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Abstract— Epidemiological studies suggested that obesity 
increases the risk of colorectal cancer (CRC). The genetic 
connection between CRC and obesity is multifactorial and 
inconclusive. In this study, we hypothesize that the study of 
shared comorbid diseases between CRC and obesity can offer 
unique insights into common genetic basis of these two diseases. 
We constructed a comorbidity network based on mining health 
data for millions of patients. We developed a novel approach and 
extracted the diseases that play critical roles in connecting 
obesity and CRC in the comorbidity network. Our approach was 
able to prioritize metabolic syndrome and diabetes, which are
known to be associated with obesity and CRC through insulin 
resistance pathways. Interestingly, we found that osteoporosis
was highly associated with the connection between obesity and 
CRC. Through gene expression meta-analysis, we identified novel 
genes shared among CRC, obesity and osteoporosis. Literature 
evidences support that these genes may contribute in explaining 
the genetic overlaps between obesity and CRC.  

Keywords—comorbidity network; colorectal cancer; obesity;
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I. INTRODUCTION

Comorbidity studies often detect unexpected disease links 
[1] and offer novel insights into the genetic mechanisms of 
diseases [2, 3]. A number of epidemiological studies suggest
that obesity increases the risk of colorectal cancer (CRC) [4-6].
Based on these evidences of co-occurrence, many genetic
factors have been proposed to explain the role of obesity in the 
development of CRC. For example, both animal and human 
studies have demonstrated that the increased release of insulin 
and reduced insulin signaling play roles in obesity and 
colorectal carcinogenesis [7-9]. Experiments also show that 
obesity leads to altered level of adipocytokines, such as 
Adiponectin [10-12] and leptin [13, 14], which may either 
prevent or foster carcinogenesis.  

The mechanism for the association between obesity and 
CRC is multifactorial and inconclusive [6, 15, 16]. Shared 
comorbidities between obesity and CRC can provide unique 
insights into the common genetic basis for the two diseases.

For example, type 2 diabetes is highly correlated with obesity 
and was identified as a risk factor for CRC [17]. A few studies 
then discovered that genetic factors of insulin resistance, which 
occur in type 2 diabetes, contribute in explaining the role of
obesity in CRC [18]. However, both obesity and CRC are 
heterogeneous conditions. Over 40% of the obese population is 
not characterized by the presence of insulin resistance [19]. We 
hypothesize that systems approaches to studying the diseases 
that are phenotypically-significant to both CRC and obesity 
may offer new insights into the common molecular 
mechanisms between the two interconnected diseases.  

Systematic comorbidity studies have been conducted 
previously, but mostly focused on pairwise comorbidities and 
their genetic overlaps. Rhetsky et al. developed a statistical 
model to estimate the co-occurrence relationship for each pair 
of 160 diseases [20], and demonstrated that comorbidities are 
genetically linked. Park et al. [21] and Hidalgo et al. [22]
detected the comorbidities pairs from the Medicare claims 
(which only contain senior patients ages 65 or older) with 
statistical measures. Roque et al. mined pairwise disease 
correlations using similar measures from medical records of a 
psychiatric hospital [23]. Recently, we extracted comorbidity 
patterns from a publically accessible database, which contains 
disease records for millions of patients at all ages, using an 
association rule mining approach [24, 25].  

In this study, we constructed a disease comorbidity network 
based on our previous work. We developed a novel approach to 
detect diseases that have strong connections with both obesity 
and CRC in the comorbidity network. Specifically, we 
extracted the local network consisting of all the paths between 
obesity and CRC, and prioritized the nodes (diseases) that play 
critical roles in maintaining the connection between the two 
diseases (Fig.1). Substantial literature evidences can support 
that the top ranked diseases have associations with both obesity 
and CRC. We investigated the gene expression profiles of a 
prioritized comorbid disease to facilitate detecting novel 
genetic basis underlying the link between obesity and CRC.
Our approach is generalizable to study the genetic basis for 
other disease associations. 
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Fig.2. Our approach contains three steps: (1) We constructed a comorbidity network based on data mining; (2) 
we extracted the local network that contains paths from obesity to CRC, and analyzed the local network to pin point 
the strong comorbidity for both obesity and CRC; (3) we conducted gene expression meta-analysis to identify 
common genes shared among obesity, CRC and the comorbidity.  
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Fig.1. Approach to detect the diseases that have strong 
connections with both obesity and CRC in the 
comorbidity network. Nodes D1, D2 and D3 were 
prioritized because they play important roles in 
maintaining the network structure and the connection 

