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A B S T R A C T   

Background: Aneurysmal subarachnoid hemorrhage (aSAH) is a common hemorrhagic condition frequently 
encountered in the emergency department, which is characterized by high mortality and disability rates. 
However, the precise molecular mechanisms underlying the rupture of an aneurysm are still not fully under-
stood. The primary objective of this study is to elucidate the fundamental molecular mechanisms underlying 
aSAH and provide novel therapeutic targets for the treatment of aSAH. 
Methods: The gene expression matrix of aSAH was downloaded from the Gene Expression Omnibus (GEO) 
database. In this study, we employed weighted gene co-expression network analysis (WGCNA) and differential 
gene expression analysis (DEGs) screening to identify crucial modules and genes associated with aSAH. 
Furthermore, the evaluation of immune cell infiltration was conducted through the utilization of the single- 
sample gene set enrichment analysis (ssGSEA) technique and the CIBERSORT algorithm. The study utilized 
Gene Set Variation Analysis (GSVA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) to investigate and comprehend the fundamental biological pathways and mechanisms. 
Results: Using WGCNA, six gene co-expression modules were constructed. Among the identified modules, the 
yellow module, which encompasses 184 genes, demonstrated the most significant correlation with aSAH. 
Consequently, it was determined to be the central module responsible for governing the pathogenesis of aSAH. 
Additionally, the application of WGCNA, LASSO regression, and multiple factor logistic regression analysis 
revealed ARHGAP26 and SLMAP as the key genes associated with aSAH. Furthermore, the diagnostic efficacy of 
these pivotal genes in aSAH was confirmed through the use of receiver operating characteristic (ROC) curve 
analysis, validating their discriminative potential. Moreover, the utilization of GO and KEGG pathway analysis 
revealed a significant enrichment of inflammation-related signaling in aSAH. 
Conclusion: The genes ARHGAP26 and SLMAP were identified as significant predictors of aSAH. Accordingly, 
these genes demonstrate significant potential to function as novel biological markers and therapeutic targets for 
aSAH.   

1. Introduction 

Subarachnoid hemorrhage (SAH) refers to a collection of clinical 
symptoms that result from the extravasation of blood into the sub-
arachnoid space due to the rupture of cerebral vasculature, precipitated 
by diverse etiologies. This particular condition is a widely observed and 
crucial medical emergency that carries substantial implications for the 
outcomes of patients. The occurrence of SAH varies by region and 
ethnicity. Based on existing literature, it has been reported that the 

annual incidence of SAH ranges from 1 to 27 cases per 100,000 in-
dividuals [1,2]. In addition, its incidence accounts for 5–10 % of all 
strokes [1,2]. SAH is a destructive subtype of stroke, With the majority 
of cases being attributed to the rupture of intracranial aneurysms (IAs), 
aneurysmal subarachnoid hemorrhage (aSAH) results in various physi-
ological consequences, including elevated intracranial pressure, reduced 
cerebral blood flow, and diminished cerebral perfusion pressure [3]. 
aSAH is associated with a considerable mortality and disability rate, as 
evidenced by an estimated 46 % of individuals who survive the 
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condition encountering irreversible neurological impairment [4]. 
The pathogenesis of aneurysmal subarachnoid hemorrhage (aSAH) is 

