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ABSTRACT

Copy number variations (CNVs) in the human
genome are conventionally detected using high-
throughput scanning technologies, such as com-
parative genomic hybridization and high-density
single nucleotide polymorphism (SNP) microarrays,
or relatively low-throughput techniques, such as
quantitative polymerase chain reaction (PCR). All
these approaches are limited in resolution and can
at best distinguish a twofold (or 50%) difference in
copy number. We have developed a new technology
to study copy numbers using a platform known as
the digital array, a nanofluidic biochip capable of
accurately quantitating genes of interest in DNA
samples. We have evaluated the digital array’s per-
formance using a model system, to show that this
technology is exquisitely sensitive, capable of differ-
entiating as little as a 15% difference in gene copy
number (or between 6 and 7 copies of a target gene).
We have also analyzed commercial DNA samples for
their CYP2D6 copy numbers and confirmed that our
results were consistent with those obtained inde-
pendently using conventional techniques. In a
screening experiment with breast cancer and
normal DNA samples, the ERBB2 gene was found
to be amplified in about 35% of breast cancer sam-
ples. The use of the digital array enables accurate
measurement of gene copy numbers and is of sig-
nificant value in CNV studies.

INTRODUCTION

Variation in the human genome occurs on multiple levels,
from single nucleotide polymorphisms (SNPs) to duplica-
tions or deletions of contiguous blocks of DNA sequences
(1–5). Copy number variation (CNV) is an important
polymorphism of DNA segments across a wide range of
sizes and one of the primary sources of variation in the
human genome (6). Recently, CNV has been studied
extensively because of its close association with large

numbers of human disorders (7,8). An understanding of
this variation is important not only to understand the full
spectrum of human genetic variation but also to assess the
significance of such variation in disease-association stud-
ies. The first human CNV map was constructed from a
study of 270 normal individuals with a total of 1447 CNV
regions in the whole genome (9); more than 15 000 CNVs
have been found in the human genome (http://projects.
tcag.ca/variation). A recent paper demonstrated the pre-
sence of 525 novel insertion sequences across the
genomes of eight unrelated individuals, which were not
present in the human reference genome, and showed
that many of these have different copy numbers (10).
However, the current CNV analysis is mainly dependent
upon microarray-based SNP and comparative genomic
hybridization (CGH) platforms, or DNA sequencing,
and is therefore subject to low sensitivity and low resolu-
tion. These techniques are high throughput but lack the
flexibility of analyzing individual genes or sequences of
interest. Other existing technologies, such as quantitative
polymerase chain reaction (PCR), are limited because of
their inability to reliably distinguish less than a twofold
difference in copy number of a particular gene in DNA
samples (11–13).
In this study we demonstrate the use of a unique inte-

grated nanofluidic system, the digital array, in the study of
CNVs. The digital array (14,15) is able to accurately quan-
titate DNA samples based on the fact that single DNA
molecules are randomly distributed in more than 9000
reaction chambers and then PCR amplified. The concen-
tration of any sequence in a DNA sample (copies/ml) can
be calculated using the numbers of positive chambers that
contain at least one copy of that sequence. In order to
ensure that the apparent difference in gene copy numbers
in different samples are real, and not distorted by differ-
ences in sample amounts, we use the expression ‘relative
copy number’. The relative copy number of a gene is the
number of copies of that gene per haploid genome. It can
be easily expressed as the ratio of the copy number of a
target gene to the copy number of a single copy reference
gene (two copies per cell) in a DNA sample, which
is always 1 per haploid genome. By using two assays for
the two genes (the gene of interest and the reference gene)
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with two fluorescent dyes on the same digital array, we are
able to simultaneously quantitate both genes in the same
DNA sample. The ratio of the numbers of molecules of
these two genes is the relative copy number of the gene of
interest in a DNA sample. A single copy gene should have
a relative copy number of 1. A relative copy number
greater than 1 indicates the presence of duplication of
the target gene while a number smaller than 1 implies
deletion of this gene.
Our data show that the digital array is able to distin-

guish less than twofold differences in gene copy number
and differentiate between 1, 2, 3, 4, 5, 6 and 7 copies of a
gene with great accuracy. It provides a reliable and robust
platform to study copy number variations and has great
advantages over conventional techniques.

