still suffer acute

DCS [9] and may experience delayed effects even after treatment [10]. There

is also emerging evidence that repeated but asymptomatic dives result in

long-term health damage [10,11]. Consequently, there is broad interest from
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the commercial, military and recreational diving industries to

improve and develop these algorithms. To do so, however,

involves multiple, interrelated challenges. These include

accurate model parametrization, experimental validation

and identification of the relevant biological mechanism(s).

Currently, in order for a dive algorithm to prescribe a ‘safe

ascent rate’, an assumption linking the mechanistic (tissue

gas kinetic and bubble dynamics) model output to the prob-

abilistic model is needed, e.g. that the probability of DCS is a

function of the total volume of bubbles or the tissue super-

saturation level. A maximum-likelihood method is then

used to optimize the mechanistic model parameters using a

database of dive profiles and corresponding DCS incidence

[12]. If the optimized parameter values fall within a physio-

logically plausible range, the mechanistic and probabilistic

models are assumed to be valid. Given that the mechanism(s)

by which bubbles cause DCS are unknown, the choice of

mechanistic model output is not a straightforward decision.

If a model’s optimized parameter values are far outside phys-

iological limits, it cannot be known with certainty whether

the mechanistic model is incorrect or the probabilistic func-

tion has been formulated on an inappropriate mechanistic

model output. Similarly, even when optimized parameter

values fall within physiological limits, this does not guarantee

the validity of the mechanistic model.

The most robust validation of the mechanistic model would

be real-time measurements of bubble dynamics in vivo.

Currently, the gold standard for measurement of bubbles

in vivo is either non-invasive Doppler/transthoracic ultrasound

[13] or invasive light microscopy in animal models [14]. The

first technique is routinely used in human divers and provides

a measure of ‘bubble severity’ post dive based on one of several

scales [15]. While useful for estimating bubble quantities, these

scales do not provide a good indication of the likelihood of DCS

onset [16]. In addition, mechanistic models predominantly

consider the extravascular bubble population which is not

accurately measurable by the currently used ultrasound tech-

niques [17]. Direct light microscopy in animal models has

provided predominantly qualitative data, and often only at a

single time point [14,18,19]. Microscopy of transparent animals

overcomes the single time point problem; however, movement

of the animals often prevents real-time bubble tracking [20,21].

Ex vivo models allow for direct observation by light microscopy

and, to date, the works of Papadopoulou et al. [22] and Arieli

[23] have provided important contributions regarding pre-

ferential bubble nucleation sites and multi-bubble growth

dynamics from the surface of various tissue types (including

fatty, aqueous and large vessel lining). These data, while

useful, cannot be used to investigate the population of bubbles

nucleating within tissues, or validate models which describe

them. Validating mechanistic bubble models using in vivo
or ex vivo models is challenging due to the large numbers

of variables within in vivo systems and the comparative simpli-

city of the physical science based computational bubble

models. An approach that has produced a large proportion of

quantitative data suitable for computational model validation

is in vitro models. Yount and colleagues [24–27] made exten-

sive use of gelatin models to investigate bubble nucleation

and used their data to develop and validate the varying

permeability model (VPM)–a commercial diving algorithm.

Van Liew et al. [28] used bubbles in saline to compare bubble

growth to computational models. Wang et al. [29] also used a

two-dimensional in vitro cell culture model to examine the
decompression stresses caused by increased partial pressure

of oxygen; these findings were supported by recent three-

dimensional in vitro experimental investigations [30].

However, there remains a need for a controllable system in

which bubble nucleation, growth and biological responses

within tissues can be quantified in real time, as material, dive

and biological parameters are systematically altered.

The present work details the development and application of

an in silico mechanistic model and a complementary biomimetic

in vitro model, to investigate several areas of extravascular

bubble dynamics (figure 1a). The in silico model was formulated

as a three-dimensional finite difference simulation of the

in vitro model, a type I collagen gel. Type I collagen is the most

abundant extracellular matrix protein in the body [31], and

such gels are widely used in tissue engineering applications,

the inclusion of additional matrix proteins and engineered

control of their material properties is well established [32].

A diagrammatic representation of the combined in vitro–

in silico approach is shown in figure 1b.
2. Mathematical and computational
methodology

2.1. Mathematical formulation
The in silico model developed in this work simulates bubble

dynamics in collagen gel tissue phantoms in response to

changes in external pressure. The modelling assumptions

and derivation of the governing equations are described below.