a multifactorial and intricate process involving several underlying 
mechanisms. These mechanisms encompass intricate interplays of 
various factors, including inflammatory responses, aberrant vascular 
contractility, microthrombus formation, cellular ischemia and hypoxia, 
brain cell damage, and genetic modulation of gene expression. Pertur-
bations in cerebral arterial hemodynamics can incite endothelial cell 
inflammation, while a sustained and excessive inflammatory response 
within the vascular wall can contribute to the development and subse-
quent rupture of intracranial aneurysms, ultimately leading to sub-
arachnoid hemorrhage [5,6]. The induction of aSAH is facilitated by 
various cellular components, viz. macrophages, lymphocytes, mast cells, 
and neutrophils, which initiate a series of signal transduction pathways 
[7]. In recent years, there has been a shift in research emphasis within 
the field of aneurysms, with a greater focus on investigating the mech-
anisms underlying the formation of intracranial aneurysms. Conversely, 
comparatively less attention has been directed towards studying the 
subarachnoid hemorrhage resulting from the rupture of aneurysms. 
Aneurysmal subarachnoid hemorrhage is a perilous condition charac-
terized by a complex pathogenesis that encompasses multiple biological 
processes. In recent years, increasing number of studies have demon-
strated that the immune system plays a significant role in the develop-
ment and progression of aneurysmal subarachnoid hemorrhage [8]. The 
use of machine learning approaches for the identification of 
immune-related biological markers shows great potential as a promising 
avenue for research. By analyzing data obtained from a large cohort of 
patients and healthy individuals, immune markers related to aSAH can 
be identified. Consequently, a predictive model can be established for 
the early diagnosis and treatment of patients afflicted with aSAH. 

The present study reports the screening of intracranial aneurysm 
rupture-induced subarachnoid hemorrhage dataset in the GEO database. 
Through the integration of biological information, analytical tech-
niques, and machine learning, we conducted an extensive investigation 
into the key genes associated with aSAH. This study, therefore, holds 
significant implications for monitoring the progression of aSAH pre-
dicting disease prognosis, and the identification of novel genetic targets 
for the diagnosis and treatment of aSAH. 

2. Materials and methods 

2.1. Data collection and preparation 

The datasets GSE13353, GSE54083, were obtained from the Gene 
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih. 
gov/geo). Detailed specifications and characteristics of the datasets 
utilized in this study can be found in Table 1, offering comprehensive 
information on each dataset. 

2.2. Differential gene analysis 

The merge () function in the R programming language was employed 
to integrate the GSE13353 and GSE54083 datasets. Ensuring data con-
sistency necessitates the matching of experimental design and sample 
information. Following this, differential gene screening was conducted 
using the limma package in the R programming language, which facil-
itates the computation of P-values and fold changes in gene expression. 
The screening criteria utilized in this study consisted of logFC >1 and 
adjusted P-value <0.05. The volcano plot and heat map of differentially 

expressed genes were generated using the ggplot2 and Heatmap pack-
ages in the R programming language. 

2.3. Screening for key modules by weighted gene co-expression network 
analysis (WGCNA) 

The gene co-expression network was constructed using the WGCNA 
package in the R language. An appropriate soft threshold was selected to 
ensure that the resulting co-expression network adheres to the proper-
ties of a scale-free network. Utilizing the designated soft threshold, the 
gene co-expression network was established, followed by its analysis 
through the implementation of the “blockwiseModules” function. Sub-
sequently, the dynamic cut method was employed to partition the 
modules, and the resulting network was visualized via a hierarchical 
clustering tree. The WGCNA algorithm was employed to calculate the 
gene module connectivity and determine the hub genes within each 
module exhibiting the greatest module connectivity. The modules that 
exhibited a significant correlation with the phenotype were selected, 
followed by a screening of the genes within these modules. Subse-
quently, the identification of the crucial genes associated with the 
phenotype was conducted. A comprehensive biological annotation and 
functional analysis of the selected genes was subsequently performed. 
Through the correlation of gene modules with clinical information on 
aSAH, this study aimed to ascertain the modules associated with aSAH 
based on the module-phenotype correlation, and identify the disease- 
associated genes in these modules. 

2.4. Screening of aSAH characteristic genes 

The least absolute shrinkage and selection operator (LASSO) 
regression method was utilized to screen for key genes that were 
potentially associated with the rupture of aSAH. The data was analyzed 
using the glmnet package in the R programming language to construct a 
LASSO regression model. The LASSO regression and cross-validation 
graphs were subsequently generated, resulting in the identification of 
the selected feature genes as the output. 

