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Background: Alzheimer’s disease (AD) is the major cause of dementia in population

aged over 65 years, accounting up to 70% dementia cases. However, validated

peripheral biomarkers for AD diagnosis are not available up to present. In this study, we

adopted a new strategy of combination of computational prediction and experimental

validation to identify blood protein biomarkers for AD.

Methods: First, we collected tissue-based gene expression data of AD patients and

healthy controls from GEO database. Second, we analyzed these data and identified

differentially expressed genes for AD. Third, we applied a blood-secretory protein

prediction program on these genes and predicted AD-related proteins in blood. Finally,

we collected blood samples of AD patients and healthy controls to validate the potential

AD biomarkers by using ELISA experiments and Western blot analyses.

Results: A total of 2754 genes were identified to express differentially in brain tissues

of AD, among which 296 genes were predicted to encode AD-related blood-secretory

proteins. After careful analysis and literature survey on these predicted blood-secretory

proteins, ten proteins were considered as potential AD biomarkers, five of which were

experimentally verified with significant change in blood samples of AD vs. controls by

ELISA, including GSN, BDNF, TIMP1, VLDLR, and APLP2. ROC analyses showed that

VLDLR and TIMP1 had excellent performance in distinguishing AD patients from controls

(area under the curve, AUC = 0.932 and 0.903, respectively). Further validation of

VLDLR and TIMP1 by Western blot analyses has confirmed the results obtained in ELISA

experiments.

Conclusion: VLDLR and TIMP1 had better discriminative abilities between ADs and

controls, and might serve as potential blood biomarkers for AD. To our knowledge,

this is the first time to identify blood protein biomarkers for AD through combination

of computational prediction and experimental validation. In addition, VLDLR was first

reported here as potential blood protein biomarker for AD. Thus, our findings might

provide important information for AD diagnosis and therapies.
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INTRODUCTION

Alzheimer’s disease (AD) is the major cause of dementia in
population aged over 65 years, accounting up to 70% dementia
cases (1). This disease is pathologically characterized with
extracellular senile plaques (amyloid-β, Aβ) and intraneuronal
neurofibrillary tangles (NFTs), which are the prime suspects in
damaging and killing nerve cells (2). AD has become a major
health problem in the world due to the lack of effective treatment.
It was reported that there were approximate 48 million people
worldwide affected by AD in 2015, and the number was estimated
to reach 86 million by the year 2050 (3). Clearly, the increasing
AD cases would load great burden on families and society, urging
the physicians and scientists to find precise and effective ways to
diagnose and treat this disease.

Currently, the clinical diagnosis of AD requires a series of
examinations including medical history, neuropsychological
assessment, and various radiological investigations (4).
However, those diagnosis processes could not be used as
routine examinations for AD, because they are time-consuming
and largely depend on physician’s experience. In order to
diagnose AD objectively and accurately, researchers have used
biotechnologies and bioinformatics methods to search for
disease biomarkers. As cerebrospinal fluid (CSF) is affinity with
brain, it is considered to contain potential biomarkers of AD
pathologies. Several studies have indicated that the decreased
concentration of Aβ42 peptide and increased concentration
of tau proteins in CSF of AD patients compared to controls
might work as diagnostic biomarkers for AD (5, 6). While CSF
collection by lumbar puncture is invasive and may lead to some
side effects such as headache (7), which limits the application of
these biomarkers for large-scale AD screening. Blood contains
large number of disease-associated proteins and its obtaining is
non-invasive, thus it becomes a good source for discovery of AD
biomarkers.

