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Pharmacological and dietary interventions targeting postprandial glycemia have proved

effective in reducing the risk for type 2 diabetes and its cardiovascular complications.

Besides meal composition and size, the timing of macronutrient consumption during a

meal has been recently recognized as a key regulator of postprandial glycemia. Emerging

evidence suggests that premeal consumption of non-carbohydrate macronutrients (i.e.,

protein and fat “preloads”) can markedly reduce postprandial glycemia by delaying

gastric emptying, enhancing glucose-stimulated insulin release, and decreasing insulin

clearance. The same improvement in glucose tolerance is achievable by optimal

timing of carbohydrate ingestion during a meal (i.e., carbohydrate-last meal patterns),

which minimizes the risk of body weight gain when compared with nutrient preloads.

The magnitude of the glucose-lowering effect of preload-based nutritional strategies

is greater in type 2 diabetes than healthy subjects, being comparable and additive

to current glucose-lowering drugs, and appears sustained over time. This dietary

approach has also shown promising results in pathological conditions characterized by

postprandial hyperglycemia in which available pharmacological options are limited or

not cost-effective, such as type 1 diabetes, gestational diabetes, and impaired glucose

tolerance. Therefore, preload-based nutritional strategies, either alone or in combination

with pharmacological treatments, may offer a simple, effective, safe, and inexpensive

tool for the prevention and management of postprandial hyperglycemia. Here, we survey

these novel physiological insights and their therapeutic implications for patients with

diabetes mellitus and altered glucose tolerance.

Keywords: macronutrient preloads, food order, gastric emptying, glucose tolerance, insulin secretion,

postprandial glycemia, medical nutrition therapy, type 2 diabetes

CONCEPTUAL FRAMEWORK

Type 2 diabetes (T2D) affects more than 400 million people worldwide and its prevalence is
constantly increasing (1). The first metabolic alteration detectable in the progression of the disease
is typically a loss of postprandial glucose control (2, 3), which is an independent risk factor for
T2D (4, 5) and its complications (5–11). Targeting postprandial glycemia has proved effective for
reducing the incidence of T2D (12–14). However, pharmacological control of postprandial glucose
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in the prediabetic stage rises ethical and economic concerns, and
novel cost-effective treatments are required.

Medical nutrition therapy is recommended as first line
treatment for prediabetes and T2D (15, 16) and may be a useful
tool for improving glucose tolerance. In fact, meal composition
and size have a profound impact on the physiological
processes that regulate postprandial glycemia, such as gastric
emptying and intestinal glucose absorption, pancreatic, and gut
hormone release, hepatic insulin extraction, glucose uptake by
insulin-sensitive tissues, and endogenous glucose production
(17). Adherence to lifelong nutritional interventions involving
energy restriction is often poor, and therefore alternative
dietary strategies focusing on eating patterns are gaining
growing interest.

One emerging approach is premeal ingestion of non-
carbohydratemacronutrients (namely protein and fat), which has
been shown to reduce postprandial hyperglycemia in both T2D
and at-risk individuals (Figure 1A) (20). It has long been known
that non-carbohydrate components of the meal can markedly
influence postprandial glycemia (18, 21–25). More recently, the
magnitude of the glucose-lowering effect of protein and fat
was found to be even greater when these macronutrients are
consumed before carbohydrates than mixed with them (22, 23).
Based on these observations, “preloading” eachmeal with protein
and fat or tailoring the sequence of macronutrient ingestion
(i.e., consuming protein- and fat-rich food before carbohydrate)
has been proposed as a novel strategy for the prevention and
management of postprandial hyperglycemia.

The number of experimental studies in support to the clinical
application of this promising nutritional approach is rapidly
growing. However, gathering all available evidence is challenging
given the different keywords used by different groups to
define similar dietary strategies [e.g., protein/fat/nutrient
premeal consumption (26, 27) or preload (19, 23, 28–30),
food/meal/nutrient sequence (31, 32) or order (33)]. A further
degree of complexity in the interpretation and comparison
of different findings is produced by the heterogeneity of
study designs. In fact, the effect of preload-based nutritional
interventions on postprandial glycemia appears largely
dependent upon different variables, such as preload composition,
size, and timing of ingestion, test meal stimulus, and individual
glucose tolerance status (20) (Figure 1B).

Herein, we review the available evidence on the acute and
chronic effect of protein and fat preloads on postprandial
glycemia throughout the whole spectrum of glucose tolerance,
from diabetic patients to prediabetic and healthy individuals
(Table 1), the underpinning physiological mechanisms, and the
potential therapeutic relevance in different clinical settings.

