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In gene targeting experiments, the importance of genetic

background is now widely appreciated, and knockout

alleles are routinely backcrossed onto a standard inbred

background. This produces a congenic strain with a sub-

stantial segment of embryonic stem (ES)-cell-derived

chromosome still flanking the knockout allele, a phenom-

enon often neglected in knockout studies. In cholecysto-

kynin 2 (Cckbr) knockout mice backcrossed with C57BL/6,

we have found a clear ‘congenic footprint’ of expression

differences in at least 10 genes across 40 Mb sequence

flanking the Cckbr locus, each of which is potentially

responsible for aspects of the ‘knockout’ phenotype. The

expression differences are overwhelmingly in the knock-

out-low direction, which may point to a general phenom-

enon of background dependence. This finding emphasizes

the need for caution in using gene knockouts to attribute

phenotypic effects to genes. This is especially the case

when the gene is of unknown function or the phenotype is

unexpected, and is a particular concern for large-scale

knockout and phenotypic screening programmes. How-

ever, the impact of genetic background should not be

simply viewed as a potential confound, but as a unique

opportunity to study the broader responses of a system to

a specific (genetic) perturbation.
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A gene expression profile is the most comprehensive snap-
shot of the state of a sample of cells or tissue currently

available. It allows analysis of the cell as a system at an

entirely new level. In the simplest case, if a gene is knocked

out and the resulting strain is viable, adjustments in the
expression of other genes of related function would be

required to compensate. If such differences in gene expres-
sion profile are detected between knockout and control,

these are probable parts of the same biological subsystem.
There are few studies in the literature to date employing this

systems biology approach and our original aim was to make
use of a powerful dataset to investigate an example with

a well characterized Cckbr (cholecystokynin receptor 2)
knockout strain (Nagata et al. 1996). We did detect functional

neighbours of Cckbr, but saw many more strong differences
because of the ES-cell-derived chromosomal context of the

knockout. We describe this very striking finding involving the
physical neighbourhood of the Cckbr locus and its conse-

quences.
Effects of genetic background on the phenotype of

targeted mutations in mice (knockouts) are widely appreci-
ated, and most are backcrossed into C57BL/6 or another

suitable strain. Inevitably, a substantial fragment of the

flanking embryonic stem (ES)-cell-derived chromosome is
retained (discussed further below). The genetic problem

(Gerlai 1996; Wolfer et al. 2002) or opportunity (Bolivar et al.
2001) that this represents has been well discussed among

geneticists, but the possible consequences are rarely con-
sidered in studies of knockouts (Crusio 2004). One reason

for this may be that it is hard to estimate the likelihood that
phenotypic differences are because of flanking sequences

rather than the targeted allele, especially as the phenotype(s)
being studied are typically selected with a bias towards

identifying or confirming a known function of the gene. In
contrast, gene expression profiling does notmake any a priori

assumption about the effect of the targeted allele. In the
example we present here, there are numerous gene expres-

sion differences in what we call the congenic footprint. Each
of these could be responsible for the ‘knockout’ phenotype,

and this has implications for the interpretation of the
phenotypes of the thousands of knockout strains that have

been made and for large-scale plans to generate knockouts
and screen them for phenotypic effects (Austin et al. 2004;

Auwerx et al. 2004).
We have been studying a cholecystokinin receptor 2

(Cckbr) knockout in connection with a model of neuropathic
pain (Kurrikoff et al. 2004). Using Affymetrix MOE430av2

arrays, which have 22 690 sets of 11 oligonucleotides (pro-
besets) representing about 14 000 different genes, we have

compared knockout and wildtype gene expression profiles in
midbrain and medulla. To maximize the statistical power to
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see gene expression differences related to the knockout, we
pooled all of our microarray data to compare knockout

(extensively backcrossed to C57BL/6) animals (16 arrays)
with C57BL/6 (16 arrays) other variables such as surgical

treatment are balanced across these groups. This number of
samples is much greater than is used in most microarray

experiments, and this gives us good statistical power to
detect expression differences.