Extensive researches have been done to discover plasma or
serum biomarkers for AD. For example, Ray and colleagues
used antibody arrays to identify an 18-panel protein signature
from 120 cell-signaling proteins, which could differentiate ADs
from non-demented controls and could also distinguish mild
cognition impairment (MCI) patients who later progressed to
AD from those unchanged or converted to other dementia (8).
Liao and colleagues recognized 6 possible plasma biomarkers for
AD patients by combining 2D-PAGE and LC-MS/MS methods
(9). Pratico‘ et al disclosed that the F2-IsoPs, resulting from
peroxidation of poly-unsaturated fatty acid (10), have high levels
in plasma of AD and MCI patients by using GC-MS technology
(11, 12). However, the identified AD biomarkers are discrepant
dramatically due to the variations in researchmethods. Generally,
discovery of blood biomarkers for disease was conducted through

Abbreviations: AD, Alzheimer’s disease; ROC, receiver operating characteristic;

Aβ, amyloid-β; NFT, neurofibrillary tangles; CSF, cerebrospinal fluid; MCI,

mild cognition impairment; ELISA, enzyme-linked immunosorbent assay; DEPs,

differentially expressed probes; FDR, false discovery rate; FC, fold change; SVM,

support vector machines; DSM-IV, Diagnostic and Statistical Manual of Mental

Disorders-Fourth Edition; BBB, blood-brain barrier; AUC, area under the curve;

ROS, reactive oxygen species; SEM, standard errors of the means.

comparing the proteome of blood samples from disease and
control. But this no-targeted method is very challenging because
there are lots of proteins with relatively low abundance or with a
wide range of orders of magnitude in blood, which could not all
be covered by one mass spectrometer (13). As of today, there are
no valid biomarkers for AD diagnosis in blood.

In this study, we conducted a combination of computational
prediction and experimental validation to identify potential
blood protein biomarkers for AD. We firstly analyzed previously
published gene expression data of brain tissues from AD patients
to identify differentially expressed genes for AD. Furthermore,
we applied a blood-secretory protein prediction program on
these genes to predict AD-related proteins in blood. Finally,
several potential blood protein biomarkers for AD were selected
and verified by enzyme-linked immunosorbent assay (ELISA)
experiments and Western blot analyses on blood samples from
AD patients and healthy controls. This work provides a more
specific and effective way to investigate blood protein biomarkers
for AD.

MATERIALS AND METHODS

The schematic diagram of the workflow in this study was given as
Figure S1.

Gene Expression Data of Brain Tissues
From AD Patients
Brain tissue-based gene expression data of AD patients were
collected from GEO database (14). Two series of datasets,
GSE48350 (15, 16) and GSE5281 (17), were selected for data
analyses according to the criteria described as follows: first, the
datasets we used for analysis are gene expression data of brain
tissues from AD patients and healthy controls; second, each
dataset must contain both samples of AD patients and healthy
controls; third, the number of AD samples and healthy controls
are no less than 10 respectively in each dataset. After analysis,
we found that these two datasets meet our screening criteria, and
have a relatively large number of samples for data analysis. The
two datasets are all generated from the platform of Affymetrix
Human Genome U133 Plus 2.0 Array, which includes 43285
probes corresponding to 21246 genes. There are 253 samples (80
ADs and 173 controls) in GSE48350, and 161 samples (87 ADs
and 74 controls) in GSE5281. All CEL files of each dataset were
downloaded from the database, and normalized by using Robust
Multi-array Averaging (RMA) method (18) for further analysis.
Detailed information about these samples can be accessed from
GEO database.

Identification of Differentially Expressed
Genes for AD
We first identified differentially expressed probes (DEPs), and
then mapped these probes to their genes. The following
procedure was used to identify DEPs for each dataset.
Kolmogorov–Smirnov test (19) was used to examine whether the
data come from a normal distribution. If they were from normal
distribution, Student’s t-test would be used to detect DEPs.
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However, our results showed that the values of many examined
probes did not fit normal distribution, Wilcoxon rank sum test
(20) was applied to identify DEPs for AD with p-value < 0.05
as cutoff for significance. Additionally, Benjamini and Hochberg
(21) method was used to control the false discovery rate (FDR)
of the selected DEPs with q-value < 0.05 as cutoff. In order to
further determine which probes were up-regulated and down-
regulated in ADs, fold change (FC) was computed across samples
for each probe. As a whole, probes with q-value < 0.05 and FC >

1.2 were considered up-regulated, and those with q-value < 0.05
and FC < 0.833 were down-regulated. Finally, we chose the
differentially expressed probes with consistent change trend in
these two datasets to map to their corresponding genes, which
were considered to be differentially expressed genes for AD.

