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Abstract
Background: Most individuals with mild traumatic brain injury (mTBI) experience post-injury deficits in 

postural control. Currently available measures of postural control are lab-based or supervised, which may hinder 
timely symptom assessment for individuals with mTBI, including Asian populations, who do not seek initial 
screening post-injury. In this proof-of-concept testing study, we introduce a real-time mobile health (mHealth) system 
to measure postural control during walking. The proposed mHealth system can be used for home-based symptom 
assessment and management of mTBI.

Methods: In our proposed mHealth system, a smartwatch, a smartphone, and a cloud server communicate to 
measure, collect, and store body balance data in real time. Specifically, we focus on the rotation vector data that have 
been reported to be the most effective in terms of differentiating balance control during walking across different participants.

Results: Constant motion change in four participants (two females and two males; three healthy participants, 
and one individual with reduced physical mobility) was collected and analyzed. The results of our data analysis 
show that, compared to healthy participants, the individual was reduced physical mobility had a wider range of 
motion between right and left, up and down, and forward and backward while walking. We also found that female 
participants had narrower ranges of right-to-left and up-and-down motions than their male counterparts.

Conclusions: Our results highlight the potential of the proposed real-time mHealth system for home-based 
symptom assessment and management of mTBI, which may benefit Asian and other nonwhite racial minority groups 
that appear to be more reluctant to access post-acute rehabilitation services.
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The past decade has witnessed a rapid 
increase in the use of wearable mobile sensors in 
home-based patient monitoring (Kumar et al., 2013; 
Patrick, Griswold, Raab, & Intille, 2008). This system 
mostly benefits individuals who do not seek or have 
access to, or even ignore necessary medical screening 
following an injury, such as mild traumatic brain 
injury (mTBI). Despite being termed “mild,” mTBI 
produces several persistent functional impairments, 
such as deficits in postural control (Degani et al., 
2017), in up to 80% of cases (Katz, White, Alexander, 
& Klein, 2004; Valovich McLeod & Hale, 2015). 
Among individuals who avoid necessary medical 
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screening after mTBI, Asian Americans appear to be 
particularly reluctant to seek rehabilitation services 
(Dams-O’Connor et al., 2013; McQuistion et al., 
2016). In addition, young adults, such as student 
athletes or active military service members and 
veterans, typically consider the mTBI diagnosis to be 
a stigma and/or a hindrance to their return to play or 
duty and, for that reason, tend to avoid screening 
(Iverson & Lange, 2011; Peskind, Brody, Cernak, 
McKee, & Ruff, 2013). Some individuals may also 
refuse to admit having problems after an mTBI 
(Centers for Disease Control and Prevention, 2017). 
As a result, compliance rate of affected individuals in 
home environments remains low (Venugopalan, 
Cheng, Stokes, & Wang, 2013).

At present, most widely used assessments to 
measure postural control are lab-based or supervised. 
Along with requiring specialized equipment, such 
assessments typically do not provide real-time 
feedback. The limitations of conventional assessments 
of postural control suggest that a home-based and real-
time feedback monitoring device or system can be 
more efficient—specifically, for the following two 
reasons: (1) a home-based monitoring device or system 
does not require a visit to a laboratory or clinic for 
screening; and (2) real-time feedback of the device or 
system can benefit those individuals who are unable 
to receive appropriate and timely assessments.

In this context, we tested whether a new 
unsupervised mobile health (mHealth) system could 
be used to monitor postural control in real time during 
walking, so that individuals using this system would 
not need to visit a clinic or a research lab. We used a 
proof-of-concept test as a potential implication for the 
development and application of the new mHealth 
system. Therefore, our focus was on introducing the 
structure and main elements of the proposed 
unsupervised mHealth system which can further mark 
out this research as potentially extendable and/or 
scalable for feasibility and efficacy testing (Kendig, 
2016). Consisting of a smartwatch and a smartphone, 
the system targets individuals with mTBI and enables 
monitoring and collecting real-time walking balance 
data in a home environment. In addition, the proposed 
system may contribute to the development of an 
effective and inexpensive strategy for detecting early 
signs of neurological deterioration after mTBI.

mTBI and Postural Control
TBI is characterized by temporary or 

permanent neurobiological impairments following an 
injury. In the U.S. alone, nearly 2.8 million people 
annually sustain a TBI (Taylor, Bell, Breiding, & Xu, 

2017), amounting to $76.5 billion in economic impact 
(Centers for Disease Control and Prevention, 2013). 
Racial minority groups, including Pacific people 
(Tauafiafi, 2014), are reported to have a higher 
incidence and poorer outcomes of TBI than non-
Hispanic Whites (Staudenmayer, Diaz-Arrastia, de 
Oliveira, Gentilello, & Shafi, 2007). Mild TBI (mTBI), 
which accounts for over 75–80% of all TBI cases (Kay 
& Teasdale, 2001; National Center for Injury 
Prevention and Control, 2003), is conventionally 
diagnosed based on the following criteria: loss of 
consciousness shorter than 30  min; posttraumatic 
amnesia shorter than 24 h; and injury scores from 13 
to 15 on the Glasgow Coma Scale (American Congress 
of Rehabilitation Medicine, 1993; Teasdale & Jennett, 
1974). Despite being termed “mild,” mTBI causes 
multifaceted and persistent functional impairments 
that can severely disturb the quality of life of affected 
individuals (Seabury et al., 2018), resulting in long-
term disability of over 40% of patients and inability 
to return to work one year post-injury of a further 25% 
(Langlois, Rutland-Brown, & Wald, 2006). In our 
recent studies, we found that college students with 
mTBI, even long after the injury, showed more body 
sway with larger oscillations during standing balance 
tests (Carbonar, Dunning, Greenebaum, Mahoney, & 
Mohapatra, unpublished; Degani et al., 2017; H. Lee 
et al., 2018). Other relevant findings of our previous 
research on individuals who had experienced mTBI 
include poorer accuracy and velocity of rapid eye 
movements (Danna-Dos-Santos, Mohapatra, Santos, 
& Degani, 2018), poorer episodic memory (H. Lee et 
al., 2018), diminished attention and concentration 
(Carbonar et al., unpublished), and more severe anxiety 
and sleep disturbance (H. Lee et al., 2018).