IMPACT OF MACRONUTRIENT PRELOADS
ON POSTPRANDIAL GLYCEMIA

Type 2 Diabetes
In subjects with type 2 diabetes (T2D), premeal consumption
of protein and fat—either alone or in combination—has
proved effective in decreasing or even normalizing postprandial

hyperglycemia (Table 1). In 2006, Gentilcore et al. (22)
demonstrated that 30ml olive oil ingested 30min before a
carbohydrate meal was able to reduce and delay the postprandial
glucose excursion in 6 diet-controlled T2D subjects. In 2009, the
same group observed that a 55 g whey protein preload led to an
even greater reduction in postprandial hyperglycemia in 8 diet-
controlled T2D subjects (23). Thereafter, the ingestion of food
rich in protein or fat before carbohydrate has been consistently
associated with reduced postload glycemic excursions in T2D
patients when compared with a carbohydrate-first meal pattern
(18, 19, 27, 30, 31, 33–36, 39). On average, a ∼40% reduction
in glucose peak and a ∼50–70% reduction in glucose excursion
has been observed when protein and vegetables were consumed
before carbohydrate, rather than mixed together or consumed
after carbohydrate (33, 39). In our studies (18, 19), a small mixed
protein and fat preload (50 g parmesan cheese and 50 g egg)
was associated with a 30–50% reduction in glucose peak and
overall excursion during an oral glucose tolerance test (OGTT)
in well-controlled T2D patients. Similarly, Jakubowicz et al. (36)
showed a ∼30% reduction in postload glucose levels when 50 g
whey protein were consumed before a high-glycemic index meal.
Of note, the effect of macronutrient preloads on postprandial
hyperglycemia in T2D appears comparable or even greater than
that of current pharmacological therapy. In fact, Wu et al. (30)
demonstrated that the glucose-lowering effect of a 25 g whey
protein preload is similar to that of a dipeptidyl peptidase-4
(DPP-4) inhibitor (50mg vildagliptin). Interestingly, combining
the protein preload with vildagliptin was more effective for
reducing postprandial glycemia compared with either treatment
alone, thereby suggesting an additive effect. Further studies are
needed to examine the interaction between nutrient preloads
and oral hypoglycemic agents. In fact, preloading with saturated
fat may lead to a deterioration in the glucose-lowering effect of
DDP-4 inhibitors over time (48).

Prediabetic Subjects
In individuals with impaired glucose tolerance (IGT), a mixed
nutrient preload ingested 30min before an OGTT was able
to decrease postload glucose concentrations by 37% when
compared with a water preload (18) (Table 1). In agreement
with this finding, Shukla et al. (43) observed a similar reduction
(−39%) in postprandial glycemia in IGT subjects who consumed
protein and vegetables before carbohydrate, compared with the
same foods consumed in the reverse order (i.e., carbohydrate
before protein and vegetables). In 20 subjects with IGT and/or
isolated 1-h glucose ≥160 mg/dl, a small (14 g) almond preload
reduced postprandial glycemia by 15% (42). Interestingly, the
effect was greater in individuals with higher 2-h glucose
concentrations, suggesting an inverse correlation between the
individual degree of glucose tolerance and the magnitude of the
glucose-lowering effect achievable with nutrient preloads (42).

Healthy Subjects
Nutrient preloads have been shown to reduce postprandial
glucose concentrations even in subjects with normal glucose
tolerance (NGT) (Table 1). Premeal consumption of either single
amino acids (49, 50), whey protein (26, 44), a protein-enriched
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FIGURE 1 | Glucose-lowering effects of mixed nutrient preloads. (A) Schematic representation of postprandial glucose-lowering mechanisms activated by nutrient

preloads. (B) Reduction of postload glucose excursions (1 Plasma glucose iAUC) during a 75 g oral glucose tolerance test (OGTT) after a mixed nutrient preload is

proportional to the degree of glucose tolerance (Plasma glucose iAUC) in subjects with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), and type 2

diabetes (T2D). The physiological mechanisms responsible for the improvement in glucose tolerance during a 75 g OGTT preceded by a mixed nutrient preload