2.1.1. Gas transport
The transport of gas through the tissue phantom and across

the bubble surface is assumed to occur by diffusion only,

with all gases obeying perfect gas laws. Thus, Cg, the concen-

tration of the gth gas, is governed by the equation

@Cg

@t
¼ Dgr2Cg, ð2:1Þ

where Dg is the diffusion coefficient and t is the time. Per-

fusion is not modelled to reflect the current experimental

system. At the tissue phantom and bubble boundaries any

gas is assumed to be dissolved in the tissue phantom in

accordance with Henry’s Law:

Cg ¼ kg
h p pg, ð2:2Þ

where kg
h is Henry’s constant and ppg is the partial pressure of

the gth gas. At the bubble-tissue interface, the change in mass

(m) of gas in the bubble is governed by Fick’s first law:

dm
dt
¼ 4pR2

BDg@Cg
B

@r

����
RB

, ð2:3Þ

where RB is the bubble radius and @Cg
B=@rjRB

is the concen-

tration gradient at the bubble boundary. The concentration

of gas on the inner surface of the bubble (Cg
B) is calculated

by Henry’s Law once again, but with the use of Pg
B, the partial

pressure inside the bubble for each gas. PB is calculated by the

Young–Laplace equation:

PB ¼ Pamb þ
2g

RB
þV(RB), ð2:4Þ

where Pamb is the ambient pressure, g is the surface tension

and V(RB) describes the pressure exerted by the surrounding

tissue as a result of its deformation. Equations (2.2)–(2.4) can
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Figure 1. (a) A diagram of the various aspects of bubble dynamics that are considered relevant to DCS. (b) Diagram showing the methodological principles behind
the use of a complementary in silico – in vitro approach. Comparative analyses are made via validation metrics chosen depending on the experiment. For example, for
decompression experiments depicted here, the validation metrics used are the plateau radius of the bubble and the half-life of bubble growth (see the electronic
supplementary material for more information). Comparison of the computational and experimental cases may be made by comparison of these metrics using various
statistical tests including the extra sum-of-squares F-test [30]. Additional factors such as the non-spherical bubble shapes seen in the experimental case may also
inform further computational development. (Online version in colour.)
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be used to derive an expression for the radius change of a

bubble with time:

dRB

dt
¼

aDgð@Cg
B=@rÞjRB

�R=3 ðdPamb=dtÞ
�2g(1=3RBþ1=R2

B)þPambþVðRBÞþRB=3ðdVðRBÞ=drÞ ,

ð2:5Þ

where a is the specific gas constant.
2.1.2. Tissue elasticity
The tissue elasticity expression V(RB) introduced above was

originally conceived to describe a tissue deformation

threshold that, when exceeded, would lead to the distention

of nerve endings, causing the joint pain characteristic of

DCS [33]. Four different forms of the expression (three from

the literature and one newly derived here) are now described



0 1 2 3 4 5 6

0

50

100

150

200

250

300

350

P
B

–P
am

b(
m)

RB/R0

10 20 30

Ro (mm)

g /mR0 = •

g /mR0 = 20

g /mR0 = 200

g /mR0 = 1000

40 500

50

100

150

200

250

300

fi
na

l r
ad

iu
s 

(µ
m

)

Bulk Modulus
Continuity of Displacement
Reference Configuration
Hyperelastic
W = 0

(a) (b)
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and then compared below using a simple model of bubble

growth that neglects mass transfer.

The Bulk Modulus form [34]

V(RB) ¼ 4

3
pR3

BM, ð2:6Þ

where M ¼ K/Vaff, K is the tissue bulk modulus and Vaff is the

affected tissue volume, which is the most widely applied tissue

elasticity form in the literature, appearing in several bubble

models [35–37]. It has also been incorporated into the commer-

cial Bubble Volume Model (BVM) [38], a probabilistic model

that bases the risk of DCS on the total bubble volume. Follow-

ing optimization based on DCS incidence, the optimized value

of K in the BVM lay far outside the physiological range by sev-

eral orders of magnitude. It was suggested by the authors that

equation (2.6) captures the effects of several mechanisms

restricting bubble growth and M should, therefore, be treated

as an empirical parameter [38]. However, it has been argued

[39] that the unphysiological values indicate that the tissue

elasticity model of BVM is simply invalid. It is also argued

[40] that the use of bubble volume as a predictor of DCS risk

may be inappropriate.

The Continuity of Displacement form [39,41] was derived in

response to concerns regarding the mathematical validity of

the Bulk Modulus form. It is based on a classical linear

elasticity approach to the problem, and uses the continuity of

displacement at the gas liquid interface to provide a necessary

boundary condition to close the model. The following

expression of the Continuity of Displacement form is valid for

0 , m ,, K [41], where m is the small shear modulus and K
the bulk modulus, and used in our comparison below:

VðRBÞ ¼ �
4m

3
: ð2:7Þ

The validity of the displacement boundary condition used in

the derivation is somewhat disputed [42], as displacement

of a gas, unlike a solid, does not appear to have a clear

physical meaning. In addition, the persistent negative value

of V seems hard to justify realistically and leads to some

unintuitive predictions of bubble growth.

Faced with these widely adopted, but disputed,

expressions for the elastic response of the surrounding

tissue, we decided to investigated their validity by comparing
them to a linear elastic model of a bubble in an external

medium where the problematic displacement boundary con-

dition at the bubble surface is avoided by using the concept of

a reference configuration, a common approach in continuum

mechanics (see the electronic supplementary material for full

derivation). The resulting expression is given by

VðRBÞ ¼ 4m 1� P0

3K

� �
RB

R0
� 1� Pamb

3K

� �� �
, ð2:8Þ

where P0 is the initial external pressure, RB and R0 are the

current and initial bubble radii, respectively. This Reference
Configuration approach is mathematically consistent and

leads to an intuitive response. This is because an initial drop

in ambient pressure leads to a reduction in V(RB), thus

encouraging bubble growth, but any growth in bubble radius

is then positively resisted by the tissue. Our analysis, however,

provides no justification for either the Bulk Modulus or Conti-

nuity of Displacement forms and a decision was made not to

adopt either in our simulations. Instead, we chose to examine

a third formulation originally derived to predict void for-

mation in rubber [43].