Among a wide array of post-mTBI 
complications, balance performance-related issues are 
observed in about 20–80% of mTBI cases (Katz et al., 
2004; Valovich McLeod & Hale, 2015). mTBI may 
cause changes in the cortex and brainstem’s reticular 
formation (Shaw, 2002) which, in turn, results in 
altered interaction between different parts of sensory 
inputs (Guskiewicz, 2011), disrupting the normal 
orientation information to the postural control system. 
These disruptions of static and/or dynamic balance 
may lead to postural instability in either the anterior-
posterior direction, medial-lateral direction, or both 
(Guskiewicz, 2011). Specific symptoms of postural 
instability include impairments of visual, vestibular, or 
somatosensory orientation, such as dizziness, vertigo, 
tinnitus, lightheadedness, blurred vision, or photophobia 
(Ingersoll & Armstrong, 1992). The duration of these 
symptoms may extend to months or years post-injury. 
However, since some or most of these symptoms may 
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not be recognized as necessarily associated with 
mTBI, affected individuals may not admit having 
issues with balance control or postural instability post-
injury (Centers for Disease Control and Prevention, 
2017). If, after an injury, the affected individual does 
not seek immediate balance screening, the impaired 
balance control associated with such heterogeneous 
symptoms may be further aggravated, leading to 
higher risks for sequelae.

Real-Time mHealth Measure for Postural 
Control

In previous research, several well-studied 
objective measures of balance performance for mTBI 
have been proposed, such as the force-platform 
postural-stability test (Degani et al., 2017), postural 
and gait analysis that uses a motion capture system 
(Venugopalan et al., 2013), and sensory-motor 
performance analysis that relies on visuomotor 
equipment to measure speed and accuracy of eye 
movement that influence body balance (Heitger, Jones, 
& Anderson, 2008). In general, compared to clinical 
interviews or self-reported symptom questionnaires 
that do not ensure appropriate injury identification and 
post-injury treatment, the approaches outlined above 
are more objective in terms of their ability to assess 
body balance control. However, the limitation of these 
balance assessments is that they require affected 
individuals to visit a clinical or research laboratory for 
assessment. Yet, evidence is available showing that 
some ethnic groups, such as Asian Americans and 
Native Americans, are less likely to attend rehabilitation 
programs (Dams-O’Connor et al., 2013; McQuistion 
et al., 2016). Along with ethnic background, age and 
professional occupation can also be factors that 
contribute to individuals’ reluctance to seek clinical or 
laboratory assessment: specifically, several studies 
showed that student athletes or active military service 
members and veterans typically consider the mTBI 
diagnosis to be a stigma and/or a hindrance to their 
return to play or duty (Iverson & Lange, 2011; Peskind 
et al., 2013). Taken together, these unassessed and/or 
undertreated TBI cases warrant a new and innovative 
approach that would offer a possibility of reliable and 
accurate home-based monitoring for individuals who 
have had a TBI.

Among numerous wearable devices or mobile 
sensors for home-based patient monitoring (Kumar  
et al., 2013; Patrick et al., 2008), inexpensive and 
widely available mobile health (mHealth) methodologies 
have been extensively used for monitoring gait 
disturbances associated with chronic diseases (Juen, 
Cheng, Prieto-Centurion, Krishnan, & Schatz, 2014). 

Since symptom development and disease progress 
following mTBI is known to be heterogeneous in terms 
of types and timelines (Rosenbaum & Lipton, 2012), 
real-time assessment and feedback can both detect and 
prevent further functional deterioration, as well as save 
affected individuals multiple trips to clinics. In this 
regard, previous research on other chronic diseases, 
such as epilepsy, Parkinson’s disease, or multiple 
sclerosis, has demonstrated that real-time data collection 
and analysis in these conditions can provide effective 
and timely reminders for patients during treatment, as 
well as serves as effective tools for feedback (Cancela  
et al., 2014; Lamont, Daniel, Payne, & Brauer, 2018).

In the present proof-of-concept testing study, 
we developed and tested a new real-time mHealth 
system for unsupervised home-based monitoring of 
postural control during walking. The real-time mHealth 
system was developed by a multidisciplinary research 
team (spanning together nurses, engineers, and 
physical therapists) who have implemented a cycle of 
continuous feedback to ensure application relevance, 
acceptability, and usefulness of the proposed system. 
The present study focuses on introducing the structure 
and main elements of the mHealth system. The system 
may serve as an effective and inexpensive strategy 
(Kumar et al., 2013) to detect early signs of neurological 
deterioration after an mTBI, as well as help initiate 
timely and appropriate treatment and evaluate the 
rehabilitation process.

Methods
Proof-of-Concept Testing of the Real-Time 
mHealth Measure of Postural Control 
During Walking

Balance is conventionally defined as the 
ability to maintain the center-of-gravity (COG) of the 
body within its base-of-support (Hamilton, Weimar, & 
Luttgens, 2008). The new real-time mHealth system 
developed in the present study monitors constant 
changes of angles of the COG (defined as the middle 
of the waistline [umbilicus]) relative to the base-of-
support. A smartwatch (LG G Watch R) is secured at 
the COG location of an individual during the test (see 
Figure 1), and its different sensors collect motion data. 
The rotational vector sensor in the wearable device’s 
software is particularly versatile and can be used to 
monitor a wide range of motions or movements—for 
instance, to detect gestures or to monitor angular or 
relative orientation changes. Compared to other types 
of sensors, the proposed rotation vector sensor may be 
a better choice for motion detection and monitoring, 
in that its represents the rotation of the device in the 
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physical world (Incel, 2015; Sabatini, 2011). In our 
mHealth system, the rotation vector represents the 
orientation of the COG as a combination of an angle 
and an axis, in which the body rotates through angle 
θ around axes x, y, or z. Hence, in our real-time 
mHealth system, the constant changes of angles of the 
COG, deemed to be key indicators of balance 
performance, can be calculated based on three rotation 
vectors (i.e., right to left, up to down, and forward to 
backward; see Figure 1).

For the real-time data collection and storage, 
we developed Android smartphone and smartphone 
applications. The data was transferred in real time 
from the smartwatch to the cloud server. The cloud 
server, ThingSpeak™ (“IoT Analytics - ThingSpeak 
Internet of Things,” n.d.), stores and analyzes data (see 
Figure 2). The proposed mHealth system consists of 
the following three data flow components:
(a)	 Data Collection. Data collection in the pro-

posed mHealth system unfolds in two stages: 
data collection (Stage 1) and data storage 
(Stage 2). In Stage 1, the data collection 
module is operated by the smartwatch with 

an installed Android application that we 
developed for collecting and processing data 
in real time (see following section, “Android 
Application Development”). The Android 
Sensor Application Programming Interface 
(API) and Wearable API were used to collect 
the sensor data in the wearable smartwatch 
(see Figure 3). In Stage 2, the collected data 
was stored in the ThingSpeak™ cloud server. 
However, since the ThingSpeak™ cloud 
server is not suitable to collect data in real 
time, the collected data was first temporarily 
saved on the smartphone in a block size and 
then sent to the cloud server.