MATERIALS AND METHODS

Construct, primer and probe sequences

The sequence of the RPP30 synthetic construct and the
sequences of the primers and probe used to amplify this
construct are shown in Supplementary Table 1, while the
primers and probes for the CYP2D6 and ERBB2
genes are shown in Supplementary Table 2. All primers,
probes and the synthetic construct were ordered from
Biosearch Technologies (Novato, CA) and Integrated
DNA Technologies (Coralville, IA, USA).
The TaqMan assay for the RNase P gene (VIC) was

ordered from Applied Biosystems (Foster City, CA).

Digital array as a quantitating tool

The feasibility of digital PCR has previously been demon-
strated by performing PCR on a single DNA sample
obtained by a serial dilution process (16,17). Target mole-
cules in a DNA sample could be quantitated by counting
the number of positive reactions. We utilize the principle
of partitioning instead of dilution in order to identify and
quantitate individual DNA molecules.
The Fluidigm digital array is a novel nanofluidic bio-

chip where digital PCR reactions can be performed
(14,15). Utilizing nanoscale valves and pumps, the digital
array delivers up to 12 mixtures of sample and PCR
reagents into 12 individual panels. Each panel contains
765 independent 6-nl chambers. This nanofluidic platform
utilizes soft lithography and silicone rubber to create
nanoscale valves and pumps that can be used in serial or
parallel applications. The digital array is composed of a
PDMS (silicone rubber) Integrated Fluidic Circuit, an
Integrated Heat Spreader to ensure rapid heat transfer
and temperature uniformity within the array and an
SBS-formatted carrier with inputs and pressure accumu-
lator to act as an interface between the user and the
PDMS chip. There are 12 carrier inputs corresponding
to 12 separate sample inputs to the chip. Individual sam-
ples of a minimum volume of 8 ml each are delivered into
765 6-nl preprogrammed partitioning chambers in the chip
by pressure-driven ‘blind filling’ in the PDMS. Control
lines are primed with control fluid and are pressurized to
actuate valves between the reaction chambers. The valves

partition individual chambers that are kept closed during
the PCR experiment.

One of the important applications of the digital array is
absolute quantitation (14,15). The DNA molecules in each
mixture are randomly partitioned into the 765 chambers
of each panel. The chip is then thermocycled on
Fluidigm’s BioMark system and the positive chambers
that originally contained one or more molecules will gen-
erate fluorescent signals and can be counted by the Digital
PCR Analysis software. Since the volumes and dilution
factors of the DNA samples are known prior to loading
into the digital array, the DNA concentrations can be
accurately calculated. The precision of this test is only
dependent upon the sampling randomness and, like any
biological experiments, will improve with multiple tests
(panels). Digital array has been routinely used by us to
quantitate DNA samples of unknown concentration and,
especially, cDNA samples whose concentrations of the
sequences of interest are hard to determine otherwise.

Specific Target Amplification separates the linked
copies of a target gene

When duplication occurs, multiple copies of a gene might
be closely linked on the same chromosome and therefore
might not be separated from each other, even on the digital
array. As a result, multiple copies might behave as a single
molecule and the total number of copies of the gene would
be underestimated. When two copies are separated by a
large genomic distance, some of them might be separated
when DNA molecules are fragmented during purification.
However, in most cases this would not be sufficient (see
Table 2, sample NA11994 genomic DNA data). Specific
target amplification (STA) is a good solution to this prob-
lem. STA is a simple PCR reaction with primers for both
the reference gene and the gene of interest. It is typically
performed for a limited number of thermal cycles (five in
this study). The copy numbers of both genes are propor-
tionally increased. Using this process, multiple copies of the
gene of interest will be amplified separately and later ran-
domly partitioned into chambers in the digital array. Since
the newly generated molecules of both genes reflect the
original ratio and they are not linked any more, a digital
chip analysis can quantitate the molecules of the two genes
and measure their ratio, and therefore the copy number of
the gene of interest, very accurately (Figure 3). It is very
important that the amplification efficiencies of the two pairs
of primers be approximately equal in order not to introduce
any bias in the ratio of the two gene copy numbers in the
limited number of STA thermal cycles, although this is
likely to have an insignificant effect on our results since
we utilized only five cycles of preamplification. The ampli-
fication efficiency of any pair of primers can be easily mea-
sured using real-time PCR (18).