The Hyperelastic form was first applied to DCS to investi-

gate the effect of tissue elasticity on bubble nucleation [44].

The form is derived from a hyperelastic strain-energy density

function and can be written

VðRBÞ ¼
m

2
5� 4

RB

R0

� ��1

� RB

R0

� ��4
" #

, ð2:9Þ

where m is the small shear modulus.

Figure 2a shows how adopting the four different forms of

V(RB) affects the predicted final radius (RB) versus initial

radius (R0) of a bubble subjected to a pressure reduction

from 106 to 104 Pa. The parameter values chosen for these com-

putations are typical of those used in previous DCS solutions in

the literature; the solution for V(RB) ¼ 0 (no tissue response) is

also plotted. No mass transfer is assumed in these compu-

tations and hence the change in radius is determined simply

by Boyle’s Law (with constant temperature assumed). As one

can observe, larger differences occur between the expressions

at larger initial bubble sizes where surface tension is less domi-

nant. Adopting the Bulk Modulus term appears to restrict the

growth of larger bubbles significantly more than the other
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expressions, whereas adopting the Continuity of Displacement

form leads to the opposite extreme of much higher final radii

due to its persistent negative sign.

From our elasticity analysis and the comparison in figure 2a,

the Hyperelastic form was chosen for all subsequent simulations

in this paper as it has strong foundation in the literature with

validation for bubble growth and application to healthy tissue

biomechanics [43,46]. In addition, it is easy to compute and

fully nonlinear enabling strain-stiffening behaviour to be incor-

porated which may be important for larger strains with

significant bubble interactions. The Reference Configuration

form, however, seems applicable in many cases of isolated

bubble growth, and its assumptions are likely to remain valid

when considering growth of bubbles smaller than the tissue

scale. However, with the limited knowledge of bubble size dis-

tributions and the likelihood of bubble interactions, a

mathematically consistent nonlinear model was preferred for

this first attempt at validation and model development.

Figure 2b shows the plot of the Laplace equation with the

Hyperelastic form for different values of the dimensionless

parameter g=mR0. For smaller values of g=mR0, resistance to

bubble growth is predominantly due to tissue elasticity,

whereas for larger values the resistance is predominantly

due to surface tension.

2.1.3. Non-dimensionalization
Having chosen the form of the tissue elasticity expression, the

change in bubble radius with time can now be derived for O2

and N2 in non-dimensional form as

dR0B
dt
¼

tð@C0tot=@r0ÞjR0B � ðR
0
B=3ÞðdP0amb=dtÞ

Pamb � ð4g0=3R0BÞ þ 5m0=2� ð4m0=3Þ(R0B=R00)
�1

þðm0=6Þ(R0B=R00)
�4

,

ð2:10Þ

where Ctot is the total dissolved gas concentration, t is a

combined parameter and the prime (0) is used to denote

non-dimensional variables:

P0 ¼ P
�P

, R0 ¼ R
�R

, C0 ¼ kN2

h
�P , m0 ¼ m

�P
and g0 ¼ g

�R�P
,

t ¼
kN2

h DaN2
aO2

(mN2

f aO2
þmO2

f aN2
)�R2

,

where mN2

f and mN2

f are the mole fractions of N2 and O2

respectively.

2.1.4. Nucleation
Nucleation is a complex phenomenon and a formidable mod-

elling problem in its own right. Whether nucleation occurs is

dependent upon (i) the sum of the volume energy (associated

with the formation of a volume of a new phase), which reduces

the overall free energy, and (ii) the surface energy (associated

with phase boundary creation), which increases free energy.

These two opposing terms lead to an energybarrier to nucleation

depending on the radius of the nucleus [3].

Rc ¼
2g

Pss
, ð2:11Þ

where Rc is known as the critical radius and Pss is the tissue

supersaturation, i.e. the difference between a tissue’s dis-

solved gas concentration and the equilibrium concentration

given the external pressure. The critical radius may vary

due to the presence of contaminants or surfaces within the
liquid phase which alter the surface energy. This is known

as heterogeneous nucleation and is broadly accepted to be

the form of nucleation occurring in DCS [3].

In this initial computational implementation, nucleation is

not modelled explicitly; instead the simulated tissue phantom

is assumed to contain a defined initial population of bubbles.

These bubbles are randomly distributed within the phantom

and set to an initial minimum size (R0 ¼ computational

spatial grid size). At this minimum size nuclei are prevented

from shrinkage by the imposition of a no-flux boundary con-

dition on the bubble surface. Once decompression

commences, bubbles may grow according to Boyle’s Law

and once RB . R0 mass flux can occur. This is similar, in prin-

ciple, to Yount et al.’s variable permeability model in which a

skin of hydrophobic molecules is assumed to stabilize micro-

nuclei against collapse by rendering the bubbles gas

impermeable [24].