(b)	 Cloud Server. ThingSpeak™ service, an 
Internet-of-Things (IoT) analytic service 
platform to aggregate, visualize, and analyze 
live data streams in the cloud, was used to 
store the data on the cloud server. The cloud 
server can perform various actions, such as 
sending a warning message via text and/or an 
email to an end user and/or a researcher when 
the sensor data exceed the threshold point. 

Figure 1.  XYZ-axis orientations of the smartwatch during the walking balance test. X-axis is the right (−) and the left (+) 
side of the participant. Y-axis is the up (−) and the down (+) of the participant. Z-axis is the forward (+) and the backward (−) 
of the participant.
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Figure 2.  Overview of the Real-Time mHealth System. 

Figure 3.  Data and program flow between the wearable smart watch and the smartphone. 
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The threshold point to set an action on the 
server can be replaced.

(c)	 Research Application. Sensor data can be 
downloaded from the server to produce visu-
alization graphs (Lee, Jo, & Kim, 2014) via 
the cloud server. The data can also be ana-
lyzed with the tools available on the server, 
or with other relevant tools, such as 
MATLAB. In addition, other relevant clini-
cal data can be uploaded to the server for fur-
ther analysis with the mHealth data.

Android Application Development
The development environment for our real-

time mHealth system is described in Table 1. Android 
applications for the smartwatch and for the smartphone 
were developed to collect motion data from sensors 
for different test participants. The following motion 
sensors in the smartwatch were included for data 
collection: the uncalibrated gyroscope, gyroscope, 
uncalibrated rotation on vector, accelerometer, and 
linear acceleration. The collected data was stored as 
test files in the comma-separated value (CSV) format 
on the smartphone. The Android application uses the 
Sensor API, Message API, and Wearable API. The 
Sensor API manages the sensors in the smartwatch. 
The Android smartwatch program uses the 
SensorManager class in the Sensor API to assess the 
device’s sensors: the Sensor class in Sensor API to 
get the list of available sensors, and the 
SensorEventListener class in the Sensor API to 
obtain sensor data. The Wearable API sends the 
message from the smartwatch to the smartphone via 
Bluetooth (see Figure 3). In the Android smartphone 
program, the WearableListenerService class in 
Wearable API receives messages from the smartwatch. 
The Message API in the Android smartphone  

program sends the data from the smartphone to the 
ThingSpeak™ server.

The flow of the program and data in the 
developed Android applications is schematically 
shown in Figure 3. First, the smartwatch collects the 
sensor data using the Sensor API. Second, the sensor 
data are sent to the smartphone in real time via the 
wearable message API and Bluetooth. Third, the 
smartphone receives the data using the 
WearableListenerService class in the Wearable API. 
Fourth, in the smartphone, the sensor data are 
transformed to the CSV format. Fifth, the formatted 
data stored on the smartphone are sent to the cloud 
server via the Message API. Finally, the server displays 
and saves the data on the web-server.

Data Collection
The mHealth system was tested with a total 

of four participants. Two participants (F1 and F2) were 
Asian females aged 22 and 41 years old, respectively. 
Two further participants (M1 and M2) were White 
males aged 26 and 68 years old, respectively. One 
male participant (M2) had reduced physical mobility 
due to knee osteoarthritis and a subsequent knee 
replacement surgery; the other three participants did 
not have any known histories or problems that may 
have affected their postural control. Reduced mobility 
due to knee osteoarthritis is reported to be similar with 
the one observed in patients with persistent mTBI 
who, despite ambulatory treatment, can have balance 
impairments reducing their full engagement in 
community living (Takacs, Garland, Carpenter, & 
Hunt, 2014).

During the experiment, all participants wore 
the smartwatch in a pocket of a belt at the center of 
their body. The smartwatch was placed facing front, 
with its top facing the right side of the body (see 

Table 1 Development Environment

Component Program used

Client application Android program (smartphone and smart watch)

Service server ThingSpeak™

Motion sensors collecting data Uncalibrated gyroscope, gyroscope, uncalibrated rotate on vector, accelerometer, and 
linear acceleration

Data format Transformed the comma-separated value (CSV)

Application Programming Inter-
face (API)

Sensor API

Message API

Wearable API
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Figure 1). The participants were instructed to walk 
straight on their pace at an indoor hallway of a 
building. The walked distance was ca. 440  feet in 
length. Each participant had a round trip to walk back 
and forth in the hallway. To eliminate interruptions, 
the walking sessions were organized at the time when 
the building was not used by other people. The 
duration of walking with the smartwatch ranged from 
6 to 9 min.

Using the real-time mHealth system, the 
smartphone stored the motion sensor data on the phone 
and sent them to the cloud server in real time (see 
Figure 2). Android programs in our system collected 
the motion sensor data from the smartwatch and 
relayed them to the cloud server (see Figure 3). The 
mHealth system collected the sensor data of 250  ms 
and sent them to the cloud server at regular intervals 
(every minute).

Data Analysis
Considering that, for the differentiation of 

balance control during walking across different 
participants, the rotation vector data are considered to 
be the most effective (Incel, 2015; Sabatini, 2011), in 
the present paper, only the rotation vector data was 
used for the analysis. This data was extracted using the 
rotation sensor in Android Open Source Project (AOSP) 

to compare the performance of the four study 
participants. Using the smartwatch, the XYZ-axis 
rotation vectors of the belly button were identified as 
the COG of each participant. X-axis represents the body 
motion angle between the right and the left side of a 
participant. Y-axis represents the body motion angle 
between the up and the down of a participant. Z-axis 
represents the body motion angle between the forward 
and the backward of a participant (see Figure 1). 
Although each participant wore the smartwatch on the 
same location of his/her body, the sensors in the 
smartwatch appeared to be located with slightly 
different slopes. Therefore, for the data analysis, we 
standardized the data by using each differential from 
the average (deviation or variation) for each of the 
rotation vectors (see Table 2). For a comparison across 
the participants, the rotation vector values were plotted 
as 2D graphs (see Figures 4 and 5).

Results
We collected constant motion data using 

different sensors listed in Table 1. Thereafter, to 
understand constant motion changes in the middle of 
the participants’ waistline (umbilicus) as the COG, the 
rotation vector values of four participants were 
extracted and compared (see Table 2).