Prediction of AD-Related Blood Proteins
Based on Differentially Expressed Genes
All differentially expressed genes were analyzed for prediction
whether their protein products could be secreted into blood
through a program developed by Juan Cui et al (22). The basic
idea of this program was summarized as follows. First, human
proteins that are known to be secretory proteins and can be
detected in plasma/serum due to various pathological conditions
were collected to form positive dataset. Second, non-blood-
secretory proteins, which include proteins unrelated to secretory
pathway and secreted proteins not involved in the circulatory
system, were selected as negative dataset. Third, these proteins’
physical and chemical properties, amino acid sequence and
structural features were collected to identify what these blood-
secretory proteins have in common. Fourth, a list of protein
features such as signal peptides, glycosylation sites, secondary
structural content, hydrophobicity and polarity measures etc.
was identified due to their great power in distinguishing blood-
secretory proteins from those that were deemed not. Finally,
a classifier based on support vector machines (SVM) (23) was
constructed to predict the blood-secretory proteins by using the
positive and negative datasets and the identified protein features.

Validation of Potential Blood Protein
Biomarkers of AD by ELISA Experiments
In this work, ELISA experiments were carried out on blood
samples from AD patients and healthy individuals to validate
the predicted blood protein biomarkers for AD. The research
protocol of this study was approved by the Human Research
Ethics Committee of Shenzhen University and had been
performed in accordance with the ethical standards. A total
of 123 subjects were enrolled in experiment from Shenzhen
People’s Hospital and the Eighth Affiliated Hospital of Sun
Yat-sen University, including 54 AD patients and 69 healthy
subjects. Informed consents were obtained from all participants
in accordance with the Declaration of Helsinki prior to their
inclusion in this study. All the patients were diagnosed by
neuropsychiatrists in the hospital according to the criteria of
Diagnostic and Statistical Manual of Mental Disorders-Fourth
Edition (DSM-IV). The average age of the patients and controls
were 74.3 (ranged from 52 to 93) and 73.9 (ranged from 53

to 94), respectively. The ratio of male to female was about 2:3.
In each ELISA experiment, blood samples were selected from
AD patients and age- and gender-matched healthy controls.
Blood samples (5ml) were collected using glass tubes. Serums
were separated by centrifugation at 3000 g for 10min, and then
subdivided into aliquots and stored at−80◦C for further use.

For ELISA experiments, commercial ELISA kits for
proteins gelsolin (GSN), brain-derived neurotrophic factor
(BDNF), metalloproteinase inhibitor 1 (TIMP1), pigment
epithelium-derived factor (SERPINF1) and amyloid-like
protein 2 (APLP2) were bought from Uscn Life Science
Inc. (Wuhan, China). The catalog numbers of these ELISA
kits were SEA372Hu, SEA011Hu, SEA552Hu, SEB972Hu,
and SEG122Hu, respectively. Additionally, ELISA kits of
inositol 1,4,5-trisphosphate receptor-interacting protein
(ITPRIP), transmembrane emp24 domain-containing protein
10 (TMED10), very low-density lipoprotein receptor (VLDLR),
mitogen-activated protein kinase 8 (MAPK8) and mitogen-
activated protein kinase 1 (MAPK1) were bought from Sbj
Biological technology Co., Ltd. (Nanjing, China) with catalog
numbers of SBJ-H2157, SBJ-H2158, SBJ-H1100, SBJ-H2160, and
SBJ-H2161, respectively. The concentrations of these proteins
were measured under the manufacturer’s instructions. The
total protein concentrations of samples were determined using
bicinchoninic acid (BCA) protein assay kit with product No.
23227 (Beyotime, Jiangsu, China).