(Preload) compared with a control OGTT (Control) are: (C) decreased rate of appearance of oral glucose for delayed gastric emptying; (D) enhanced

glucose-stimulated insulin secretion (β-cell glucose sensitivity); and (E) reduced insulin clearance. Data are pooled from Trico et al. (18) and Trico et al. (19), for a total

of 43 subjects examined (12 NGT, 13 IGT, and 18 T2D, except for B where T2D = 10). *p <0.05 using paired Wilcoxon signed-rank test for within-group difference

between Preload and Control.
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bar (27), dairy or soy milk (45), or margarine (21) before a
carbohydrate-rich meal decreased postprandial glycemia in a
dose-dependent manner in NGT subjects. Consistently, a mixed
protein and fat preload reduced plasma glucose excursions after
an OGTT by 32% in healthy young adults (18). Furthermore, the
ingestion of either meat, fish, or vegetables before rice was able
to decrease the postmeal glucose peak by ∼50% and to delay it
by 30–60min when compared with eating the same food in the
reverse order (i.e., rice first) (31, 46).

Type 1 Diabetes
Despite recent improvements in insulin therapy, a tight control of
postprandial hyperglycemia remains difficult to achieve in type
1 diabetes, and is frequently associated with an increased risk
of insulin-induced hypoglycemia. In this setting, a recent study
by Faber et al. (47) has shown that protein and fat consumed
15min prior to carbohydrates reduced by ∼10% mean glucose
levels in 20 type 1 diabetic children and adolescents. Remarkably,
the nutrient preload was not associated with an increased risk of
hypoglycemic episodes (47).

Gestational Diabetes
Glucose intolerance in pregnancy increases the risk of
complications during delivery and the incidence of metabolic
diseases later in life. In women with gestational diabetes (29),
a treatment with low-carbohydrate preloads resulted in a
significant reduction in both fasting and postprandial plasma
glucose when compared with a dietary strategy implementing
high-carbohydrate preloads. While low-carbohydrate preloads
show promise, further studies are needed to determine efficacy
and superiority of this approach.

LONG-TERM EFFICACY, SAFETY, AND
FEASIBILITY

Despite numerous experimental studies demonstrated the
acute beneficial effect of protein and fat consumption before
carbohydrate on postprandial glycemia, only a few studies
evaluated the long-term efficacy, feasibility, and safety of preload-
based dietary strategies. In T2D subjects, a 25 g whey protein
preload consumed 30min before each meal for 4 weeks showed a
sustained effect on postprandial glucose, with a nearly significant
reduction in fructosamine levels (p = 0.06) (37). Furthermore,
a 12-week intervention with mixed nutrient preloads was
associated with decreased postprandial glucose and glycated
hemoglobin levels in T2D subjects (28, 40). Finally, a recent
study found a reduction in both fasting and postprandial plasma
glucose in women with gestational diabetes consuming low-
carbohydrate preloads for∼9± 1 weeks (29).

Dietary strategies that require nutritional supplements (either
food or artificial formulas) might be expensive and poorly
accepted. Moreover, although previous studies did not show
weight gain after chronic preload consumption (28, 37) possibly
due to the compensatory satiating effect of protein (26, 28, 51–
55), adding nutrient preloads to each meal may increase the total
daily caloric intake, leading to an increase in body weight and
diet-related metabolic alterations (56, 57).

To limit the risk of weight gain and to increase the feasibility
and cost-effectiveness of dietary interventions exploiting the
same glucose-lowering effects of nutrient preloads, other
strategies have been proposed. Low-calorie fiber-rich preloads
(e.g., guar gum, vegetables), alone or in combination with
protein, have been shown to improve glucose tolerance in both
healthy and diabetic subjects with negligible effects on body
weight (40, 41, 58–61). Furthermore, our group (20, 38) and
others (31–33, 39, 43, 46, 60) have recently proposed a nutritional
approach that simply consists in manipulating the sequence of
macronutrient ingestion during each meal. In a proof-of-concept
study, postprandial glucose control significantly improved in
T2D subjects instructed to consume protein- and fat-rich
food before carbohydrate-rich food for 8 weeks under free-
living conditions, with no differences in body weight, serum
lipid profile and other metabolic markers (38). These data
support carbohydrate-last meal patterns as an effective and safe
behavioral strategy to reduce postprandial glucose excursions.