II. MATERIALS AND METHODS

Fig.2 shows the three steps of our approach. We first 
mined disease comorbidity relationships from large amounts 
of patient records and constructed a disease comorbidity 
network. We then extracted the local comorbidity cluster for
obesity and CRC and prioritize the candidate comorbidity that 
plays a critical role in connecting the two diseases. Finally we 
conducted gene expression meta-analysis to identify common 
genes shared by obesity, CRC and the prioritized comorbidity.

A. Construct Disease Comorbidity Network 

We mined disease comorbidity relationships from the FDA 
adverse event reporting system. The database contains records 
(2004-2013) of 3,354,043 patients (male and female at all age 
levels) and 10,112 disorders. Our previous studies [24, 25]
have demonstrated that this database is useful in mining

comorbidity patterns among diverse patient populations.

We applied the association rule mining approach to detect 
disease comorbidity relationships from the patient-disease 
pairs. Association rule mining can flexibly detect strong co-
occurrence relationships among sets of diseases, and alleviates 
the intrinsic bias of traditional comorbidity measures (such as 

-correlation) towards rare diseases [24, 25].   

We constructed an undirected and unweighted comorbidity 
network based on the result of association rule mining, which
is a list of patterns between two sets of diseases, represented in 
the form . We collected all diseases in the set x and y in 
each pattern, assuming they have comorbidity relationships 
with each other, and established an edge between each pair of 
diseases in xUy to construct the comorbidity network [24].

B. Prioritize the Diseases That Have Strong Associations with 
Both Obesity and CRC

We extracted the local network consisting of  the paths 
from obesity to CRC in the disease comorbidity network. The 
local network thus includes the nodes that may represent 
different aspects of the relationship between obesity and CRC.
We implemented breath first search to enumerate the paths, and 
limited the paths within four steps.

Then we ranked the nodes in the local network, except 
obesity and CRC, based on how important they are in 
maintaining the local network structure and the connection 
between obesity and CRC. We used the degree and 
betweenness centrality to characterize the importance of each
node in the flowing of the network. The degree of a node 
becomes higher if more paths between obesity and CRC pass 
through this node. The betweeness evaluates the number of 
times that the node acts as the bridge along the shortest paths.
Removing the nodes with highest degree or betweenness can 
easily break down the connection between obesity and CRC.
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Fig.3. The local network that contains all paths from obesity to colorectal cancer in the comorbidity network.

TABLE I. TOP FIVE DISEASE NODES IN THE LOCAL NETWORK THAT 
CONTAINS ALL PATHS FROM OBESITY TO COLORECTAL CANCER. THE 
DISEASES WERE RANKED BY DEGREE AND BETWEENNESS, RESPECTIVELY. 

Rank
Ranked by degree Ranked by betweenness

Nodes Degree Nodes Betweenness

1 Hypertension 26 Hypertension 60.2

2 
Diabetes mellitus 24 Diabetes 

mellitus
55.9

3 Hyperlipaemia 22 Hyperlipaemia 35.2

4 Osteoporosis 14 Osteoporosis 12.3

5 Hypothyroid 14 Hypothyroid 9.5

We investigated the top ranked diseases based on both ranking 
methods, and used the unexpected ones to guide the detection 
of genetic associations between obesity and CRC. 

C. Identify Gene Overlaps Through Gene Expression Meta-
analysis 

We chose a top ranked disease on the path between obesity 
and CRC, and then conducted gene expression meta-analysis 
for the prioritized disease, obesity and CRC, respectively, to 
detect new genetic explanations for the relationship between 
obesity and CRC. Gene expression normalized data (SOFT
files) were downloaded from NCBI GEO omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/) using the R package 
GEOquery [28]. Then, we performed microarray meta-analyses 
for each disease independently using the R package MetaDE 
[29]. MetaDE implements meta-analysis methods for 
differential expression analysis, and we used the Fisher’s 
method. Significant differentially expressed genes (DEGs) 
were selected as those displaying a FDR corrected p-value 
<0.05. Last, we extracted the common significant genes for the 
three diseases.