2.5. Receiver operating characteristic (ROC) curve analysis 

The ROC curve was generated based on the selected gene expression 
data and the corresponding sample status using the “proc” package 
within the R software. The weight of each gene was determined using 
the entropy weighting method, and the ROC curve of four key genes was 
plotted. The diagnostic efficacy of these four genes for aSAH was 
assessed by utilizing the area under the receiver operating characteristic 
curve (AUC). Subsequently, we identified genes that exhibited statistical 
significance (P < 0.05) from a set of highly connected genes (referred to 
as HUB genes. Additionally, we used a nodal diagram to predict the 
likelihood of aSAH occurrence. 

2.6. Enrichment analysis of GO function, KEGG pathway 

Gene enrichment pathway maps were plotted to visually represent 
the enrichment of differentially expressed genes within biological 
pathways. The R software (version) was utilized for conducting GO 
functional analysis, KEGG pathway enrichment analysis, and GSEA. The 
org.Hs.eg.db package (version) was employed for the purpose of ID 
conversion. Similarly, the clusterProfiler package (version) was utilized 
for conducting enrichment analysis. Finally, the ggplot2 package 
(version) was employed for the purpose of visualization. The selection of 
the primary enriched functions and pathways of differential genes was 
based on a threshold of a corrected P-value <0.05 for conducting GO 
functional analysis and KEGG pathway enrichment analysis. 

Table 1 
The information of all the datasets in the study.  

Datasets Platform Treat Case Sample Size 

GSE13353 GPL570 11 19 
GSE54083 GPL4133 8 23  
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2.7. Protein-protein interaction (PPI) network analysis 

The utilization of a PPI network can facilitate the identification of 
hub genes within the differentially expressed genes (DEGs) of aSAH 
patients. Accordingly, the PPI information of DEGs was obtained from 
the Search Tool for the Retrieval of Interacting Genes (STRING) data-
base. Subsequently, Cytoscape (v3.7.1) was used for the construction of 
PPI network. 

2.8. Immunoinfiltration analysis 

The single-sample gene set enrichment analysis (ssGSEA) method 
initially assigns ranks to the expression levels of all genes in the sample, 
thereby determining their relative positions among all genes. Subse-
quently, the input gene set was queried within the expression data to 
identify and quantify the presence of corresponding genes, followed by 
the aggregation of their expression levels. Subsequently, the enrichment 
score for each gene in the pathway was calculated using the aforemen-
tioned values. Additionally, the gene order was shuffled and the 
enrichment score was recalculated 1000 times. Finally, the integration 
of the gene set’s ultimate enrichment score was achieved by calculating 
the p-value based on the distribution of gene enrichment scores. 

We also used correlation analysis to examine the relationship 

between gene expression levels and immune cell content. When the p- 
value of the correlation test was below 0.05, it indicated the presence of 
a correlation between the expression of the target gene and the content 
of immune cells. 

Additionally, a heatmap of relative immune cell content was gener-
ated to visualize the relative content of each immune cell across various 
samples. Moreover, by plotting a boxplot of relative immune cell con-
tent, we compared the differences in immune cell content across various 
samples. Finally, we generated a scatter plot of relative immune cell 
content to visually represent the correlation between immune cell con-
tent and phenotype. 

3. Result 

3.1. WGCNA 

The merged dataset was analyzed using the WGCNA network.A 
suitable soft threshold was selected in order to create a scale-free 
network, wherein the gene expression patterns above the soft 
threshold exhibited similarity. The clustering results obtained from the 
sample in this study demonstrated that by setting the soft threshold to 7, 
the co-expression network successfully adhered to the principles of 
scale-free topology, thereby fulfilling the predetermined criteria for the 

Fig. 1. Soft threshold screening. (A, B) Scale independence and mean connectivity analysis. (C) Histogram of the connectivity distribution. (D) Verification of the 
scale-free topology. 
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selected power value (Fig. 1A–D). A hierarchical clustering tree was 
generated using a power value of 7, resulting in the identification of 6 
distinct modules with a merge threshold of 0.25 (Fig. 2A–D). Out of all 
the modules examined, it was observed that the yellow module, which 
consisted of 184 genes, exhibited the highest GS. This finding suggests a 
robust correlation with aSAH along with notable disease progression 
(Fig. 2D). 