Table 2 Comparison of Participants’ Rotation Vector Data by Each Axis

Participant ID Balance orientation axis Max Min Average Variance STD

F1 x 0.077 −0.072 −5.646 0.00075 0.027

y 0.055 −0.083 −4.726 0.00063 0.025

z 0.046 −0.057 −4.044 0.00038 0.019

F2 x 0.099 −0.076   5.456 0.00108 0.032

y 0.088 −0.100 −5.837 0.00111 0.033

z 0.083 −0.115 −1.269 0.00154 0.039

M1 x 0.067 −0.104 −6.217 0.00094 0.031

y 0.110 −0.075 −1.142 0.00147 0.038

z 0.094 −0.077   3.489 0.00107 0.033

M2 x 0.119 −0.166 −7.613 0.00366 0.061

y 0.222 −0.138   3.045 0.00547 0.074

z 0.134 −0.137 −2.379 0.00281 0.053

Note. The table shows minimum (standardized), maximum (standardized), average, variance, and standard deviation of each 
participant’s data by each axis. X-axis is the right (−) and the left (+) side of the participant. Y-axis is the up (−) and the down 
(+) of the participant. Z-axis is the forward (+) and the backward (−) of the participant. F1 and F2 = healthy females; M1 = a 
healthy male; M2 = a male with reduced physical mobility.
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The results showed that there were differences 
in the body motion data between the participant with 
reduced physical mobility (M2), on the one hand, and 
the healthy participants (F1, F2, and M1), on the other 
hand. Specifically, M2 appeared to have more 
variations in all rotations (x, y and z) than the healthy 
participants, suggesting that he had a wider range of 
motion between right and left, up and down, and 
forward and backward while walking (see Figures 
4(a)–(c)).

For further comparisons between the 
participants, we also tried to combine 2 axes at a time 
(see Figure 5(a)–(c)). Regarding the comparison of the 
participant with reduced physical mobility (M2), and 
the healthy participants (F1, F2, and M1), we found 
that M2 had the widest combined motion range of 
right-to-left and forward-to-backward (see Figure 
5(b), as well as up-and-down and forward-to-backward 
(Figure 5(c)). Interestingly, our results also highlighted 
gender-based divergences: specifically, as shown 
Figure 5(a), the female participants (F1 and F2) 
appeared to have narrower ranges of right-to-left and 
up-and-down motions as compared to their male 
counterparts (M1 and M2), with M2 having the widest 
range.

Discussion
In the present study, constant motion data 

using the mHealth system were collected in real time 
from four participants; three female and male non-
disabled adults (F1, F2, and M1) and one male adult 
with reduced physical mobility (M2). Previous studies 
using wearable sensor-based balance performance 
tests have mostly focused on measuring and analyzing 
data from disabled or elderly adults, without comparing 
the performance of these patients against normal 
healthy adult controls (Gordt, Gerhardy, Najafi, & 
Schwenk, 2018). By contrast, the present study sought 
to acquire a scalable range of detecting deficits in 
postural control among individuals with a suspected 
mTBI. To this end, we tested our real-time mHealth 
system first with healthy male and female adults and 
then compared their performance to that of the 
individual with reduced physical mobility (M2). Our 
results data measured by the mHealth system showed 
that, compared to healthy individuals, M2 had a wider 
range of motion between right and left, up and down, 
and forward and backward while walking, which 
resembles the diminished standing balance pattern 
observed after mTBI—more or wider body sway with 
larger oscillations (Degani et al., 2017; Gera, Chesnutt, 
Mancini, Horak, King, 2018). Therefore, our findings 
from the proof-of-concept testing validate the proposed 

(a)  �Illustrative rotation X axis data for the right (-) to left 
(+) body motion

(b)  �Illustrative rotation X axis data for the up (-) to down 
(+) body motion

(c)  �Illustrative rotation Z axis data for the forward (+) to 
backward (-) body motion

Figure 4.  Illustrative rotation data by each axis recorded by 
the smartwatch from healthy individuals and the participant 
with reduced physical mobility. F1 and F2 denote healthy 
females; M1 denotes a healthy male; M2 denotes a male with 
reduced physical mobility. Compared to the other participants, 
M2 has more variations in the rotations x, y, and z, suggesting 
that M2 has a wider range of motion between right-and-left, 
up-and-down, and forward-and-backward while walking.
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mHealth system as a promising application for the 
mTBI population. Another promising application of 
the proposed real-time mHealth system relates to 
capturing early indicators of neurological deficiencies 
post-injury. Previously, impairment in postural control 
during gait was reported to be detected as early as 
one-month post-injury or years after an mTBI or 
concussion (Buckley et al., 2016; Kleffelgaard, Roe, 
Soberg, & Bergland, 2012; Parker, Osternig, van 
Donkelaar, & Chou, 2006). The proposed system 
capable of detecting postural control deficits in real 
time can provide meaningful data in this respect.

Furthermore, our results highlighted several 
gender-related differences. Specifically, female 
participants were found to have narrower ranges of 
right-to-left and up-and-down motions than their male 
counterparts. This finding is largely consistent with 
previous findings. For instance, gender-related 
differences in walking speed and/or gait were found 
among a retired community (Inoue et al., 2017) and 
among patients with multiple sclerosis (Pau et al., 
2017). Furthermore, several differences in static and 

dynamic postural balance differences were observed 
among young male and female dancers (Steinberg, 
Adams, Waddington, Karin, & Tirosh, 2017). Another 
study that investigated gender differences in gait among 
adolescents shortly after sports-related concussions 
reported that, while both concussed female and male 
groups showed a slower gait than the healthy control 
group, the post-injury impact on gait was greater in 
females than in males (Howell, Stracciolini, Geminiani, 
& Meehan, 2017). Specifically, the difference in 
walking cadence between the concussed and healthy 
females was larger than the one among males (Howell 
et al., 2017). In the context of these findings, our 
finding that female participants had narrower ranges of 
right-to-left and up-and-down motions than their male 
counterparts demonstrates that the proposed mHealth 
system can effectively capture gender-related differences 
in motion changes during walking. In future research 
aiming to identify the potential impact of gender in 
deficits of balance control after an mTBI, more data 
will need to be collected, particularly from the mTBI 
group as compared to healthy controls.