Statistical Analyses for ELISA Experiments
Protein concentration of each sample detected by ELISA
was normalized with its total protein concentration. For the
normalized protein concentrations, G-test (24) was applied to
detect the outliers for each group. Software GraphPad Prism 5
was used to visualize the normalized protein concentrations of
AD samples and healthy controls. T-test was applied to make
differential analysis on normalized protein concentrations of
AD samples vs. controls, and then FDR (21) was employed to
adjust the p-values obtained from T-test, using 0.05 as significant
cutoff. Furthermore, receiver operating characteristic (ROC)
curve analysis was carried out to evaluate the power of these
proteins in distinguishing AD samples from healthy controls,
which was generated by using package pROC on R (25, 26).

Further Validation of the Potential Protein
Biomarkers of AD by Western Blot
Analyses
To further validate the potential protein biomarkers of AD in
blood, Western blot analyses were carried out on un-depleted
serum samples of AD patients and healthy controls by specific
antibodies. Total protein concentrations of these samples were
measured by the BCA assay. Proteins (10 µg) were separated by
SDS-PAGE on 12% polyacrylamide gels. After electrophoresis,
the proteins were transferred onto 0.2µm polyvinylidene
fluoride (PVDF) membranes (Millipore, Massachusetts, USA),
and the membranes were blocked with 5% nonfat-dried milk in
Tris-buffered saline (TBS: 100mM Tris, and 1.5M NaCl, pH 7.6)
for 1 h and then washed with TBS containing 0.4% (v/v) tween
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20 (TBST), followed by incubation with primary antibodies
(Bioss Biotechnology, Beijing, China) against VLDLR and TIMP1
overnight at 4◦C and horseradish peroxidase (HRP)-conjugated
secondary antibody (1:8000, Abmart Inc, Shanghai, China) for
2 h at room temperature. The membranes were washed three
times each for 10min in TBST and developed with enhanced
chemiluminescence (ECL) kit (FDbio-Femto ECL kit, FDbio
Science Biotech co., Ltd, Hangzhou, China). Immunoreactive
signals were detected using a Kodak Image Station 4000M
imaging system (Carestream Health Inc., Rochester, NY, USA).
Quantitative analysis was performed on the protein bands by
ImageJ analysis software (National Institutes of Health, USA).
Equal amount of proteins were separated by SDS-PAGE and
stained with Coomassie blue, which was used as the loading
control.

Statistical Analysis for Western Blot
The data of Western blot were analyzed using the two-tailed
Student’s t-test to examine any significant differences between
ADs and controls by GraphPad Prism 7 software (GraphPad
Software, USA) and presented as themeans± the standard errors
of the means (SEM). Differences were considered significant with
p-value < 0.05.

RESULTS

Identification of Differentially Expressed
Genes in the Brain Tissues of AD Patients
Two brain tissue-based gene expression datasets of AD
patients were downloaded from GEO database. There were
5481 DEPs (2511 up-regulated and 2970 down-regulated)
identified in GSE48350 and 12115 DEPs (4675 up-regulated
and 7440 down-regulated) in GSE5281. Further comparing
analysis was made on these two groups of DEPs, and
1545 probes (corresponding to 1186 genes) and 1981 probes
(corresponding to 1568 genes) were found consistently up-
and down-regulated in these two datasets, respectively (27).
In addition, pathway enrichment analysis was conducted
on these genes and showed that focal adhesion, TGF-
β signaling pathway, and MAPK signaling pathway were
significantly enriched by up-regulated genes, and synapse
transmission, neuronal system, and calcium signaling pathway
were significantly enriched by down-regulated genes [complete
list shown in our previous study (27)]. These pathways are
consistent with previous observations that AD is associated
with neuronal damage and apoptosis, synaptic dysfunction,
neuronal activity alteration, blood brain barrier dysfunction,
neuro inflammation, oxidative stress, mitochondrial function
and aberrant lipidmetabolism (28). Therefore, these differentially
expressed genes are speculated to be associated with AD
pathogenesis.