2.2. Computational implementation
To numerically implement the governing equation (2.10)

and equation (2.1), the tissue phantom is defined as a three-

dimensional array of nodes with distance dx ¼ dy ¼ dz ¼ h
between each node. Each node is described by its three-dimen-

sional Cartesian coordinate and represents a unit volume of the

system. At each node, the concentration of dissolved gas and

phase (liquid or gas) of the node is stored. The pressure profile

is discretized into time portions dt and, at each time point, the

pressure external to the tissue block Pamb is given by this pro-

file. Pamb is used in Henry’s Law (equation (2.2)) to set the

dissolved gas boundary values at the tissue phantom edge.

From these boundary values, the dissolved gas concentration

at every liquid node can be calculated. These values are used

to calculate the dissolved gas gradient at the tissue phantom

bubble interface which is used in equation (2.10) to calculate

the new radius of the bubble. A more detailed description of

the computational implementation is given in the electronic

supplementary material.

2.3. Parametrization
The parameters used in the model are listed in table 1 and in

the electronic supplementary material. The numerical par-

ameters (dt, h) were chosen for each simulation to ensure

numerical efficiency and convergence of the solution.

The material parameters (D, m, g, kO2

h and kO2

h ) were defined

based on a review of the relevant literature, which sought

to set limits for the case of collagen gels and tissues (see

the electronic supplementary material for more details).

2.3.1. Sensitivity analysis
The sensitivity of the maximum bubble radius and its deriva-

tive to changes in the different material parameters was

computationally determined. Simulations were conducted on

a 1.28 mm3 grid with h ¼ R0 ¼ 0.04 mm (mean experimentally

measured R0 in cases of nucleation). A single bubble located at

the centre of the grid was exposed to a decompression corre-

sponding to a depth change of 30 m in 3.75 min (ascent rate

approx. 0.133 m s21). The tissue was assumed to be saturated

with air at the start of the decompression, hence time t ¼ 0 rep-

resents the beginning of the ascent from a saturation dive.

Figure 3 shows the results of the simulations for all five material

parameters. From figure 3a, it can be seen that increases in the



Table 1. Parameter values used in the in silico model. Individual tables for each parameter can be found in the electronic supplementary material.

parameter description units value

dt time step s variable (dependent on stability requirements)

h spatial grid step m variable (dependent on stability requirements)

Lx,Ly,Lz size of tissue phantom m variable (dependent on experiment)

g surface tension N m21 0.042 – 0.07

m shear modulus Pa 0 – 4 � 106

aN2 specific gas const. kJ kg21 92.07

aO2 specific gas const. kJ kg21 80.6

LN2 Otswald’s const. N2 — 0.014

LO2 Otswald’s const. O2 — 0.013 – 0.027

DN2 diffusion coeff. m2 s21 1 � 10210 – 2.7 � 1029

DO2 diffusion coeff. cm2 s21 1 � 10210 – 2.7 � 1029

Rmin minimum radius m h

mf mole fraction — 0.2 : 0.8

O2 : N2
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parameters D, m and g led to a decrease in the maximum

bubble radius (Rmax) and a decrease in the time taken to

reach this maximum (tmax). Increases in both LN2 and LO2

led to an increase in Rmax but a decrease in tmax. In the context

of tissue phantoms or human tissue these results suggest that

stiffer phantoms will resist bubble growth to a greater

degree; smaller diffusion coefficients, i.e. denser tissue will con-

tain larger bubbles that persist for a longer time; tissues with

lower surface tension will contain bubbles with a larger

radius; finally, more lipid rich tissues (higher solubility coeffi-

cient) will also tend to contain larger bubbles. Support for these

conclusions is found widely in the modelling literature

[34,40,47,48] and to a certain degree in the experimental litera-

ture [22,28,49]. However, for the majority of data from in vivo
experiments, it is difficult or even impossible to separate the

individual effects of material parameters from each other and

also from those of perfusion.

The sensitivities of bubble size and growth rate to the

model parameters are shown in figure 3b. The top panel

shows the range of Rmax (left) and tmax (right), over each par-

ameter’s physiological range. From this top panel it can be

seen that m has the largest effect upon Rmax, while D has

the largest effect upon tmax. The lower panel shows the sensi-

tivity of Rmax and tmax to each parameter. These results show

that Rmax and tmax are relatively insensitive to m and that its

large impact is due to its wide physiological range. LN2, LO2

and g all have a similar influence that is larger than that of m

but the parameter to which Rmax and tmax are most sensitive

is D. This finding is not unexpected, as D plays a role both in

the transport of gas through the bulk tissue equation (2.1),

and also in the diffusion across the bubble-tissue interface

equation (2.10). Hereafter these will be referred to as Dbulk

and Dsurf, respectively. Thus, it was decided that the most

appropriate way to validate the in silico model would be

through experimental variation of D.