3.2. Functional enrichment analysis 

The genes within the yellow module were utilized for GO analysis 
and KEGG pathway enrichment analysis in order to investigate the po-
tential biological processes linked to aSAH. The enrichment analysis 
conducted for GO-biological processes (GO-BP) revealed a statistically 
significant enrichment of genes associated with inflammatory responses, 
among other processes (Fig. 3A). The GO-cellular component (GO-CC) 
enrichment analysis revealed the participation of genes associated with 
focal adhesion, cell-substrate junction, and various other cellular com-
ponents (Fig. 3B). The GO-molecular function (GO-MF) enrichment 
analysis revealed a notable enrichment of genes associated with insulin- 
like growth factor binding, extracellular matrix structural constituent, 
and various other molecular functions (Fig. 3C). The KEGG pathway 
analysis revealed a notable enrichment of genes associated with the C- 
type lectin receptor signaling pathway (Fig. 3D). 

3.3. Screening key genes 

Through the process of gene intersection, a total of 23 genes were 
identified (Fig. 4A). As a result, 23 genes were obtained for subsequent 
model building (Fig. 4B).The relative regression coefficients of 23 genes 
were calculated using LASSO regression analysis. Among them, four 

genes, namely ARHGAP26, SLMAP, PCYOX1, and PHF14, were identi-
fied as the final selection for establishing the LASSO regression model. 
These genes demonstrated significant associations with the studied 
variables and exhibited the strongest predictive power in the model.The 
LASSO regression path can be observed in Fig. 4C. 

3.4. Expression and verification of key genes 

In cases of aneurysmal subarachnoid hemorrhage (aSAH), the 
expression of ARHGAP26 was found to be downregulated, while SLMAP, 
PCYOX1, and PHF14 showed upregulation. These differential expression 
patterns exhibited statistical significance, as evidenced by a highly sig-
nificant P-value of＜0.001 (Fig. 5A–D). These findings suggest that these 
genes may play crucial roles in the pathogenesis or progression of aSAH 
and could potentially serve as biomarkers or therapeutic targets for this 
condition. 

3.5. Survival analysis of key genes 

To evaluate the predictive performance of the model in predicting 
aSAH, we conducted receiver operating characteristic (ROC) curve 
analysis. (area under the model’s ROC curve = 0.908), and a nomogram 
was employed to predict the occurrence of aSAH (Fig. 6 A, B). The AUC 
for both the ARHGAP26 and SLMAP genes exceeded 0.8, suggesting that 
they possess considerable diagnostic potential for aSAH (Fig. 6C). 

3.6. Immune infiltration score and correlation analysis 

The SSGSEA enrichment scores of various immune cell sub-
populations, associated functions, and pathways were measured in in-
dividuals with ruptured and unruptured intracranial aneurysms. The 

Fig. 2. Weighted correlation network analysis (WGCNA) of samples. (A) Cluster dendrogram among modules. (B) Module-trait relationships. The darker the module 
color, the more significant their relationship.(C) Distribution of average gene significance and errors in the modules associated with aSAH status. (D) A scatter plot of 
the GS for aSAH versus the MM in the yellow. module. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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Fig. 3. Functional enrichment analysis of aSAH-related genes. A. Enrichment analysis of GO-biological processes (GO-BP). B. Enrichment analysis of GO-cellular 
component (GO-CC). C. Enrichment analysis of GO-molecular function (GO-MF). D. KEGG pathway analysis. 

Fig. 4. Screening of key genes. A Venn diagram. B The logistic regression model for the training set was conducted to identify an optimum linear combination in 
predicting responsiveness. C Cross-Validation Fit Plot. 
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Fig. 5. Expression of differential genes in aSAH and control groups. ns P > 0.05; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.0001.  