III. RESULTS

A. Local Disease Comorbidity Network Models the 
Connection Between Obesity and CRC

We extracted 7006 comorbidity association rules with the 
confidence larger than 50% from the patient records across ten 
years. The comorbidity network based on these  rules contains 
771 nodes and 15,667 edges. Fig.3 shows the local network 
consisting of all the 119 paths (no longer than four steps) from 
obesity to CRC. A total of 24 nodes in the local network are the 

candidate diseases, which have associations with both obesity 
and CRC, and may indicate different aspects of the relationship
between the two diseases. 

B. Osteoporosis Shows High Comorbidity Associations with 
Both CRC and Obesity

Table 1 shows the top five nodes sorted by degree and 
betweenness in the local network. In either way of ranking, 
hypertension, diabetes and hyperlipaemia were in top three and 
closely related with both obesity and CRC. Substantial 
literature evidences support that the metabolic syndrome 
components, hypertension and hyperlipaemia, as well as 
diabetes have association with obesity and CRC through 
insulin resistance in substantial literature [6-9, 18]. These three 
disorders also independently increase the risk of CRC and 
colorectal adenoma [6, 17, 18]. The top ranked comorbidities
demonstrated the validity of our network analysis approach.

Significantly, osteoporosis was ranked highly by both 
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TABLE II. COMMON GENES SHARED BY OBESITY, CRC AND OSTEOPOROSIS, AND PLAUSIBLE 
EVIDENCE SUPPORTING THEIR RELATIONSHIPS WITH THE THREE DISEASES.

GENES OBESITY CRC OSTEOPOROSIS

PPP1R15A* In the bone 
morphogenetic protein 
(BMP) signaling pathway, 
which regulates appetite
[34] 

Mutations in the BMP 
pathway are related with 
colorectal carcinogenesis [35] 

In the bone morphogenetic 
protein signaling pathway, which 
are associated with bone-related 
diseases, such as osteoporosis 
[36] 

FOS diet-induced obesity is 
accompanied by alteration 
of FOS expression [37] 

Proto-oncogene, in the KEGG 
pathway of colorectal cancer 
[38] 

Mice lacking c-fos develop severe 
osteopetrosis [39] 

FOSB positive association 
between maternal obesity
[40] 

Oncogene, regulators of cell 
proliferation, has a debatable 
impact on CRC patient 
survival [41] 

Overexpression of FosB increases 
bone formation [42] 

HADHA* Associated with multiple 
fatty acid metabolism 
pathways [43] 

Unknown. Associated with 
breast cancer [44] 

Unknown.

JUN The c-Jun NH2-terminal 
Kinase Promotes Insulin 
Resistance [45] 

Proto-oncogene, in the KEGG
pathway of colorectal cancer 
[38] 

Associated with osteogenesis [46, 
47] 

NRIP1* Down-regulated in obese 
subjects, may suggest a 
compensatory mechanism 
to favor energy 
expenditure and reduce 
fat accumulation in 
obesity states [48] 

Unknown. Involved in 
regulation of E2F1, an 
oncogene [49] 

Modulates transcriptional activity 
of the estrogen receptor. Interact 
with ESR1 and ESR2 in 
osteoporosis [50] 

* novel genes not involving insulin resistance pathways

Fig.4. The paths from obesity to colorectal cancer that 
pass through osteoporosis.

centrality ranking methods. Epidemiological studies suggested 
an inverse association between bone mineral density and CRC
[30], colon cancer among postmenopausal women [31], and 
colorectal adenoma [32]. On the other hand, patients of obesity 
and osteoporosis may share common genetic and 
environmental factors [33]. Different from previous studies, 
our result shows that osteoporosis is crucial for the association
between CRC and obesity. Fig.4 shows the paths of obesity-
osteoporosis-CRC. We further investigate the gene expression 
profiles of osteoporosis patients to gain novel insight of the
genetic basis for the link between obesity and CRC.  