STA was performed on a GeneAmp PCR 9700 system
(Applied Biosystems, Foster City, CA) in a 5 ml reaction
containing 1�TaqMan PreAmp master mix (Applied
Biosystems, Foster City, CA), 225 nM of primers for
both RNase P and the target gene and 10–50 ng DNA.
Thermocycling conditions were 958C, 10min hot start
and five cycles of 958C for 15 s and 608C for 2min. The
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products were diluted prior to the copy number analysis
on the digital array based on their initial concentrations so
that there would be about 500–600 RNase P molecules
per panel.

Copy number analysis using the digital array on
the BioMark system

Each panel of a digital array contains a total of 4.59 ml
(6 nl� 765 chambers) PCR reaction mix. However, 10 ml
reaction mixes were normally prepared for each panel,
containing 1�TaqMan gene expression master mix
(Applied Biosystems, Foster City, CA), 1�RNase
P-VIC TaqMan assay, 1�TaqMan assay (900 nM pri-
mers and 200 nM probe) for the target gene, 1� sample
loading reagent (Fluidigm, South San Francisco, CA) and
DNA with about 1100–1300 copies of the RNase P gene.
The reaction mix was uniformly partitioned into the
765 reaction chambers of each panel and the digital
array was thermocycled on the BioMark system (http://
www.fluidigm.com/products/biomark-main.html). Ther-
mocycling conditions included a 958C, 10min hot start
followed by 40 cycles of two-step PCR: 15 s at 958C for
denaturing and 1min at 608C for annealing and extension.
Molecules of the two genes were independently amplified.
FAM and VIC signals of all chambers were recorded at
the end of each PCR cycle. After the reaction was com-
pleted, Digital PCR Analysis software (Fluidigm, South
San Francisco, CA) was used to process the data and
count the numbers of both FAM-positive chambers
(target gene) and VIC-positive chambers (RNase P) in
each panel.

Mathematical analysis of the digital array data

There are 765 chambers in each of the 12 panels in a
digital array. When single DNA molecules are randomly
partitioned into these chambers, it is possible that multiple
molecules could partition into the same chamber. As a
result there could be more molecules in each panel than
positive chambers. The true number of molecules per
chamber can be estimated using a simple Poisson distribu-
tion equation as described by Sindelka et al. (15). We have
developed a more robust computational algorithm to ana-
lyze CNV data obtained from the digital array. This algo-
rithm has been integrated into the Digital PCR Analysis
software and is detailed in (19).

RESULTS

Establishment of a CNVmodel system

A proof-of-principle spike-in experiment was performed
using a synthetic construct to explore the digital array’s
feasibility as a robust platform for the CNV study.
A 65-base oligonucleotide that is identical to a fragment
of the human RPP30 was ordered from Integrated DNA
Technologies (Coralville, IA, USA). RNase P, a single
copy gene, is used as reference in this study (20,21).

Both RPP30 synthetic construct and human genomic
DNA NA10860 from the Coriell Cell Repositories
(Camden, NJ, USA) were quantitated using the RPP30

assay on a digital array. Different amounts of RPP30 syn-
thetic construct were then spiked into the genomic DNA
so that mixtures with ratios of RPP30 and RNase P of 1 : 1
(no spike-in), 1 : 1.5, 1 : 2, 1 : 2.5, 1 : 3 and 1 : 3.5 were
made, simulating DNA samples containing two to seven
copies of the RPP30 gene.
These spike-in mixtures were analyzed on the digital

arrays. Five panels were used for each mixture and
400–500 RNase P molecules were present in each panel.
The ratios of RPP30/RNase P of all samples were calcu-
lated and are plotted against the expected ratios in
Figure 1. A good linear relationship can be observed.
Also shown in Figure 2 is an example of a typical digital
array experiment.

CNVs of the CYP2D6 gene

CYP2D6 belongs to the cytochrome P450 system respon-
sible for the metabolism of many commonly prescribed
medications (22,23). The CYP2D6 gene is highly poly-
morphic and this can significantly influence the metabolic
activity of the enzyme it codes for (debrisoquine 4-hydro-
xylase) and the therapeutic efficacy of the drugs. There-
fore, the pharmacogenetic polymorphism information of
this gene would be of great clinical importance in therapeu-
tic decision-making (24–27). More than 100 alleles of the
CYP2D6 gene have been identified (http://www.cypalleles.
ki.se/cyp2d6.htm). Allele-associated variations in the activ-
ity of the CYP2D6 enzyme have been observed and indivi-
duals carrying these alleles are classified into poor,
intermediate, extensive and ultrarapid metabolizers
(28,29).
Genotyping patients would be able to identify those who