Materials and methods

Cckbr was originally knocked out in J1 ES cells, derived from 129S4/
Jae mice (Nagata et al. 1996), subsequently backcrossed N ¼ 10 to
C57BL/6Bkl (Scanbur-BK) in Tartu. Homozygous knockout and wild-
type animals were obtained by intercrossing heterozygous stock.
Housing was at 20 � 28C under a 12-h, lights on at 0700 cycle, water
and food ad libitum. The University of Tartu Animal Care Committee
approved all animal procedures (EC Directive 86/609/EEC).

Sixteen, 3-month-old males from 12 litters were used. Nine days
after surgery (neuropathic pain model or sham; Kurrikoff et al. 2004),
mice were killed by cervical dislocation and tissues frozen in liquid
nitrogen. RNA was extracted with TRIzol (Invitrogen, UK). From 4 mg
of total RNA, complementary DNA and labelled complementary RNA
(cRNA) were made using the One-Cycle Kit (Affymetrix, Santa Clara,
CA, USA). Fragmented cRNA was hybridized to the Mouse 430A 2.0
array according to Affymetrix protocols.

The .cel files were analysed using dChip (PM-MM model) (Li &
Wong 2001) and the statistical package R (Ihaka & Gentleman 1996).
We used a nested analysis of variance (ANOVA) model to test for
differences between knockout and control across all 32 samples,
while recognizing that the two tissue samples from each mouse may
not be independent. Hybridization date and surgical treatment were
nuisance factors, and pairs of tissues (midbrain and medulla) from
each animal were treated as replicates. The R command for ANOVA

applied to each probeset was aov(signal�dateþsurgeryþgenotypeþ
Error(mouse)).

The Shapiro–Wilk test does not reject normality for most probe-
sets, and spot checks using permutation of the genotype factor gave
similar P-values. False discovery rate (FDR) control (Benjamini &

Hochberg 1995) using Q ¼ 0.05 was used on the whole-genome
and chromosome 7 levels.

The National Institute of Environmental Health Sciences (NIEHS)/
Perlegen resequencing data for 129S1/SvImJ, a reasonably close
relative of 129S4/Jae, shows that the observed differences are not
because of poor hybridization resulting from sequence differences
between strains except for one possible case. A total of 22 187
polymorphisms were discovered between 129S1/SvImJ and C57BL/6
in the footprint region but only 12 are in the probe sequences of the 11
differing probesets. Six are in one probeset: 1417961_a_at (Trim30;
tripartite motif protein 30).

Genotyping: Single nucleotide polymorphisms (SNPs) (rs13479420,
rs13479422, rs13479512, rs13479517, rs3657451 and rs3677347)
from dbSNP were genotyped using primer extension (MegaBACE
SNuPe, GE Healthcare, UK).

Results and discussion

We did a conservative analysis of the 32 samples, treating the

two tissues as replicate samples and every probeset as
a separate test. We found 15 probesets with very strong

evidence for an expression difference between knockout and
control mice, one of which represents Cckbr itself. Across the

entire array, the false discovery rate for these 15 is estimated

at <0.05 (FDR, Benjamini & Hochberg 1995; Storey &
Tibshirani 2003; Storey et al. 2004), these methods give the

same result in this case). To our surprise, 12 of them, represent-
ing 10 different genes in addition to Cckbr, map in a 40-Mbp

region around the Cckbr locus on chromosome 7 (Fig. 1). All
but one differed in the same direction, knockout-low (Fig. 2).

Inspection of the data indicates that there are many more
differences in the same region. Plotting the P-values for

difference of chromosome 7 probesets against their position
on the chromosome (Fig. 3) shows a cloud of values above

0.1 with a distinctive rain shower of differing expression
between 73 and 123 Mb (indicated in pale blue). Clearly, it is

Figure 1: Genomic locations of the

15 probesets most significantly dif-

fering between wildtype and Cckbr

knockout mice. This figure was gen-

erated using Webgestalt (Zhang et al.