Figure 5.  Illustrative rotation data by two combined axes 
during the same time period recorded by the smartwatch from 
three healthy individuals and one with reduced physical mobility. 
Illustrative rotation X-axis data recorded for the right (−) to left (+) 
body motion on the X-axis. Illustrative rotation Y-axis data recoded 
for the up (−) to down (+) body motion on the Y-axis. Illustrative 
rotation Z-axis data recoded for the forward (+) to backward (−) 
body motion on the Z-axis. F1 and F2 denote healthy females; 
M1 denotes a healthy male; M2 denotes a male with reduced 
physical mobility. (a) Female participants (F1 and F2) appeared to 
have narrower ranges of the right-to-left and up-and-down motions 
than their male counterparts (M1 and M2), with M2 having the 
widest range of motion while walking. (b) M2 has the widest area, 
suggesting that he has the widest combined motion range of right-
to-left and forward-to-backward while walking. (c) M2 has the 
widest area, which means that he has the widest combined motion 
range of up-and-down and forward-to-backward while walking.

(a)  Rotation X-Y

(b)  Rotation X-Z

(c)   Rotation Y-Z



186
DOI: 10.31372/20180304.1027

Next, while the proposed mHealth system 
enabled us to collect data from the uncalibrated 
gyroscope, gyroscope, accelerometer, and linear 
acceleration sensors using the Android program for 
the smartwatch, in the analyses, only the rotation 
vector data was mainly used. This methodological 
decision was made because the rotation vector data 
have been reported to be the most effective in terms 
of differentiating balance control during walking 
across different participants (Incel, 2015; Sabatini, 
2011). While other types of sensors in the wearable 
devices may also present clinically meaningful data 
or parameters for balance control, relevant studies 
using other sensors remain scarce. Therefore, in 
further research, it would be necessary to identify 
better approaches to the analysis of those sensors’ data 
with a bigger sample size, including individuals with 
different levels of physical mobility levels. In 
combination with further data from those sensors, our 
rotation vector data will contribute to advancing our 
real-time mHealth system to better detect early signs 
and symptoms of deficits in balance control caused 
by mTBI.

Currently used objective measures of 
balance performance for mTBI, such as a force-
platform postural-stability test, a motion capture 
system, and a sensory-motor measurement system, 
are mostly supervised and lab-based. With an 
emphasis on portability, the Nintendo Wii Balance 
Board (Nintendo of America Inc., Redmond, WA), 
originally designed as part of a video-game console 
system, has also been used to assess the postural 
center-of-pressure in athletes (Merchant-Borna et al., 
2017). However, all these approaches require 
supervising the individuals affected by mTBI in 
clinical or research laboratory settings, which may 
hinder time-sensitive symptom assessment, as 
individuals affected by mTBI may not seek proper 
screening or not recognize their symptoms post-
injury (Seabury et al., 2018). From the ethnic 
perspective, evidence is available showing that 
several Asian groups, including Pacific Islanders 
(Tauafiafi, 2014), have a higher incidence rate and 
poorer outcomes of TBIs, including mental health 
post-injury, as well as a lower compliance in home-
based treatment, compared to non-Hispanic Whites 
(Dams-O’Connor et al., 2013; McQuistion et al., 
2016; Perrin et al., 2014; Staudenmayer et al., 2007). 
In view of these findings, our new real-time mHealth 
system can offer a possibility of reliable and accurate 
home-based monitoring for racial minority groups 
who have had an mTBI. In addition, the use of the 
proposed system will also contribute to initiating 

timely and appropriate treatment and to a more 
accurate evaluation of the rehabilitation process.

Limitations and Conclusions
The present study has several limitations. 

Since our major goal was the proof-of-concept test of 
the newly developed real-time mHealth system, 
including establishing the necessary data analysis steps, 
we have not generated clinically meaningful data yet. 
Nonetheless, as suggested by our results, the proposed 
real-time mHealth system can effectively capture 
differences in postural control during walking in 
healthy individuals vs. individuals with reduced 
physical mobility, as well as in female vs. male 
participants. In further research, we will conduct 
feasibility and efficacy testing with larger pools of 
individuals with mTBI, along with data security 
planning for the real-time data transmission and storage. 
In addition, any variables that may affect postural 
balance during walking, such as body habitus (e.g., 
slim vs. obese) or level of daily physical activities, will 
be taken into account in data collection and analysis. 
We will also consider evaluating the impact of the 
application at the health system level, using outcomes 
such as health care utilization and medication use.

In this proof-of-concept testing, we performed 
the unsupervised real-time measurement of walking 
balance using the mHealth system. In the proposed 
mHealth system, a smartwatch, a smartphone, and a 
cloud server communicate together to measure, collect, 
and store body balance data in real time. Taken 
together, our results demonstrated the feasibility of 
home-based self-management for mTBI symptoms via 
the mHealth approach and suggest that this system can 
meaningfully complement conventional mTBI 
treatments. Using the mHealth system presented in 
this study, individuals with suspected mTBI can 
conveniently receive real-time feedback on their data 
in their home environment and interact with their 
health care providers and/or researchers. On the 
condition of patient engagement, the proposed system 
also offers early detection of neurological deterioration 
after mTBIs, which can yield better-quality outcomes 
in health care.

In sum, through the remote real-time 
assessment of mTBI symptoms, the proposed approach 
contributes to enhancing home-based symptom 
management for individuals with mTBI. In the future, 
more research on both individuals with mTBI and 
healthy controls is necessary to validate, refine, and 
apply our mHealth system for monitoring postural 
balance during walking after mTBI.



187

Declaration of Conflicting Interests
The authors declared no potential conflicts of 

interest concerning the research, authorship, or 
publication of this article.

Funding
This study was supported by a grant from the 

UNLV School of Nursing and the UNLV Faculty Top 
Tier Doctoral Graduate Research Assistantship.

References
American Congress of Rehabilitation Medicine. (1993). Def-

inition of mild traumatic brain injury. The Journal 
of Head Trauma Rehabilitation, 8(3), 86–87.

Buckley, T. A., Vallabhajosula, S., Oldham, J. R., Munkasy, 
B. A., Evans, K. M., Krazeise, D. A., … Hall, E. 
E. (2016). Evidence of a conservative gait strategy 
in athletes with a history of concussions. Journal 
of Sport and Health Science, 5(4), 417–423. 
https://doi.org/10.1016/j.jshs.2015.03.010

Cancela, J., Pastorino, M., Tzallas, A., Tsipouras, M., Rigas, 
G., Arredondo, M., … Fotiadis, D. I. (2014). 
Wearability assessment of a wearable system for 
Parkinson’s disease remote monitoring based on a 
body area network of sensors. Sensors, 14(9), 
17235–17255. https://doi.org/10.3390/s140917235

Carbonar, A., Dunning, M., Greenebaum, J., Mahoney, S., 
& Mohapatra, S. (unpublished). Rapid screening 
tools for mild traumatic brain injury. University of 
Vermont.