PHYSIOLOGICAL MECHANISMS

Gastric Emptying
The effect of non-carbohydrate nutrients on glucose tolerance
is largely dependent on their ability to delay gastric emptying
(18, 19, 22, 23, 31, 37, 45). Gastric emptying modulates the rate
of oral glucose delivery and absorption in the small intestine,
and it can account for about one third of the variance in the
early glucose excursion during an OGTT (62–65). Fat is the most
potent macronutrient in slowing gastric emptying (21, 62, 66–
68). In 1989, Cunningham and Read (21) showed that the effect
of fat on gastric emptying is greater when fat is consumed prior to
carbohydrate rather than mixed with it, suggesting that this effect
is dependent on the digestion of fat to fatty acids (22, 69, 70). In
2009, a protein preload was also found to be effective in slowing
gastric emptying (23), as later confirmed by other groups (44).
The effect of protein preloads on gastric emptying appears to be
smaller compared to fat (23, 44, 71) and substantially unchanged
after a 4-week consumption (37). Fat and protein may exhibit
an additive effect on gastric emptying. In fact, a mixed protein
and fat preload can markedly reduce oral glucose absorption
across different classes of glucose tolerance (from −16% in NGT
to−42% in T2D) (18) (Figure 1C). Consistently, Kuwata et al.
(31) observed that both meat and fish consumed before rice are
able to delay gastric emptying, particularly in T2D (31).

Insulin Secretion and β Cell Function
The effect of nutrient preloads on postprandial glycemia largely
depends on their insulinotropic action (18, 22, 23, 31, 33,
36, 50, 72). Among non-carbohydrate macronutrients, protein
is the most effective in enhancing glucose-stimulated insulin
secretion. Ma et al. (23) showed that a 55 g whey protein
preload increases glucose-stimulated insulin release by 2- to 3-
fold in T2D, and these results have been confirmed in both
non-diabetic and T2D subjects (27, 36, 71). The insulinotropic
effect of protein is dose-dependent (26) and likely mediated by
both direct and incretin-mediated interactions of protein and
amino acids with β cells (72–76). Although fat can enhance
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glucose-stimulated insulin secretion through direct and receptor-
depended mechanisms (76–82), whether preloading with fat
alone can affect insulin secretion is unclear. Indeed, the marked
reduction in glucose responses due to the delay in gastric
emptying after fat consumption usually leads to lower—rather
than higher—absolute insulin levels in the early postprandial
phase (21, 22). However, the insulin peak following a fat preload
seems only delayed, but not reduced, even in the context of lower
glucose levels (22). This observation suggests a positive—though
small—effect of fat preloads on β cell function.

The effect of protein and fat on insulin secretion may be
enforced by a synergistic interaction between the two classes
of nutrients (18, 19, 83, 84). Our group showed that a mixed
protein and fat preload increased plasma insulin levels during
the first hour of an OGTT across the whole spectrum of glucose
tolerance, despite lower glucose concentrations (18). The mixed
preload increased the β cell responsiveness to plasma glucose (β
cell glucose sensitivity) by 20% in NGT and prediabetic subjects,
and almost doubled it in T2D subjects (Figure 1D). The greater
enhancement of glucose-induced insulin secretion in T2D may
be explained by a higher gradient of plasma amino acids after
protein digestion and absorption in those subjects compared with
healthy individuals (72, 85). Some studies with mixed preloads
have reported different results (31, 39, 45, 46), likely due to a
less rigorous estimation of β cell function (i.e., insulin and C-
peptide levels were not adjusted for glucose concentrations) or
to a stronger inhibition of gastric emptying by different preloads
tested, which wouldminimize their impact on glucose-stimulated
insulin secretion.

Insulin Clearance and Insulin Sensitivity
Besides a direct stimulation of insulin release by pancreatic β

cells, macronutrient preloads may increase insulin bioavailability
by reducing insulin degradation (“insulin clearance”), which
mostly occurs in the liver. In fact, we reported an average
∼10% reduction in insulin clearance during a 2-h OGTT after a
mixed nutrient preload, without significant differences between
NGT, IGT and T2D subjects (18) (Figure 1E). A subsequent
experiment showed a 52% increase in plasma insulin levels
in T2D subjects during a 5-h OGTT, which was due to the
combination of a 28% lower insulin clearance and a 22% higher
insulin secretion after the nutrient preload (19).

Nutrient preloads may also impact on postprandial glucose
homeostasis by affecting peripheral and hepatic insulin action
(“insulin sensitivity”). However, no evidence so far has
shown a significant influence of nutrient preloads on insulin
sensitivity (18, 19).