It is important to note that while g appears to have a rela-

tively small influence, the initial radius of the bubble will

affect the magnitude of the surface tension force and thus

the sensitivity of bubble radii to g will vary with R0. A
more appropriate way to consider the sensitivity to surface

tension is by the radius at which the surface tension force

substantially contributes to the bubble’s internal pressure.

For the lowest and highest values of surface tension used in

these simulations (g ¼ 0.04 and g ¼ 0.073 N m21) the surface

tension contribution to the total bubble pressure is only 2%

and 3.5%, respectively, at the initial radius of 0.04 mm. If

an initial radius of 0.002 mm was used the proportions

would be 27% and 36%, respectively. It is, therefore, impor-

tant not to discount the importance of surface tension until

the initial bubble size distribution has been established.
3. Experimental methods
3.1. Pressure chamber and image analysis
Experiments were performed using the experimental system

described previously [30]. This consists of a microscope-

mounted pressure chamber which can hold a single collagen

gel. Optical windows in the upper and lower faces of the

chamber allow imaging of bubbles in the gel in real time.

Bubble radii were extracted using the semi-automated image

analysis method described in the electronic supplementary

material and in a previous study [30].

3.2. Collagen gel fabrication and plastic compression
Collagen hydrogels (0.5 ml) consisting of 0.4 ml monomeric

collagen (rat tail collagen type I (First Link, UK)), 0.05 ml of

10� Modified Eagle’s Medium (Gibco, UK) were neutralized

through the drop-wise addition of 5 M NaOH (Sigma, UK)

then stored on ice for 1 h. After 1 h, 0.05 ml of phosphate buf-

fered saline (Oxoid, Thermo Scientific, Loughborough, UK)

was added. This final gel solution was pipetted into individ-

ual wells of a 48-well plate and incubated at 378C for 15 min,

these are termed hydrogels. In some cases gels were plasti-

cally compressed [32] altering their collagen : water ratio

and hence decreasing their diffusion coefficient [50] and

increasing their elastic moduli [51].
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Plastic compression was achieved by placing two absor-

bent paper discs (10.5 mm diameter) on top of the gel and

a cylindrical roll of paper (diameter 10.5 mm) on top of
these (Whatman grade I) for 45 s. These compressed gels are

hereafter referred to as dense gels. Finally, all gels were covered

in 0.6 ml (DMEM), 2 mmol l21 glutamine high glucose (Sigma,
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UK), with 10% fetal calf serum (First Link, UK) and penicillin

streptomycin (p s21) (500 unit ml21 and 500 m ml21) (ICN Bio-

chemicals, UK). They were incubated again at 378C for 8–10 h.
oyalsocietypublishing.org
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4. Validation
4.1. Diffusive mass transfer validation
The aim in using a relatively short plastic compression time

(45 s) was to alter the diffusion coefficient sufficiently to

affect bubble dynamics while having a minimal effect upon

the other material parameters. The change in proportion of col-

lagen between the hydrogel and the dense gel was 0.53%+
0.15% (by weight increase of plunger) [52,53]. Based on pre-

vious measurements this was expected to reduce the

diffusion coefficient by a maximum of 1 � 1029 m2 s21 [50].

The plastic compression should not have produced a measur-

able change in elastic modulus [51], and only large bubbles

of radius . 0.09 mm were selected to minimize the effect of

changes in surface tension (bubble population radial range

0.09–0.29 mm, mean ¼ 0.197 mm, s.d. 0.05 mm). Bubbles of

radii smaller than approximately 0.09 mm showed a markedly

different oscillatory pattern with such bubbles often dissolving

entirely during the compression phase of the cycle, indicating

the dominance of the surface tension force in such cases.

Given the low sensitivity of bubble growth to LN2 and LO2,

it was assumed that the variation in the diffusion coefficient

would be the dominant cause of variations in bubble

dynamics. Initial bubble radius and bubble spacing were con-

trolled by introducing bubbles via gentle agitation of the

ungelled collagen with a pipette tip. This method avoided

the need for spontaneous bubble nucleation and enabled accu-

rate measurement of initial bubble radii for comparison with

the computational results. Two sample groups, hydrogels

and dense gels, were subjected to an oscillatory pressure profile

(0–1.38 � 105 Pa (0–20 psi) over 30 s for five cycles) to enable

comparison with the computational results. This pressure pro-

file reduced the possibility of bubble–bubble interactions that

were not accounted for in the initial in silico model.

Bubbles in both groups were pair-wise matched according

to their initial radii j(n ¼ 23 bubble pairs within five different

gels per condition). Figure 4a,b shows increasing difference in

radii profile’s over pressure cycles which is shown to be signifi-

cant via the various metrics measured. This finding confirmed

the effectiveness of plastic compression as a means of varying

material parameters. Simulation data were fitted to the mean

bubble’s radial timecourse for the hydrogel and dense gel via

minimizing the sum of squares (in both cases the mean R0 ¼

0.2 mm). Simulations of this single mean bubble in the hydrogel

case (figure 4d(i)) indicated that Dsurf was a function of RB
2 and

had a value of Dbulk/30 at t ¼ 0, RB ¼ R0. Using the mean

dense gel data and the relation between Dsurf and Dbulk found

for the hydrogels (i.e. DsurfaR2
B > Dsurfðt ¼ t0Þ ¼ Dbulk=30Þ,

Dbulk in the dense gel was found to be 1.7 � 1029 m2 s21,

(figure 4d(ii)) which accords with previous data [50]. The

fitted modelled and mean experimental data are overlaid in

figure 4c for comparison. The RB
2 relationship and reduced

Dsurf are suggestive of contamination of the air–liquid interface

by adsorbed surface active molecules [54,55] many of which are

likely to be present in both the in vivo case and in our in vitro
tissue phantom.