Centers for Disease Control and Prevention. (2013). CDC grand 
rounds: Reducing severe traumatic brain injury in the 
United States. Morbidity and Mortality Weekly Re-
port (MMWR), pp. 549–552. Retrieved from https://
www.cdc.gov/mmwr/preview/mmwrhtml/ 
mm6227a2.htm

Centers for Disease Control and Prevention. (2017). 
Traumatic brain injury & concussion: Signs and 
symptoms. Retrieved from https://www.cdc.gov/
traumaticbraininjury/symptoms.html

Dams-O’Connor, K., Cuthbert, J. P., Whyte, J., Corrigan, J. 
D., Faul, M., & Harrison-Felix, C. (2013). Trau-
matic brain injury among older adults at level I 
and II trauma centers. Journal of Neurotrauma, 
30(24), 2001–2013. https://doi.org/10.1089/
neu.2013.3047

Danna-Dos-Santos, A., Mohapatra, S., Santos, M., & Degani, 
A. M. (2018). Long-term effects of mild traumatic 
brain injuries to oculomotor tracking performances 
and reaction times to simple environmental stimu-
li. Scientific Reports, 8(1), 4583. https://doi.
org/10.1038/s41598-018-22825-5

Degani, A. M., Santos, M. M., Leonard, C. T., Rau, T. F., 
Patel, S. A., Mohapatra, S., & Danna-dos-Santos, 

A. (2017). The effects of mild traumatic brain 
injury on postural control. Brain Injury, 31(1), 
49–56. https://doi.org/10.1080/02699052.2016.12
25982

Gera, G., Chesnutt, J., Mancini, M., Horak, F. B., & King, 
L. A. (2018). Inertial sensor-based assessment of 
central sensory integration for balance after mild 
traumatic brain injury. Military Medicine, 
183(suppl_1), 327–332. https://doi.org/10.1093/
milmed/usx162

Gordt, K., Gerhardy, T., Najafi, B., & Schwenk, M. (2018). 
Effects of wearable sensor-based balance and gait 
training on balance, gait, and functional perfor-
mance in healthy and patient populations: A sys-
tematic review and meta-analysis of randomized 
controlled trials. Gerontology, 64(1), 74–89. 
https://doi.org/10.1159/000481454

Guskiewicz, K. M. (2011). Balance assessment in the man-
agement of sport-related concussion. Clinics in 
Sports Medicine, 30(1), 89–102. https://doi.
org/10.1016/j.csm.2010.09.004

Hamilton, N., Weimar, W., & Luttgens, K. (2008). The cen-
ter of gravity and stability. In N. Hamilton, W. 
Weimar, & K. Luttgens (Eds.), Kinesiology: Sci-
entific basis of human motion (8th ed.). New York, 
NY: McGraw-Hill. Retrieved from https://access-
physiotherapy.mhmedical.com/content.aspx?book
id=446&sectionid=41564591&jumpsection
ID=41567144#6151688

Heitger, M. H., Jones, R. D., & Anderson, T. J. (2008). A 
new approach to predicting postconcussion syn-
drome after mild traumatic brain injury based upon 
eye movement function. In 2008 30th Annual 
International Conference of the IEEE Engineering 
in Medicine and Biology Society (Vol. 2008, pp. 
3570–3573). IEEE. https://doi.org/10.1109/ 
IEMBS.2008.4649977

Howell, D. R., Stracciolini, A., Geminiani, E., & Meehan, 
W. P. (2017). Dual-task gait differences in female 
and male adolescents following sport-related con-
cussion. Gait & Posture, 54, 284–289. https://doi.
org/10.1016/J.GAITPOST.2017.03.034

Incel, O. D. (2015). Analysis of movement, orientation and 
rotation-based sensing for phone placement recog-
nition. Sensors (Basel, Switzerland), 15(10), 
25474–25506. https://doi.org/10.3390/s151025474

Ingersoll, C. D., & Armstrong, C. W. (1992). The effects of 
closed-head injury on postural sway. Medicine and 
Science in Sports and Exercise, 24(7), 739–743. 
Retrieved from http://www.ncbi.nlm.nih.gov/
pubmed/1501556

Inoue, W., Ikezoe, T., Tsuboyama, T., Sato, I., Malinowska, 
K. B., Kawaguchi, T., … Ichihashi, N. (2017). Are 
there different factors affecting walking speed and 
gait cycle variability between men and women in 
community-dwelling older adults? Aging Clinical 
and Experimental Research, 29(2), 215–221. 
https://doi.org/10.1007/s40520-016-0568-8

https://doi.org/10.1016/j.jshs.2015.03.010
https://doi.org/10.3390/s140917235
https://www.cdc.gov/mmwr/preview/mmwrhtml/ mm6227a2.htm
https://www.cdc.gov/mmwr/preview/mmwrhtml/ mm6227a2.htm
https://www.cdc.gov/mmwr/preview/mmwrhtml/ mm6227a2.htm
https://www.cdc.gov/traumaticbraininjury/symptoms.html
https://www.cdc.gov/traumaticbraininjury/symptoms.html
https://doi.org/10.1089/neu.2013.3047
https://doi.org/10.1089/neu.2013.3047
https://doi.org/10.1038/s41598-018-22825-5
https://doi.org/10.1038/s41598-018-22825-5
https://doi.org/10.1080/02699052.2016.1225982
https://doi.org/10.1080/02699052.2016.1225982
https://doi.org/10.1093/milmed/usx162
https://doi.org/10.1093/milmed/usx162
https://doi.org/10.1159/000481454
https://doi.org/10.1016/j.csm.2010.09.004
https://doi.org/10.1016/j.csm.2010.09.004
https://accessphysiotherapy.mhmedical.com/content.aspx?bookid=446&sectionid=41564591&jumpsectionID=41567144#6151688
https://accessphysiotherapy.mhmedical.com/content.aspx?bookid=446&sectionid=41564591&jumpsectionID=41567144#6151688
https://accessphysiotherapy.mhmedical.com/content.aspx?bookid=446&sectionid=41564591&jumpsectionID=41567144#6151688
https://accessphysiotherapy.mhmedical.com/content.aspx?bookid=446&sectionid=41564591&jumpsectionID=41567144#6151688
https://doi.org/10.1109/ IEMBS.2008.4649977
https://doi.org/10.1109/ IEMBS.2008.4649977
https://doi.org/10.1016/J.GAITPOST.2017.03.034
https://doi.org/10.1016/J.GAITPOST.2017.03.034
https://doi.org/10.3390/s151025474
http://www.ncbi.nlm.nih.gov/pubmed/1501556
http://www.ncbi.nlm.nih.gov/pubmed/1501556
https://doi.org/10.1007/s40520-016-0568-8