Fig. 6. Survival analysis of key genes A. Nomogram predicting for aSAH patients; B. Calibration curves for nomogram predicted aSAH patients; C. ROC curve analysis 
show highest AUC value was seen for the nomogram mode. 
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correlation heatmap depicting the relationships among the 29 types of 
immune signatures demonstrated significant positive correlations be-
tween Type 1 T helper cell (Th1 cell), Activated dendritic cell (DC), 
Macrophage cell and etc (Fig. 7A).The abundance of immune cells and 
immune functions in each sample is shown in a heatmap (Fig. 7B). 

4. Discussion 

The occurrence of a ruptured intracranial aneurysm resulting in SAH 
is a prevalent cerebrovascular ailment, necessitating surgical interven-
tion as the sole viable treatment approach. However, it is worth noting 
that a significant number of patients frequently experience profound 
neurological complications that have a substantial detrimental effect on 
their overall quality of life [9]. The present diagnostic modality 
employed for SAH is CT scan, which exhibits a sensitivity ranging from 
approximately 93%–100 % during the initial 6 h following the onset of 
clinical symptoms. DSA is considered the preferred diagnostic method 
for determining the cause and planning the surgical approach for SAH. 
However, CT angiography (CTA) can serve as a viable alternative for 
monitoring purposes, with a combined sensitivity of 97 % and specificity 
of 91 % [10,11]. SAH exhibits complex pathological and physiological 

processes. Previous studies have identified various potential mecha-
nisms underlying SAH, including neuroinflammation, microthrombus 
formation, cortical spreading depolarization, disruption of the 
blood-brain barrier, microvascular dysfunction, sympathetic-adrenal 
activation, and dysfunction of endothelial cells [12,13]. This study 
aimed to identify the characteristic genes associated with SAH, inves-
tigate their biological functions and expression levels, construct ROC 
curves for these genes, and perform immune cell infiltration analysis to 
contribute to the prediction and treatment of aSAH. 

The present study involved the integration of two datasets, namely 
GSE13353 and GSE54083, for the purpose of identifying genes that 
exhibit differential expression. Through this analysis, a total of 132 
genes were identified as differentially expressed, comprising 63 genes 
that were up-regulated and 69 genes that were down-regulated. We 
generated weighted gene co-expression networks for both ruptured and 
unruptured intracranial aneurysms, resulting in the identification of six 
distinct gene modules. Through the process of intersecting the genes, a 
total of 23 genes were identified. Subsequent LASSO regression analysis 
has identified ARHGAP26, SLMAP, PCYOX1, and PHF14 as key genes 
associated with ruptured intracranial aneurysms that result in sub-
arachnoid hemorrhage. This study employed single-factor and multiple- 

Fig. 7. Immune correlation analysis A. Landscape evaluation of 29 types of immune signatures in two subgroups of aSAH samples. B. The Violin diagram showed the 
difference of immune infiltration between aSAH and Con groups. The aSAH group was marked as blue, and the Con group was marked as red (p < 0.05 was regarded 
as statistical significance). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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factor logistic regression analysis to ascertain the significance of ARH-
GAP26 and SLMAP as pivotal genes in the prediction of aSAH. The 
predictive value of ARHGAP26 for subarachnoid hemorrhage was found 
to be statistically significant (AUC: 0.888, 95 % CI: 0.767–0.975). The 
ARHGAP26 gene, alternatively referred to as the GRAF gene, is 
responsible for the synthesis of a protein that functions as a modulator of 
small GTP-binding proteins within the Rho family and can bind to 
protein tyrosine kinases [14,15]. Previous studies have demonstrated 
that the ARHGAP26 gene exerts significant regulatory influence on the 
advancement of various diseases, including leukemia, brain tumors, 
gastric cancer, and ovarian cancer [14,16–19]. Additionally, this gene 
has been implicated in the development of progressive muscle degen-
eration, intellectual disability, and neuro-psychiatric disorders. Ac-
cording to a study conducted by Kesheng Wang [14], it was discovered 
that the ARHGAP26 gene has a significant regulatory function in the 
progression of Alzheimer’s disease, as well as cardiovascular and cere-
brovascular diseases. The sarcolemmal membrane-associated protein 
(SLMAP) is a member of the tail-anchored membrane protein family and 
is generally downregulated in individuals diagnosed with dilated car-
diomyopathy and heart failure [20]. The present study observed a 
decrease in SLMAP expression in individuals diagnosed with SAH 
resulting from ruptured intracranial aneurysms. Furthermore, it was 
determined that SLMAP expression exhibited some predictive capability 
for the occurrence of aSAH (AUC: 0.860, 95%CI: 0.732–0.961). The line 
chart depicted a cumulative score of 160 points. Notably, when the 
cumulative score surpassed 130 points, the predictive value for the risk 
of aSAH exceeded 90 %. This value was found to be significantly higher 
than the AUC values observed in other models utilizing single indicators. 
The findings of this study indicate that the developed aSAH risk pre-
diction model exhibited a high level of accuracy and demonstrated 
significant clinical applicability. 