Using these D values, further simulations were conducted

for each experimental (bubble pair) R0. The simulated and
experimental data are compared in figure 4e. No significant

differences were measured between simulation and exper-

iment for the hydrogel. For the denser gel, however,

simulations consistently predicted a greater reduction in

bubble radius over successive oscillations than that measured

experimentally. This discrepancy has several potential sources

all of which warrant further investigation. These include the

poroviscoelastic nature and anisotropy of the denser gels;

both of which are exhibited in human tissue [56].
4.2. Dive parameter investigation
The combined approach was next used to investigate bubble

dynamics under pressure profiles more representative of dive

situations. Hydrogel tissue phantoms were subjected to a

pressure profile consisting of a compression (1 psi s21 ¼ 6.9 �
104 Pa s21), a time at the maximum depth of (130 psi¼ 9.0 �
105 Pa) and, finally, a decompression. Time at depth and

decompression rate were varied for these experiments. Bubbles

were no longer introduced during the gelation period but

nucleated spontaneously during decompression. For each

bubble that nucleated, the radius–time curve was fitted to an

exponential growth equation via nonlinear regression (see the

electronic supplementary material, figure S4.) The plateau

radius and half-life resulting from the regression were used as

validation metrics by which to evaluate each dive parameter’s

effect and compare the simulation results. Means for each gel

were calculated (N ¼ 3 values per dive condition).

Simulations of each dive profile were undertaken using

the Dbulk and Dsurf values fitted previously and the fixed

values for the other material parameters. In the simulation,

three bubbles were randomly distributed within the phantom

at the outset. The positions and initial radii of the simulated

bubbles were the same in all simulations. The same nonlinear

regression analysis was used on the simulation data.

Figure 5 reveals a significant positive linear correlation

between time at depth and the mean plateau radii of bubbles

in the experimental case ( p ¼ 0.0064). No trend was found

between decompression rate and mean plateau radii; nor

between bubble half-life and either dive parameter.

Both the simulated and experimental data indicate that

the surrounding dissolved gas concentration (as controlled

by time at depth) has a greater impact on bubble dynam-

ics than the initial bubble growth rate (controlled by the

decompression rate).

It is interesting to note that the rate of bubble growth as

indicated by the half-lives does not appear to vary with

time at depth, whereas the final radial distribution does.

This result coupled with the lack of trend in bubble metrics

with decompression rate implies that the rate of bubble

growth is not limited by the available dissolved gas but by

mass transport across the bubble surface.

Within the simulated data the plateau radii were per-

sistently lower than the experimental measurements, and

half-lives consistently longer. Quantitative comparison of the

experimental and simulated data was done via an extra sum-

of-squares F-test (Prism 6 Graphpad). In the case of the plateau

radius dependence on time at depth (figure 5a), a nonlinear

fit was statistically indicated for the computational data (p ¼
0.499) whereas a linear fit was statistically indicated for the

experimental case. For the case of the half-life dependence on

time at depth (figure 5b), a linear fit was indicated for the com-

putational data. The slope of this fit was not significantly



0 100 200 300
0.6

0.7

0.8

0.9

1.0

1.1

time (s)

no
rm

al
iz

ed
 r

ad
iu

s

ra
di

us
 (

m
m

)

hydrogeldense gel

Dmax

Dmax Dmin

Dmin

final maxfinal min

0

0.1

0.2

0.3

ra
di

us
 (

m
m

) simulated hydrogel

experimental hydrogel

n.s. n.s.

n.s.

n.s.

0

0.1

0.2

0.3

ra
di

us
 (

m
m

)

simulated dense gel
experimental dense gel

********

n.s.

*

Dmax DmaxDmin Dminfinal max final maxfinal min final min

0 50 100 150 200 250 300
time (s)

bu
bb

le
 r

ad
iu

s 
(m

m
)

0.20

0.18

0.16

0.14

0.12

0.20

0.18

0.16

0.14

0.12

optimized modelled hydrogel
mean experimental hydrogel

optimized modelled dense gel
mean experimental dense gel

su
m

 o
f 

sq
ua

re
s 

×
10

–4

fold decrease from Dbulk

hydrogel Dsurf µ R2hydrogel Dsurf µ R3

dense gel Dbulk

2.5

2.0

1.5

1.0

0.5

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

2.2
2.1
2.0
1.9
1.8
1.7
1.6

Dbulk ×10–9 (m2 s–1)

20 25 30 35

–0.1

0

0.1

0.2

0.3

** ****

hydrogel

dense gel*
(b)(a)