2005).
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worth considering a slightly less conservative criterion here.

Again using FDR Q ¼ 0.05, but this time just considering
chromosome 7, there are 33 probesets in the 40-Mb region

that differ significantly and only one in the remainder of the
chromosome. This is a very striking and specific pattern.

Hypothesizing that these expression differences were in
ES-cell-derived sequences linked to the knockout allele (i.e.

a differential chromosomal segment), we genotyped six
informative SNPs outside of genes flanking Cckbr (Fig. 3,

bottom). These confirmed that the region is indeed of non-

C57BL/6 origin in the knockout strain. The three SNPs on the
proximal side (black triangles in Fig. 3) are all homozygous

129 genotype in knockout animals. For the distal three SNPs
(grey in Fig. 3), this is also true, except that three of the 16

knockout DNAs show a C57BL/6 genotype, indicating that
there are different congenic breakpoints represented in our

set of mice.

The pattern of expression differences that we see must be
a consequence of the differences between sequences with

an alternate strain of origin. We call the pattern a congenic
footprint.

The ten genes that most strongly define the congenic
footprint are diverse in function and do not have an obvious

common functional theme. They are Dctn5 (dynactin 5, actin-
associated, 1415748_a_at), Coq7 (demethyl-Q 7, ubiquinone

biosynthesis, 1416665_at), Trim30 (tripartite motif, T-lympho-
cyte regulatory, 1417961_a_at), Trim34(1424857_a_at),

Myo7a (myosin VIIa, 1421385_a_at), Arl6ip1 (adenosine
diphosphate-ribosylation factor-like 6 interacting protein 1,

1423819_s_at), Spon1 (spondin 1, extracellular matrix,
1424415_s_at), Ndufc2 (nicotinamide adenine dinucleotide

(reduced) dehydrogenase (ubiquinone) 1, subcomplex
unknown, 2, 1455036_s_at), Iqgap1 (IQ motif containing

guanosine triphosphatase activating protein 1, 1417379_at)
and Frag1 (fibroblast growth factor receptor activating 1,

1424615_at, 1424614_at).
The affected genes that are not on chromosome 7, on the

other hand, do have a probable common theme related to
inflammation. They are Cldn5 (claudin 5), Tlr4 (toll-like recep-

tor 4) and Lysmd3 (LysM, putative peptidoglycan-binding,
domain containing 3). Tlr4 is a candidate for inflammatory

response and neuropathic pain (Poltorak et al. 1998; Tanga
et al. 2005) and very plausible as a gene whose regulation is

linked to Cckbr. Cldn5 is probably also involved in inflamma-

tion, through its role in endothelial cell junctions, which are
involved in the process of leukocyte migration across the

epithelium (Cook-Mills & Deem 2005). Lysmd3 is a poorly
characterized gene with recently annotated sequence simi-

larity to lysozyme.
One possibility is that the expression differences observed

in certain transcripts could be because of poor hybridization
due to sequence differences rather than genuine expression

differences. Although a single nucleotide change can make
a large difference in the hybridization of a 25-mer probe as

used here, multiple differences in a gene would be required to
cause an apparent expression difference because each

transcript is represented by a set of 11 probes. J1 ES cells,
used to prepare the Cckbr knockout, were derived from the

strain 129S4/Jae, which shares a relatively recent common
ancestor with 129S1/SvImJ with no known outcrossings

(Simpson et al. 1997). 129S1/SvImJ has been extensively
resequenced by hybridization in the NIEHS/Perlegen project