188
DOI: 10.31372/20180304.1027

IoT Analytics - ThingSpeak Internet of Things. (n.d.). 
Retrieved from https://thingspeak.com/

Iverson, G. L., & Lange, R. T. (2011). Mild traumatic brain 
injury. The little black book of neuropsychology 
(pp. 697–719). Boston, MA: Springer US. https://
doi.org/10.1007/978-0-387-76978-3_22

Juen, J., Cheng, Q., Prieto-Centurion, V., Krishnan, J. A., & 
Schatz, B. (2014). Health monitors for chronic 
disease by gait analysis with mobile phones. Tele-
medicine Journal and E-Health: The Official Jour-
nal of the American Telemedicine Association, 
20(11), 1035–1041. https://doi.org/10.1089/
tmj.2014.0025

Katz, D. I., White, D. K., Alexander, M. P., & Klein, R. B. 
(2004). Recovery of ambulation after traumatic 
brain injury. Archives of Physical Medicine and 
Rehabilitation, 85(6), 865–869. https://doi.
org/10.1016/j.apmr.2003.11.020

Kay, A., & Teasdale, G. (2001). Head injury in the United 
Kingdom. World Journal of Surgery, 25(9), 1210–
1220. https://doi.org/10.1007/s00268-001-0084-6

Kendig, C. E. (2016). What is proof of concept research and 
how does it generate epistemic and ethical catego-
ries for future scientific practice? Science and 
Engineering Ethics, 22(3), 735–753. https://doi.
org/10.1007/s11948-015-9654-0

Kleffelgaard, I., Roe, C., Soberg, H. L., & Bergland, A. 
(2012). Associations among self-reported balance 
problems, post-concussion symptoms and perfor-
mance-based tests: A longitudinal follow-up study. 
Disability and Rehabilitation, 34(9), 788–794. 
https://doi.org/10.3109/09638288.2011.619624

Kumar, S., Nilsen, W. J., Abernethy, A., Atienza, A., Patrick, 
K., Pavel, M., … Swendeman, D. (2013). Mobile 
health technology evaluation. American Journal of 
Preventive Medicine, 45(2), 228–236. https://doi.
org/10.1016/j.amepre.2013.03.017

Lamont, R. M., Daniel, H. L., Payne, C. L., & Brauer, S. G. 
(2018). Accuracy of wearable physical activity 
trackers in people with Parkinson’s disease. Gait 
& Posture, 63, 104–108. https://doi.org/10.1016/J.
GAITPOST.2018.04.034

Langlois, J. A., Rutland-Brown, W., & Wald, M. M. (2006). 
The epidemiology and impact of traumatic brain 
injury: A brief overview. Journal of Head Trauma 
Rehabilitation, 21(5), 375–378.

Lee, H., Lee, S., Salado, L., Estrada, J., Danna-Dos-Santos, 
A., Isla, K., … Bernick, C. (2018, September 22 
& 23). Long-term impact of mild traumatic brain 
injuries on cognitive, psychosocial and balance 
performance and epigenetics. Paper presented at 
the Asian American Pacific Islander Nurses 
Association’s 15th Annual International Confer-
ence, Durham, North Carolina. https://kahualike.
manoa.hawaii.edu/apin/vol3/iss3/3/

Lee, S., Jo, J., & Kim, Y. (2014, October 5–8). Performance 
testing of web-based data visualization. Paper pre-
sented at the 2014 IEEE International Conference 

on Systems, Man, and Cybernetics (SMC),  
San Diego, California.

McQuistion, K., Zens, T., Jung, H. S., Beems, M., Leverson, 
G., Liepert, A., … Agarwal, S. (2016). Insurance 
status and race affect treatment and outcome of 
traumatic brain injury. Journal of Surgical Re-
search, 205(2), 261–271. https://doi.org/10.1016/j.
jss.2016.06.087

Merchant-Borna, K., Jones, C. M. C., Janigro, M., Wasserman, 
E. B., Clark, R. A., & Bazarian, J. J. (2017). Evalu-
ation of Nintendo Wii Balance Board as a tool for 
measuring postural stability after sport-related con-
cussion. Journal of Athletic Training, 52(3), 245–
255. https://doi.org/10.4085/1062-6050-52.1.13

National Center for Injury Prevention and Control. (2003). 
Report to congress on mild traumatic brain injury 
in the United States: Steps to prevent a serious 
public health problem. Retrieved from https://
www.cdc.gov/traumaticbraininjury/pdf/mtbire-
port-a.pdf

Parker, T. M., Osternig, L. R., van Donkelaar, P., & Chou, 
L. S. (2006). Gait stability following concussion. 
Medicine and Science in Sports and Exercise, 
38(6), 1032–1040. https://doi.org/10.1249/01.
mss.0000222828.56982.a4

Patrick, K., Griswold, W. G., Raab, F., & Intille, S. S. (2008). 
Health and the mobile phone. American Journal 
of Preventive Medicine, 35(2), 177–181. https://
doi.org/10.1016/J.AMEPRE.2008.05.001

Pau, M., Corona, F., Pilloni, G., Porta, M., Coghe, G., & 
Cocco, E. (2017). Do gait patterns differ in men 
and women with multiple sclerosis? Multiple Scle-
rosis and Related Disorders, 18, 202–208. https://
doi.org/10.1016/J.MSARD.2017.10.005

Perrin, P. B., Krch, D., Sutter, M., Snipes, D. J., Arango-
Lasprilla, J. C., Kolakowsky-Hayner, S. A., … 
Lequerica, A. (2014). Racial/ethnic disparities in 
mental health over the first 2 years after traumatic 
brain injury: A model systems study. Archives of 
Physical Medicine and Rehabilitation, 95(12), 2288–
2295. https://doi.org/10.1016/j.apmr.2014.07.409

Peskind, E. R., Brody, D., Cernak, I., McKee, A., & Ruff, 
R. L. (2013). Military- and sports-related mild 
traumatic brain injury: Clinical presentation, man-
agement, and long-term consequences. The Jour-
nal of Clinical Psychiatry, 74(2), 180–8; quiz 188. 
https://doi.org/10.4088/JCP.12011co1c