(d)(c)
(i)

(ii)

(i)

(ii)

(e)

Figure 4. (a) Normalized bubble radii over the time course in which the external pressure was varied between 0 and 20 psi over 30 s for five consecutive oscil-
lations, sequential maximum and minimum radii were measured manually in IMAGEJ (n ¼ 23). The maximum and minimum radius changes (as marked in the
graph) as well as the final minimum and maximum radii were used in the subsequent statistical analysis. (b) Comparison of bubble dynamics in the experimental
hydrogel and dense gel, significance level p ¼ 0.05 for paired t-test. (c) Overlay of the fitted models to the mean experimental hydrogel (i) and dense gel (ii) R0 ¼

0.2 mm (mean experimental R0 in oscillatory pressure experiment). Lx ¼ Ly ¼ Lz ¼ 1.28 mm, h ¼ 2 � 1025 m, LN2¼ 0.145, LO2¼ 0.027, m ¼ 40 Pa and
g ¼ 0.07 N m21. (d ) Fitting via minimization of the sum of squares for the hydrogel (i) for both fold change of Dsurf from Dbulk and for R3

B or R2
B dependence

of Dsurf. (ii) The minimized sum of squares for Dbulk in the case of the dense gel. (e) Comparison of simulated pressure oscillations to experimental data for all
measured R0 values for hydrogel (left) and dense gel (right). Comparison of experimental and simulated data is based on the bubble metrics used in (b), paired
t-test significance level p ¼ 0.05 was calculated for each metrics.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170653

9

different from the experimental data ( p ¼ 0.21); however, the

intercepts were significantly different (p ¼ 0.002). The same

pattern (statistical differences between intercept values but

not between slopes) was true in the decompression rate data

for both plateau radius (figure 5c) ( p ¼ 0.0002 for intercept

and p ¼ 0.39 for slope) and half-life (figure 5d ) ( p ¼ 0.0033

for intercept and p ¼ 0.29 for slope).

This result suggests that while similarities may be

found between simulations and experiments, there may be
systematic errors in the computational model (the persistent

significant difference in intercepts) and assumptions made

in establishing the model may not be capturing the

experimental reality.

An indication of what these systematic errors and/or

flawed assumptions could be is found in the experimental

data. The low R2 values across all experimental cases, even

in the case of the statistically significant trend for plateau

radius and time at depth (figure 5a), indicate variance in
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the experimental data which cannot be attributed to the dive

parameter variation.

Variation in the number of bubbles in the samples, the

position of bubbles within the gel (relative to the phantom

boundaries and other bubbles) and their initial radii are all

factors which could cause the low R2 values and are also fac-

tors not accounted for in the computational model. In the

simulations each of these factors was held constant across

all simulations and initially assigned randomly, in the case

of the spatial position and number of bubbles or constrained

by computational requirements for R0. These additional

factors were further investigated by computational and

experimental methods.
4.2.1. Initial bubble radius
As nucleation is a stochastic process it was not possible to

experimentally vary R0 and so its effect was, therefore, inves-

tigated primarily using the computational model. The results

are shown in figure 6a. As one observes, increasing R0

increased the plateau radius nonlinearly (figure 6a,inset), as

expected given the larger initial surface area for gas to diffuse

through and the lower surface tension. The initial radii

cannot be directly controlled in the experimental system

and direct measurement is likewise unfeasible. However,

theoretical calculations of the initial micronuclei radial distri-

bution may be possible. If the supersaturation of the tissue
phantom can be calculated, based on the dive profile, then

the critical radius (the radius above which micronuclei will

grow into bubbles, rather than dissolve) may be calculated

from equation (2.11).

For example, given that the tissue phantom is completely

saturated during the 4 h time at depth pressure profile, the

maximum supersaturation would be 9.0 � 105 Pa (for the

max depth used here) and hence the critical radius equals

0.15 mm. As the supersaturation will not be constant through-

out the tissue but will vary both spatially and temporally,

initial bubble radii would likewise be predicted to vary

both spatially and temporally. Quantification of each bubble’s

location (both three-dimensional spatial position and tem-

porally) could be used in conjunction with simulations of

the corresponding tissue phantom supersaturation to fit the

micronuclei radii distribution. Preliminary data investigat-

ing both these variables show promise and are the subject

of continued investigation.
4.2.2. Bubble spatial distribution
Bubble spatial distribution was also investigated computation-

ally. Figure 6b shows the results for three simulated bubbles. As

can be seen, the bubble nearest the edge of the phantom has the

lowest plateau radius (bubble 1). Those closer to the centre

exhibit a slower rate of growth initially (due to the lower dis-

solved gas concentration in their immediate neighbourhood);
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but continue to grow for longer, as the centre of the phantom

takes longer to desaturate. In the experimental system, the pos-

ition of the bubbles within the phantom could not be accurately

measured in the z-(depth) plane, and, therefore, this result

cannot be directly validated. However, a non-uniform bubble

distribution (in the z-plane) was observed (see electronic sup-

plementary material, figure S5) and has been noted in other

experimental works [25].