(http://mouse.perlegen.com/mouse/download.html, down-
loaded 2 February 2006). They detect 22 187 polymorphisms

between 129S1/SvImJ and C57BL/6 in the footprint region.
Among these, however, only 12 are found in the probe

sequences of the 11 significantly different probesets, and
six of these are in a single probeset: 1417961_a_at, ‘tripartite

motif protein 30’. This probeset is thus the only one where
there is a likelihood that there is a sequence difference rather

than a true expression difference.
Standard practise currently expects confirmation or repli-

cation (by a second method such as quantitative PCR) of
expression differences detected by microarray. We find the

congenic footprint presented here compelling in the absence
of such a follow-up, chiefly because of its specificity, evident

from Fig. 1. The cluster of expression differences on
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Figure 2: Heatmap of the probesets most significantly dif-

fering between wildtype (left) and Cckbr knockout (right)

mice. Each column represents one of the 32 Affymetrix

MOE430A 2.0 arrays, and each row represents a probeset

(transcript). The probeset names on the right are colour coded

red for chromosome 7 and black for others. Each row is centred

and scaled, and the colour scale at the top is calibrated in standard

deviations, red for high values, white near the mean and blue for

low values. The rows have been hierarchically clustered using

|1 � R| (where R is the Pearson correlation coefficient) and

a complete linkage criterion. The colour bar at the bottom shows

the identities of the samples applied to each array. Tissue: pale

blue, medulla; pink, midbrain. Surgery: blue, sham; green, neuro-

pathic pain model. Strain: black, C57BL/6; red, Cckbr knockout.

KO, knockout; WT, wildtype.
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chromosome 7 cannot be a coincidence (P ¼ 6.7 � 10�20,
Fisher’s exact test). From the statistical point of viewwe have

been able to take a stringent approach, and as such, less than
one of these findings is expected to be a false positive

(examination of Fig. 2 indicates that there are numerous false
negatives). This contrasts withmanymicroarray studies in the

literature which have poor statistical power to detect true
positives and thus yield a high proportion of false positives

because of multiple testing. The most interesting further
experiments would involve similar tests on other knockout

strains and indeed other congenic strain pairs, to confirm that
congenic footprints in gene expression are a general phe-

nomenon resulting from genetic background effects.
The size of the congenic region in knockouts that have been

backcrossed, even extensively, is unlikely to be small. With-
out selection, the fraction of loci heterozygous at the Nth

generation of backcrossing is (1/2)N�1 (Silver 1995), but loci
linked to the knockout are not so readily lost. The probability

of a recombination within 10 cM on one side is by definition
10% per generation. Even at N ¼ 10 generations as in this

case, the probability that there has been no recombination
and thus a flank of ES-cell-derived chromosome of at least 10

cM on a given side would be 63% [100 � (1 � 1/e1)], i.e. one-
fold sampling assuming recombination is a Poisson process).

Similarly, the probability of having >3.3 cM of flank on one
side is 95% [100 � (1 � 1/e3)]. The minimum differential

chromosome region at backcross 10 is thus 6.6 cM, which

corresponds to roughly 13 Mbp of sequence, with on average

110 genes. The average size is approximately 200/N or 20 cM
(Silver 1995), approximately 40 Mbp, 250 genes that could

differ from the controls. The congenic footprint we identified
in this study is 40 Mbp and contains 573 genes.

The footprint genes with showed expression differences
must logically be considered candidates for causing pheno-

typic differences between the knockout strain and C57BL/6 in
addition to Cckbr. The point here is not to show that these

differences actually do cause the phenotype in this case, but
rather to point out that there is every reason to believe that

this situation, in which multiple expression differences must
be considered, is typical. A recent paper reports a similar

congenic footprint observation with a Rab3a knockout (chro-
mosome 8) (Yang et al. 2006). Gene knockouts are extremely

valuable, but are not as clean a system for testing function as
is commonly assumed. In this case, the majority of the

phenotypic effects attributed to the Cckbr knockout are in
accordance with what is known of the biochemistry of the

receptor’s ligands (Kurrikoff et al. 2004). The complexity of the
pain-related phenotype, and particularly the apparent domi-

nance of the knockout effect on both pain and mechanical
sensitivity (Kurrikoff et al. 2004), however, indicates that

further investigation of candidates for this phenotype may
be fruitful. For characterizing knockouts in general, we believe

far more use should be made of genetic tests for congenic
effects (Crusio 2004; Gerlai 1996; Wolfer et al. 2002). In future

more targeted mutations may be made directly in strains of

interest as methods are refined (e.g. Ware et al. 2003). Similar
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Figure 3: The congenic footprint:

mouse chromosome 7. Upper: uncor-

rected P-values for genotype effect plot-

ted by location (Mbp) on chromosome 7.