are at risk of severe toxic responses (poor metabolizer) or in
need of more than standard level of drugs (ultra rapid
metabolizer). It has been shown that some poor metaboli-
zers and ultra rapid metabolizers are caused by the deletion
or duplication of the entire CYP2D6 gene (30,31).
These large structural changes can be detected using con-

ventional technologies such as Southern blot and long-
range PCR. However, it is believed that real-time PCR is
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Figure 1. Quantitation of the RPP30 copy number in spike-in samples
that contain two to seven copies of the RPP30 molecules per two haploid
genomes. The x-axis shows the expected ratio of the numbers of RPP30
molecules to RNase P molecules. The y-axis shows the observed ratios.
Each value is calculated using five panels of the same sample mix and the
error bars represent standard errors. A good linear correlation can be seen
with a coefficient of determination (R2) of 0.996.
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currently the only promising technique that is able to pro-
vide information about the exact copy number of the
CYP2D6 gene in a routine clinical setting (32–34).
We used the digital array to measure the CYP2D6 copy

numbers of three DNA samples from ParagonDX
(Morrisville, NC). The CYP2D6 genotypes of these DNA
samples had been characterized (Table 1). The samples
were STA-treated (see Figure 3 andMaterials and methods
section) and the products were analyzed using five panels
each on the digital arrays. The relative copy numbers of
these three samples are 0, 0.49 and 0.98, respectively, highly
consistent with their assumed CYP2D6 diploid copy num-
bers (0, 1 and 2) based upon their genotypes.
We also studied five cell line DNA samples from Coriell

Cell Repositories (Camden, NJ). First, we measured their
relative copy numbers using genomic DNA. The results
showed that two of them have a single copy and two have
two copies of the CYP2D6 gene per cell (Table 2). One
sample had a relative copy number of about 1.17, equal to
a diploid copy number of 2.34. We then STA-treated these
five samples and ran the products on digital arrays. The
relative copy numbers of the 1- and 2-copy samples
remained the same and the fifth sample showed a relative
copy number of about 1.5 or a diploid copy number of 3.
Apparently this sample had a duplication of the CYP2D6
gene on one of the two chromosomes (35). It has been

previously demonstrated (31,36) that when CYP2D6 dup-
lication occurs, the two copies are separated by 12.1 kb.
Therefore, the diploid copy number of 2.34 obtained when
genomic DNA was used is likely the result of DNA break-
age in this 12.1 kb genomic region in some DNA mole-
cules that separated the two CYP2D6 copies. To confirm
this, we ran a long range PCR [see (31) for primers
and PCR conditions]. An extra band characteristic of

(a) (b) (c)

Figure 2. Five panels of each of the 6- and 7-copy mixtures were analyzed in this digital array for the RPP30 gene (FAM TaqMan assay) and the
RNase P gene (VIC TaqMan assay). The RPP30/RNase P ratio of each panel was calculated using the numbers of molecules of the two genes in that
panel. The two bottom panels were NTC (no template control). (a) and (b) the VIC (RNase P) and FAM (RPP30) images of the same digital array
taken at the end of the PCR reaction, (c) the software-generated composite heat map showing the chambers with positive signals for either or both
genes, each labeled with a different fluorescent dye (red for VIC and yellow for FAM). The Digital PCR Analysis software is able to count the
number of positive chambers for each gene and calculate the RPP30 to RNase P ratio and its 95% CI (19).

Table 1. CYP2D6 genotypes and relative copy numbers of three DNA

samples of known CYP2D6 genotypes

Genotype CYP2D6/RNASE P (SE)

CYP2D6 �5/�5 0.00 (0.00)
CYP2D6 �1/�5 0.49 (0.03)
CYP2D6 �1A/�1A 0.98 (0.05)

�1 and �1A are both CYP2D6 wild-type alleles and �5 is the deletion
of the entire gene. �1 is a new allele characterized and defined
by ParagonDx (Morrisville, NC). Contact ParagonDx for more details.

Reference
gene

Target gene
(multiple copies)

STA

Results

Figure 3. STA separates linked copies of the target gene on the same
chromosome.
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CYP2D6 duplication was observed only in the sample
with a relative copy number of 1.5 (Figure 4).