Incretin Hormones
Macronutrient preloads may exert their glucose-lowering effects
by stimulating the release of gut hormones, such as the
glucagon like peptide-1 (GLP-1) and the glucose-dependent
insulinotropic polypeptide (GIP) (23, 44, 71, 86–91). GLP-
1 and GIP are usually referred to as “incretin hormones”
to underscore their stimulatory effect on pancreatic β cells,
which is glucose-dependent, dose-dependent, and—only for
GLP-1—largely preserved in T2D (86, 92). Furthermore, incretin

hormones exhibit pleiotropic actions that include the inhibition
of gastric emptying and appetite [by GLP-1 (86, 92)] and
the reduction of hepatic insulin clearance [by GIP (90, 91)].
Preloading with either protein or fat alone enhanced GLP-1
concentrations in both T2D and healthy subjects, while only
protein increased GIP levels in T2D (22, 23, 27, 36, 44, 71). When
protein and fat were consumed together as a mixed preload,
we observed an almost doubled GIP response, alongside with
a modest but significant increase in plasma GLP-1 (18). These
effects were comparable in individuals with different glucose
tolerance, with a tendency to be more pronounced in IGT and
T2D subjects (18, 19). Similarly, consuming meat or fish before
carbohydrate resulted in higher GLP-1 andGIP concentrations in
both T2D and healthy individuals, and these effects were greater
in T2D (31).

Additional Mechanisms
Several additional mechanisms have been proposed to explain
the effect of non-carbohydrate nutrients on postprandial glucose
control. Along with GLP-1 and GIP, protein (23, 44) and fat
(93, 94) can stimulate the release of other gut hormones, such
as cholecystokinin (CCK) and peptide YY (PYY), which inhibit
gastric emptying and appetite (95–98) and stimulate insulin
secretion (99–101).

The sight, smell and taste of nutrients may trigger neural
signals leading to anticipatory insulin release, which may
partly explain the insulinotropic effect of nutrient preloads
(102). However, the contribution of the so-called “cephalic
phase” of insulin secretion on glucose tolerance is little (∼1%
of postprandial insulin release), transient (8–10min from
sensory stimulation) (102), and not supported by experimental
evidence (18).

Furthermore, it should be noticed that the glucose-lowering
effect of nutrient preloads occurs despite an increase in
plasma glucagon levels (18, 19, 31, 71), which is expected to
worsen glucose tolerance by promoting gluconeogenesis and
glycogenolysis. However, endogenous glucose production was
not affected by premeal consumption of protein and fat (18, 19),
and the relevance of increased glucagon concentrations in this
setting remains controversial.

Finally, the reduction of appetite and calorie intake following
protein consumption, which is possibly mediated by the
stimulation of GLP1 secretion, might contribute to weight loss
after long-term consumption of protein preloads (51–55).

CONCLUSIVE REMARKS AND FUTURE
PERSPECTIVES

The experimental evidence discussed above indicates that
premeal consumption of protein and fat can markedly reduce
postprandial glycemia across the whole spectrum of glucose
tolerance. The mechanisms underlying this effect include a
delay in gastric emptying as well as an enhancement of
glucose-stimulated insulin release and a decrease in hepatic
insulin clearance, resulting, respectively, in slower glucose
absorption and hyperinsulinemia (22, 23, 72). From the
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clinical perspective, the glucose-lowering effect of nutrient
preloads is comparable in magnitude to that of current
antihyperglycemic drugs (30), is proportionally greater in T2D
than prediabetic and non-diabetic subjects (20), and appears
to be sustained over time (37, 38). Preload-based dietary
strategies can be useful in the management of T2D, either
alone or in combination with pharmacological treatments,
due to their additive effects (30). Furthermore, preload-based
diets are of particular interest in clinical settings in which
available pharmacological options are limited, including type
1 diabetes (47) and gestational diabetes (29), or not cost-
effective, such as in the large number of individuals at
high risk to develop T2D (18, 43). Remarkably, the same
improvement in postprandial glycemia after nutrient preload
consumption appears to be achievable by optimal timing of
carbohydrate ingestion during a meal (i.e., carbohydrate-last
meal pattern) (20, 31–33, 38, 39, 43, 46). This promising
approach would avoid additional energy intake when compared
with nutrient preloads, thereby minimizing the risk of body
weight gain and diet-related metabolic alterations. Further
refinement is required to determine the optimum timing
and quantity of macronutrient consumption during a meal,
as well as to standardize nutritional recommendations for
targeting postprandial glycemia in different clinical settings.
Larger studies are also needed to confirm the encouraging

preliminary data on long-term efficacy, feasibility, and safety of
these dietary approaches.

In summary, consistent experimental evidence suggests that
preload-based nutritional strategies may offer a novel simple,
effective, safe, and inexpensive therapeutic approach for the
prevention and management of postprandial hyperglycemia
and T2D.
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