The two red filled points are Cckbr probe-

sets. The three lines are significance

thresholds with differing multiple-testing

criteria (a ¼ 0.05). Dashed: Bonferroni

corrected (whole genome); dotted: FDR

(whole genome); dot–dashed (FDR, chro-

mosome 7). The shaded area indicates

the footprint region. Lower: map of chro-

mosome 7 on the same scale. The

heavier line represents the congenic foot-

print, and the filled triangles are the

locations of the six SNP markers. The

grey triangles indicate that there were

a few knockout animals with C57BL/6

alleles at these loci, indicating the pres-

ence of more than one breakpoint. All

positions are from National Center for

Biotechnology Information sequence

build 34.
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considerations apply of course to congenic strains constructed
deliberately as a way of isolating quantitative trait loci.

The expression levels seen in the differential chromosomal
segment of the knockout strain may or may not reflect the

situation in the sequence’s strain of origin. A striking feature
of the congenic footprint is that almost all of the expression

differences are low in the knockout. We hypothesize that
there is a mismatch between coevolved sets of interacting

sequences in the two parental inbred strains, for example
transcription factors and proteins that activate them, that

leads to this bias. Sets of genes like this will have diverged in
the different subspecies that are combined in the ancestry of

the domestic mouse, and working combinations were prob-
ably selected during inbreeding (Petkov et al. 2005). If this

proves to be true, the phenomenon could prove very useful
for exploring the regulation of transcription of many genes,

and it would be interesting to investigate strains created from
various proportions of different inbred strains such as con-

genics, recombinant congenic and consomic panels. A recent
analysis of recombinant congenic lines derived from strains A/

J and C57BL/6J found over 1200 genes in the genome as
a whole whose expression was affected by the predominant

genetic background, although no directional bias in expres-
sion was reported (Lee et al. 2006). This is a similar proportion

to our observations, because our congenic footprint is roughly
1% of the genome. Analysis of consomic strain panels would

also be very interesting in this context. One such study using

liver has appeared (Shockley & Churchill 2006).

References

Austin, C.P., Battey, J.F., Bradley, A. et al. (2004) The knockout
mouse project. Nat Genet 36, 921–924.

Auwerx, J., Avner, P., Baldock, R. et al. (2004) The European
dimension for the mouse genome mutagenesis program. Nat
Genet 36, 925–927.

Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery
rate – a practical and powerful approach to multiple testing. J Roy
Stat Soc B Met 57, 289–300.

Bolivar, V.J., Cook, M.N. & Flaherty, L. (2001) Mapping of quantitative
trait lociwith knockout/congenic strains.GenomeRes 11, 1549–1552.

Cook-Mills, J.M. & Deem, T.L. (2005) Active participation of endo-
thelial cells in inflammation. J Leukoc Biol 77, 487–495.

Crusio, W.E. (2004) Flanking gene and genetic background problems
in genetically manipulated mice. Biol Psychiatry 56, 381–385.

Gerlai, R. (1996) Gene-targeting studies of mammalian behavior: is it
the mutation or the background genotype? Trends Neurosci 19,
177–181.

Ihaka, R. & Gentleman, R. (1996) R: a language for data analysis and
graphics. J Comput Graph Stat 5, 299–314.

Kurrikoff, K., Koks, S., Matsui, T., Bourin, M., Arend, A., Aunapuu, M.
& Vasar, E. (2004) Deletion of the CCK2 receptor gene reduces
mechanical sensitivity and abolishes the development of hyper-
algesia in mononeuropathic mice. Eur J Neurosci 20, 1577–1586.