CNVs of the ERBB2 gene in breast cancer and
normal samples

ERBB2 (also known as HER2) is a receptor tyrosine kinase
gene overexpressed in up to 30% of invasive breast cancer,
resulting in a loss of normal cellular growth control. Most
of these cases (97%) are caused by the amplification of this
gene and the number of extra copies is closely related to the
protein expression level (37–40).

ERBB2 amplification is well correlated with an aggres-
sive phenotype characterized by reduced response to che-
motherapy, high recurrence rate and short survival time
and serves as a significant prognostic predictor for breast
cancer patients (37,41). Trastuzumab (Herceptin), an
FDA-approved monoclonal antibody against the ERBB2
protein, has been shown to dramatically increase response
rate and extend survival in breast cancer patients with
ERBB2 amplification. Given Trastuzumab’s proven

efficacy and substantial benefit in multiple clinical trials,
detection of ERBB2 amplification has become critical
(42–45).
There are different methodologies of determining the

ERBB2 status in breast cancer. Immunohistochemistry
(IHC) and fluorescence in situ hybridization (FISH) are
two FDA-approved technologies for the detection of
ERBB2 amplification. The former detects overexpression
of the ERBB2 receptor on the cell membrane while the
latter detects the copy number of the gene itself relative
to the chromosome 17 centromere.
IHC is less expensive and easy to perform but is prone to

a high rate of inaccuracies due to variations in tissue pre-
paration, protein stability, antibody sensitivity and scoring
subjectivity. On the other hand, FISH is accurate with good
clinical correlation but it is expensive, time consuming, and
labor intensive and requires very experienced personnel.
Therefore, suggestions have been made to use a combina-
tion of IHC and FISH, where IHC is used as a screening
procedure followed by a FISH confirmation if necessary
(46,47).
We used digital arrays to analyze the ERBB2 copy num-

bers of 40 breast cancer and 8 normal breast tissue DNA
samples from BioChain (Hayward, CA). All DNA sam-
ples were from Asian individuals except one normal
sample that was from a Caucasian. Of the 40 breast
cancer samples, 3 are adenocarcinoma, 1 is fibroadenoma,
2 are invasive lobular carcinoma, 1 is infiltrative ductal
carcinoma and 33 are invasive ductal carcinoma. The sam-
ples were STA-treated and, for screening purpose, the
products were analyzed using only two panels for each
sample on digital arrays. The results are shown in
Figure 5. Fourteen breast cancer samples (35%) had a
diploid ERBB2 copy number of more than five while all
control samples were below five copies [an absolute
number of ERBB2 copies greater than 4.0 per cell is con-
sidered amplification in FISH analysis (47). Here we use
five as the threshold]. The copy numbers shown are not all
integers due to (i) heterogeneity of the cancer cells and (ii)
sampling variations as only two panels were used for each
sample.
A real-time PCR reaction was also performed on these

48 samples. Twenty-four replicates were used for each
sample. Although the average copy numbers were close
to the digital array data, large fluctuations (SDs of up to
0.5) were observed in the 24 reactions of each sample.
Studies on other genes (for example, CYP2D6) showed
that real-time PCR does not always produce accurate
results (data not shown).

DISCUSSION

Genomewide analyses have shown the existence of large
numbers of CNVs in the entire human genome with large
interindividual diversity (48–53). Many of these CNVs co-
localize with genes involved in a variety of diseases or
disease susceptibility and are believed to play some role
in pathogenesis (54–57). The first Mendelian disorder
associated with the amplification of a 750 kb DNA frag-
ment was reported recently (54). It appears to only be a

Table 2. CYP2D6 relative copy numbers of 5 Coriell DNA samples

Genomic DNA (SE) STA Product (SE)

NA12155 0.50 (0.02) 0.53 (0.01)
NA12873 0.54 (0.03) 0.48 (0.03)
NA07357 1.01 (0.05) 0.98 (0.10)
NA12872 0.95 (0.06) 0.97 (0.03)
NA11994 1.17 (0.06) 1.51 (0.07)

The results of both genomic DNA and STA products are shown.
The ratios of the CYP2D6 gene to the RNase P gene should be close
to multiples of 0.5. The genomic ratio of 1.17 for sample NA11994
(corresponding to a diploid copy number of 2.34) reflects the partial
separation of the duplication alleles in the genomic DNA. A ratio of
1.51 (diploid copy number of 3) was obtained when the sample was
subjected to STA prior to the digital PCR analysis.