Rosenbaum, S. B., & Lipton, M. L. (2012). Embracing cha-
os: The scope and importance of clinical and path-
ological heterogeneity in mTBI. Brain Imaging 
Behavior, 6(2), 255–282. https://doi.org/10.1007/
s11682-012-9162-7

Sabatini, A. M. (2011). Estimating three-dimensional orien-
tation of human body parts by inertial/magnetic 
sensing. Sensors (Basel, Switzerland), 11(2), 
1489–1525. https://doi.org/10.3390/s110201489

Seabury, S. A., Gaudette, É., Goldman, D. P., Markowitz, A. 
J., Brooks, J., McCrea, M. A., … Zafonte, R. (2018). 

https://thingspeak.com/
https://doi.org/10.1007/978-0-387-76978-3_22
https://doi.org/10.1007/978-0-387-76978-3_22
https://doi.org/10.1089/tmj.2014.0025
https://doi.org/10.1089/tmj.2014.0025
https://doi.org/10.1016/j.apmr.2003.11.020
https://doi.org/10.1016/j.apmr.2003.11.020
https://doi.org/10.1007/s00268-001-0084-6
https://doi.org/10.1007/s11948-015-9654-0
https://doi.org/10.1007/s11948-015-9654-0
https://doi.org/10.3109/09638288.2011.619624
https://doi.org/10.1016/j.amepre.2013.03.017
https://doi.org/10.1016/j.amepre.2013.03.017
https://doi.org/10.1016/J.GAITPOST.2018.04.034
https://doi.org/10.1016/J.GAITPOST.2018.04.034
https://kahualike.manoa.hawaii.edu/apin/vol3/iss3/3/
https://kahualike.manoa.hawaii.edu/apin/vol3/iss3/3/
https://doi.org/10.1016/j.jss.2016.06.087
https://doi.org/10.1016/j.jss.2016.06.087
https://doi.org/10.4085/1062-6050-52.1.13
https://www.cdc.gov/traumaticbraininjury/pdf/mtbireport-a.pdf
https://www.cdc.gov/traumaticbraininjury/pdf/mtbireport-a.pdf
https://www.cdc.gov/traumaticbraininjury/pdf/mtbireport-a.pdf
https://doi.org/10.1249/01.mss.0000222828.56982.a4
https://doi.org/10.1249/01.mss.0000222828.56982.a4
https://doi.org/10.1016/J.AMEPRE.2008.05.001
https://doi.org/10.1016/J.AMEPRE.2008.05.001
https://doi.org/10.1016/J.MSARD.2017.10.005
https://doi.org/10.1016/J.MSARD.2017.10.005
https://doi.org/10.1016/j.apmr.2014.07.409
https://doi.org/10.4088/JCP.12011co1c
https://doi.org/10.1007/s11682-012-9162-7
https://doi.org/10.1007/s11682-012-9162-7
https://doi.org/10.3390/s110201489


189

Assessment of follow-up care after emergency de-
partment presentation for mild traumatic brain in-
jury and concussion. JAMA Network Open, 1(1), 
e180210. https://doi.org/10.1001/jamanetworkopen. 
2018.0210

Shaw, N. A. (2002). The neurophysiology of concussion. 
Progress in Neurobiology, 67(4), 281–344. https://
doi.org/10.1016/S0301-0082(02)00018-7

Staudenmayer, K. L., Diaz-Arrastia, R., de Oliveira, A., Gen-
tilello, L. M., & Shafi, S. (2007). Ethnic disparities 
in long-term functional outcomes after traumatic 
brain injury. Journal of Trauma, 63(6), 1364–1369. 
https://doi.org/10.1097/TA.0b013e31815b897b

Steinberg, N., Adams, R., Waddington, G., Karin, J., & 
Tirosh, O. (2017). Is there a correlation between 
static and dynamic postural balance among young 
male and female dancers? Journal of Motor Be-
havior, 49(2), 163–171. https://doi.org/10.1080/00
222895.2016.1161595

Takacs, J., Garland, S. J., Carpenter, M. G., & Hunt, M. A. 
(2014). Validity and reliability of the Community 
Balance and Mobility Scale in individuals with 
knee osteoarthritis. Physical Therapy, 94(6), 866–
874. https://doi.org/10.2522/ptj.20130385

Tauafiafi, L. A. F. (2014, April 20). Study shows Pacific 

peoples more at risk of traumatic brain injuries | 
Health Research Council. Pacific Guardians |Pa-
cific Perspectives from Aotearoa.

Taylor, C. A., Bell, J. M., Breiding, M. J., & Xu, L. (2017). 
Traumatic brain injury – Related emergency de-
partment visits, hospitalizations, and deaths — 
United States, 2007 and 2013. MMWR. Surveil-
lance Summaries, 66(9), 1–16. https://doi.
org/10.15585/mmwr.ss6609a1

Teasdale, G., & Jennett, B. (1974). Assessment of coma and 
impaired consciousness: A practical scale. The 
Lancet, 304(7872), 81–84. https://doi.org/10.1016/
S0140-6736(74)91639-0

Valovich McLeod, T. C., & Hale, T. D. (2015). Vestibular 
and balance issues following sport-related concus-
sion. Brain Injury, 29(2), 175–184. https://doi.org
/10.3109/02699052.2014.965206

Venugopalan, J., Cheng, C., Stokes, T. H., & Wang, M. D. 
(2013). Kinect-based rehabilitation system for 
patients with traumatic brain injury. Conference 
proceedings: The 35th Annual International Confer-
ence of the IEEE Engineering in Medicine and 
Biology Society. IEEE Engineering in Medicine and 
Biology Society. Annual Conference, 2013, 4625–
4628. https://doi.org/10.1109/EMBC.2013.6610578

https://doi.org/10.1001/jamanetworkopen. 2018.0210
https://doi.org/10.1001/jamanetworkopen. 2018.0210
https://doi.org/10.1016/S0301-0082(02)00018-7
https://doi.org/10.1016/S0301-0082(02)00018-7
https://doi.org/10.1097/TA.0b013e31815b897b
https://doi.org/10.1080/00222895.2016.1161595
https://doi.org/10.1080/00222895.2016.1161595
https://doi.org/10.2522/ptj.20130385
https://doi.org/10.15585/mmwr.ss6609a1
https://doi.org/10.15585/mmwr.ss6609a1
https://doi.org/10.1016/S0140-6736(74)91639-0
https://doi.org/10.1016/S0140-6736(74)91639-0
https://doi.org/10.3109/02699052.2014.965206
https://doi.org/10.3109/02699052.2014.965206
https://doi.org/10.1109/EMBC.2013.6610578