Lee, P.D., Ge, B., Greenwood, C.M., Sinnett, D., Fortin, Y., Brunet, S.,
Fortin, A., Takane, M., Skamene, E., Pastinen, T., Hallett, M.,
Hudson, T.J. & Sladek, R. (2006) Mapping cis-acting regulatory
variation in recombinant congenic strains. Physiol Genomics 25,
294–302.

Li, C. & Wong, W.H. (2001) Model-based analysis of oligonucleotide
arrays: expression index computation and outlier detection. Proc
Natl Acad Sci USA 98, 31–36.

Nagata, A., Ito, M., Iwata, N., Kuno, J., Takano, H., Minowa, O.,
Chihara, K., Matsui, T. & Noda, T. (1996) G protein-coupled
cholecystokinin-B/gastrin receptors are responsible for physiologi-
cal cell growth of the stomach mucosa in vivo. Proc Natl Acad Sci
USA 93, 11825–11830.

Petkov, P.M., Graber, J.H., Churchill, G.A., Dipetrillo, K., King, B.L. &
Paigen, K. (2005) Evidence of a Large-Scale Functional Organization
of Mammalian Chromosomes. PLoS Genet 1, e33.

Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X.,
Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M.,
Ricciardi-Castagnoli, P., Layton, B. & Beutler, B. (1998) Defective
LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in
Tlr4 gene. Science 282, 2085–2088.

Shockley, K.R. & Churchill, G.A. (2006) Gene expression analysis of
mouse chromosome substitution strains. Mamm Genome 17,
598–614.

Silver, L. (1995)Mouse Genetics. Oxford University Press, New York.
Simpson, E.M., Linder, C.C., Sargent, E.E., Davisson, M.T., Mobraaten,

L.E. & Sharp, J.J. (1997) Genetic variation among 129 substrains
and its importance for targeted mutagenesis in mice. Nat Genet 16,
19–27.

Storey, J.D., Taylor, J.E. & Siegmund, D. (2004) Strong control,
conservative point estimation, and simultaneous conservative
consistency of false discovery rates: a unified approach. J R Stat
Soc B 66, 187–205.

Storey, J.D. & Tibshirani, R. (2003) Statistical significance for genome-
wide studies. Proc Natl Acad Sci USA 100, 9440–9445.

Tanga, F.Y., Nutile-McMenemy, N. & DeLeo, J.A. (2005) The CNS role
of Toll-like receptor 4 in innate neuroimmunity and painful neurop-
athy. Proc Natl Acad Sci USA 102, 5856–5861.

Ware, C.B., Siverts, L.A., Nelson, A.M., Morton, J.F. & Ladiges, W.C.
(2003) Utility of a C57BL/6 ES line versus 129 ES lines for targeted
mutations in mice. Transgenic Res 12, 743–746.

Wolfer, D.P., Crusio, W.E. & Lipp, H.P. (2002) Knockout mice: simple
solutions to the problems of genetic background and flanking
genes. Trends Neurosci 25, 336–340.

Yang, S., Farias, M., Kapfhamer, D., Tobias, J., Grant, G., Abel, T. &
Bucan, M. (2006) Biochemical, molecular and behavioral pheno-
types of Rab3A mutations in the mouse. Genes Brain Behav 6,
77–96.

Zhang, B., Kirov, S. & Snoddy, J. (2005) WebGestalt: an integrated
system for exploring gene sets in various biological contexts.
Nucleic Acids Res 33, W741–748.

Acknowledgment

This work was supported by the Estonian Science Founda-
tion GARFS5688, by the Marie Curie TOK fellowship MTKD-CT-
2004-517176 (S.K.) and the UK Medical research Council
(G0000170). Comments from the editors and a reviewer were
very helpful.

Genes, Brain and Behavior (2007) 6: 299–303 303

Interpretation of knockout experiments