CYP2D7

5.2 KB

CYP2D6

CYP2D7

5.2 KB

CYP2D6
(Duplicate)

CYP2D6

3.6 KB

DNA 
Ladder (bp) 1 2 3 4 5 NTC

(a)

(b)

Figure 4. Long-range PCR assay confirms the digital array findings.
A long-range PCR reaction was performed on the five Coriell DNA
samples for the detection of the CYP2D6 duplication allele and the
PCR products were analyzed using the Agilent 2100 Bioanalyzer
(Santa Clara, CA). (a) The left PCR primer can anneal to both the
CYP2D6 gene and CYP2D7, a pseudogene. A 5.2-kb fragment from
the CYP2D7–CYP2D6 intergenic region should be obtained from every
sample. An extra 3.6-kb PCR product can also be observed in indi-
viduals with CYP2D6 duplication. (b) Lanes 1–5: PCR products of
samples NA12155, NA12873, NA07357, NA12872 and NA11994,
respectively. NTC: no template control. The results show that
NA11994 has a duplication of the CYP2D6 gene.
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question of time before more genetic conditions related to
CNV are identified.
Two standard genomewide scanning methods for CNV

detection are array-based CGH and high-density SNP
genotyping arrays and both were employed in the con-
struction of the first human CNV map (58). These micro-
array techniques are able to generate whole-genome CNV
data and are important in CNV discovery. Their resolu-
tion is also improving with the development of new
probes. However, since they are both based on hybridiza-
tion, the detection of copy number changes largely
depends on signal-to-noise ratio, which is sensitive to
reagent and manufacturing variability. Therefore, false
positive and false negative results are sometimes inevitable
(59). Additionally, the lack of standard reference genomes
in the studies using these technologies further complicates
the interpretation of the results (60).
On many occasions, gene- or locus-specific (other than

the whole genome) copy number information is required.
This is especially true in the cases of CYP2D6 and ERBB2
described above in which therapeutic decision needs to be
made based upon the copy numbers of these genes. In
addition to other conventional methods (Southern blot,
long-range PCR and FISH), the possibility of using quan-
titative PCR in the CNV study of these two genes has been
previously explored (61–65).
Quantitative PCR is simple and easy to perform.

However, since the copy number of the target gene is
derived from the Ct difference between the target gene
and a reference gene, the results are very sensitive to the
efficiency of the amplification reaction. Even if one com-
pensates for the amplification efficiency, it is considered
difficult to obtain a discrimination power of better than
twofold (66).

The digital array has the ability to absolutely quan-
titate any type of DNA sample. In a multiplex PCR reac-
tion with two assays, the quantitation of two or more
genes/sequences in a single sample becomes possible, effec-
tively eliminating pipetting variations inherently occurring
in any quantitation experiment. The accuracy of the
results is only subject to the random distribution of the
molecules and, like any biological experiments, can
improve with the use of multiple replicates for each
sample. STA can efficiently separate the linked copies of
a gene on the same chromosome when duplication occurs
while other methods, such as restriction digestion are also
valid (data not shown).

We performed three experiments to test the feasibility of
the digital array in the CNV study. First we measured the
copy numbers of the RPP30 gene of a series of mixtures
made of a human genomic DNA and a synthetic RPP30
construct. We observed a very good correlation between
the results and the expected outcome. We then studied the
CYP2D6 copy numbers of some DNA samples that were
either genotyped elsewhere or characterized by us using
conventional techniques. The results were also consistent.
Lastly, we screened 40 breast cancer samples for the amp-
lification of the ERBB2 gene. Although the clinical data
(other than pathological classification) of these samples
were lacking, about 35% of the samples had an increased
number of this gene above 5, very close to the ERBB2
amplification frequency reported in the literature (67).

In conclusion, this study shows that the digital array
provides a new and robust technology to study gene-
and sequence-specific CNV and is able to detect gene
copy numbers with great accuracy. Digital arrays provide
a much greater discrimination power than quantitative
PCR. CNV studies on the digital array are easy to per-
form, fast and the data obtained is easy to interpret.
Furthermore, the platform is very flexible and can be tai-
lored to any gene/sequence. It can also serve as an inde-
pendent measure to verify results from the whole-genome
scans using array technologies. The digital array is an
excellent CNV platform for both basic research and clin-
ical investigation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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