C. Innovative Genes Shared Among Osteoporosis, Obesity 
and CRC Were Detected Using Gene Expression Meta-
analysis

We downloaded five microarray series (GSE4017,
GSE9348, GSE4183, GSE8671, GSE20916) for CRC, three 
(GSE48964, GSE29718, GSE55205) for obesity and three
(GSE7429, GSE2208, GSE7158) for osteoporosis. Through 
meta-analysis, we obtained 9058 significant differentially 
expressed genes for CRC, 275 for obesity and 91 for 
osteoporosis. CRC and obesity shared a total of 192 genes. 
Among them, we found genes on insulin signaling pathways, 
such as PDK1, PRKAG2 and PDE3B, and adipocytokines, 
such as IL6 and IL8.

The three diseases osteoporosis, obesity and CRC shared 
six genes. Table II lists the genes and literature evidences, 
which support their relationships with each of the three 
diseases. Among them, FOS, JUN, and FOSB are oncogenes. 
FOS and JUN are known on the insulin signaling pathway. 
FOSB is on the AP1 pathway, which is associated with the 
proliferation of colon cancer cells [55]. Several studies 
suggested that overexpression of FOSB increases the 
responding of high fat reward while decreases energy 
expenditure and promotes adiposity [40, 56].

Interestingly, we found several genes not involving insulin 
signaling. Gene PPP1R15A is in the bone morphogenetic 
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protein signaling (BMP) pathway and its superfamily, the TGF 
beta signaling pathway. The mutation of BMP pathway has 
been found in patients with juvenile polyposis, which is rare 
syndrome with an increased risk for developing CRC [51, 52].
Mutations in TGF beta signaling also have been found 
susceptibility to CRC through genome-wide association studies 
[53]. A recent mouse experiment also showed that the BMP 
pathway regulates brown adipogenesis, energy expenditure and 
appetite, thus is highly associated with diet-induced obesity
[54]. These evidences support our result. Further investigation 
is required to confirm and elucidate the role of the BMP 
pathway in the connection between obesity and CRC.

Gene NRIP1 regulates the estrogen receptor. Its interaction 
with sex hormone receptors plays a role in both obesity [48]
and osteoporosis [50]. Its relationship with CRC is unclear yet, 
but studies suggested that estrogen may have protective effect 
on CRC [57]. Gene HADHA is on multiple pathways of fatty 
acid metabolism. But its role in CRC and osteoporosis is 
unknown yet. 

To identify the common genes among obesity, CRC and 
osteoporosis, we currently analyzed the gene expression data, 
which can be noisy. While we found literature evidences to 
support the detected genes and their relationships with both 
obesity and CRC, these candidate genes need further 
investigations, for example, through mouse model experiments.  

IV. DISCUSSIONS AND CONCLUSIONS

The genetic connection between CRC and obesity is 
multifactorial and inconclusive. In this study, we developed a 
comorbidity network analysis approach, which suggested that 
osteoporosis is important for the connection between obesity 
and CRC. We identified common genes among obesity, CRC 
and osteoporosis, and found these genes are associated with the 
regulation of sex hormone receptors and growth factors
inducing bone formation. These genes are candidates in 
explaining the genetic overlaps between obesity and CRC.  

Our comorbidity network may be not inclusive and biased 
toward the diseases whose drugs have high toxicity. The FDA 
adverse event reporting system collects data from medical 
product manufacturers, health professionals, and the public.
The diseases without drug treatments are not included in the 
data, and the disease comorbidity relationships were often 
under-estimated in practice based on these data. In this study, 
we developed a network analysis approach to compensate the 
bias of the comorbidity data. In the future, including more 
complete patient disease data may facilitate the detection of 
new interesting comorbidities other than osteoporosis for 
obesity and CRC.

In addition, we currently detect comorbidities based on dis-
ease co-occurrence. The co-occurrence patterns may indicate 
the increase of the risk between two diseases in a mutual way. 
Incorporating more comprehensive patient-level data, such as 
time series data, may help refine the disease relationships and 
control confounding factors.
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