Several studies have demonstrated that immune and inflammatory 
responses are significant factors in the pathogenesis of SAH resulting 
from ruptured intracranial aneurysms [21]. When an intracranial 
aneurysm ruptures, blood accumulates in the subarachnoid space [22]. 
Subsequently, neutrophils and macrophages phagocytose the byprod-
ucts resulting from the degradation of red blood cells, which triggers a 
cascade of inflammatory response cells at different levels. The enrich-
ment analysis of GO and KEGG pathways conducted on the differentially 
expressed genes in the context of aSAH revealed that the primary bio-
logical processes involved are cell cycle regulation, cell proliferation, 
cell adhesion, and promoter binding. Numerous studies have demon-
strated that intracranial aneurysm is primarily attributed to apoptosis 
and proliferation of endothelial cells and smooth muscle cells, along 
with immune cell infiltration [23,24]. The initiation of innate immunity 
is facilitated by immune receptors. Recent research has revealed that the 
C-type lectin receptor (Mincle) induced by microglia can sense the 
subunit SAP13 of the histone deacetylase of dead cells by binding. 
Following stimulation, the activation of Mincle and its downstream 
molecule spleen tyrosine kinase (Syk) can initiate signaling pathways 
that lead to the production of inflammatory cytokines, consequently 
facilitating the recruitment of neutrophils [25–27]. In their study, Xie 
et al. [28], discovered that microglia macrophages trigger the innate 
immune response of microglia following SAH through the activation of 
the C-type lectin receptor known as Mincle. This process was identified 
as a crucial early event in the development of brain injury subsequent to 
SAH. The present study has identified that the signaling pathway 
mediated by C-type lectin receptors plays a significant role in the 
pathogenesis of aSAH, as evidenced by the results of enrichment anal-
ysis. Additionally, the immune system plays a significant role in the 
initiation and progression of acute inflammation, which can be triggered 
by microbial infection or tissue damage. Moreover, our investigation 
revealed that B cells, neutrophils, and CD8+ T lymphocytes constitute 
the principal immune cell types in the context of ssGSEA. 

To conclude, the present study has successfully identified two crucial 
genes associated with aSAH, specifically ARHGAP26 and SLMAP. 

Furthermore, our findings suggest that these genes potentially modulate 
immune cell infiltration as a mechanism of action. The present study, 
thus, offers novel perspectives that can inform future investigations into 
the pathogenesis of aSAH.Nevertheless, we acknowledge the limitations 
of our study, as it relied on a secondary analysis of previously published 
data. Although our findings offer valuable insights, the reliability and 
robustness of the present study could be enhanced through additional 
validation using in vivo and in vitro experiments. Such experimental 
validation would bolster the confidence in our results and provide a 
more comprehensive elucidation of the underlying biological 
mechanisms. 
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