A non-uniform bubble distribution coupled with the com-

putational result (bubbles further from the phantom

boundaries have larger plateau radii) leads to the insight

that if the average bubble distance from the boundaries

was greater in experiments than simulations, the mean pla-

teau radius would be greater in the experimental data. The

converse is also true.
4.2.3. Bubble – bubble interactions
Bubble–bubble interactions are also likely to have contributed

to experimental variability and to the discrepancies between

experimental and simulated data. For many processes, such

as polymer foaming or volcanic melt dynamics, bubble
coalescence has a significant impact on the bubble population

dynamics [57]. The likelihood that a bubble collision results in

coalescence is dependent on the balance between the film drai-

nage time and energy of deformation [58]. The faster two

bubbles approach one another, the greater the likelihood of

coalescence. In the in silico model, bubble–bubble contact

was assumed to result in immediate coalescence, resulting in

a single bubble with a mass equal to the sum of the previous

bubbles. Coalescence frequency was investigated in the exper-

imental system as shown in figure 6c. The number of bubbles in

the samples, the maximum number of bubble–bubble inter-

faces that formed and the number of coalescence events that

occurred were counted. It is clear from the data that coalescence

was rarely the outcome of bubble–bubble contact; instead

bubbles tended to deform upon contact with one another. In

cases where coalescence did occur it took a considerable

period of time (approx. 1 h).
4.2.4. Number of bubbles
The number of bubbles that nucleate will impact on all of

the above factors; this was experimentally investigated
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and showed a significant positive linear trend with time at

depth, but no trend was found with decompression rate

[19]. Attempts to increase the number of bubbles in the

computational model resulted in numerous incidences of

bubble–bubble contact and, therefore, coalescence was fre-

quent and often resulted in termination of the simulation as

the resultant bubble overlapped the phantom edges. Given

that frequent coalescence was not seen in the experimental

case of bubble–bubble contact, further work is needed to

develop a more sophisticated coalescence model and to

account for non-spherical bubbles.
J.R.Soc.Interface
14:20170653
5. Implications for dive algorithms
The work presented here aims to provide a means of directly

validating dive algorithms and provide guidance for their

further development. Our results re-enforce the notion that

the Bulk Modulus form of the tissue elasticity expression is

inconsistent with solid mechanics and should be viewed, in

its current form, as an empirical expression only. While the

hyperelastic form was adopted in our analysis, further

characterization of a tissue’s mechanical response to bubble

growth is required.

Our results support the validity of dive algorithms using

smaller diffusion coefficients for the gas–liquid interface com-

pared to bulk tissue values such as the BVM [42]. In addition,

the work shows that better modelling of bubble populations

and, specifically, the interactions between bubbles within such

populations is needed. The most important conclusion from

the results presented here is the need to accurately characterise

initial bubble size and spatial distribution. Further investigation

of bubble nuclei is possible with this system and it could provide

an important tool for systematically probing bubble nucleation.

The VPM remains the only commercially applied model of

nucleation; and while this has itself been validated in gelatin

models, further work is needed to understand the influence of

different tissue compositions as highlighted in other in vivo
and ex vivo work [20,22,23]. One important point to note in

relation to current dive algorithms is the absence of perfusion

in the current model. Perfusion is an important feature

in tissue gas kinetics and there are various models of perfu-

sion incorporated into dive algorithms [8]. To extend the

current computational model to include perfusion would be

computationally simple; to incorporate perfusion into the

experimental system, while possible would be technically diffi-

cult. In its current form, the system can be adapted to reflect

different tissues in terms of their biological constituents [30],

and thus the system is well suited to mimic diffusion-limited

tissues, i.e. where perfusion is poor or tissue is avascular such

as articulate cartilage.
6. Conclusion
This study has developed and used a combined experimental

and computational approach to investigate bubble dynamics

in tissue phantoms. Providing real-time bubble growth

dynamics eliminates a hypothetical probabilistic link bet-

ween the bubble population and DCS symptoms, meaning

mechanistic bubble models may be directly validated.

Using this combined approach, a mathematical form of

the governing equations has been developed that includes a

hyperelastic elasticity term as a possible replacement for the

Bulk Modulus form.

Sensitivity analysis has revealed that the diffusion coeffi-

cient is the most influential material parameter. Additionally,

it has been shown that the diffusion coefficient varies between

the bubble surface and the bulk tissue, with a lower value for

the bubble surface and a surface area dependence. These

data support the validity of dive algorithms which use lower

values for Dsurf and vary the value based on surface area [42].

It has been shown that bubble dynamics even in this rela-

tively simple system are highly complex, and that many

interactions may occur between bubbles which impact the

population dynamics. In order to capture these population

dynamics it is crucial to establish the initial bubble radii and

their spatial distribution. These are not only important par-

ameters in the growth of the individual bubbles, but also

determine the likelihood that bubbles will interact with one

another. Initial bubble nuclei and spatial position are predomi-

nantly determined by a nucleation model. Therefore, this work

indicates that parametrizing and validating a model of nuclea-

tion is one of the most crucial research avenues in developing

our understanding of, and preventing, DCS.
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