Prediction of AD-Related Protein in Blood
It is well known that blood-brain barrier (BBB) controls
substances exchange strictly between brain and blood. However,
some evidence indicates that breakdown of BBB may account
for AD occurrence or aggravation and could enhance the

movement of proteins between brain and blood in either
direction (29, 30). Thereby, there might be some protein
biomarkers reflecting AD pathology in blood. Based on
the information described above, we applied a program
developed by Juan Cui et al (22) on the differentially
expressed genes of AD to predict whether the corresponding
proteins could be secreted into blood. Consequently, a total
of 296 proteins encoded by 115 up-regulated and 181
down-regulated genes were predicted to be blood-secretory
proteins, suggesting that they might be AD-related proteins
in blood (Table S1). Some of these proteins have been
previously reported as AD biomarkers, such as gelsolin (31),
serotransferrin (32, 33), metalloproteinase inhibitor 1 (34),
mitogen-activated protein kinase 1 (35), pigment epithelium-
derived factor (36) and brain-derived neurotrophic factor (37,
38).

To gain a comprehensive understanding of these predicted
AD-related blood-secretory proteins, we carried out GO
enrichment analysis using DAVID (39). A variety of GO terms
were enriched, including 66 biological processes, 30 cellular
components and 30 molecular functions (Table S2). We found
that the biological processes such as protein phosphorylation
and microtubule-based process, cellular components like
mitochondrion and neuronal cell body, and molecular functions
like ATP binding and MAP kinase activity were enriched, which
are all known to be involved in the development of AD. The top
10 GO terms of biological processes, cellular components and
molecular functions are shown in Figure 1.

To further choose precise and important candidate
biomarkers for AD, we manually checked the relationship
between these proteins and AD through database and literature
studies. First, we collected a total of 1493 AD-related genes
from three databases, 1291 from GAD (40), 169 from
KEGG (41), and 197 from MALACARDS (42). Generally,
if genes were related with AD, their corresponding protein
products were considered to be AD-related as well. Thus,
1493 proteins encoded by these AD-related genes were AD-
related proteins. Second, we made literature searches and
compiled 167 proteins that have been reported as potential
blood biomarkers of AD. Third, we combined the AD-
related proteins collected from database and literature, and
obtained a total of 1590 AD-related proteins. Finally, we made
a comparison analysis between these reported AD-related
proteins with 296 predicted blood-secretory proteins, and
found that 35 proteins were consistent in these two groups
(Table 1).

In order to explore the relationship between these 35 proteins
and AD pathology, we made a protein-protein interaction
analysis through the online sever LENS (43). A network was
generated, which contains the 35 AD-related proteins presented
by red nodes, 4 key AD pathology related proteins (APP, APOE,
PSEN1, and PSEN2) presented by blue nodes and other proteins
presented by gray nodes, which connect the 35 proteins with
the 4 key proteins (Figure 2). In the network, most proteins are
connected to these 4 key proteins except PFKFB3, HMGCS1,
ATAD1, and PADI2, suggesting that almost all these proteins
were associated with AD pathogenesis.
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FIGURE 1 | GO enrichment analysis of the 296 predicted blood-secretory proteins. Blue, orange and green bars represent enriched biological processes, cellular

components and molecular functions, respectively. The number of proteins enriched in each GO term is shown along with each bar.

Validation of Potential Protein Biomarkers
of AD in Blood by ELISA Experiments
Based on the gene expression levels of these 35 proteins in
AD samples and their functional annotations, 10 proteins were
chosen for experimental verification. They are GSN, BDNF,
TIMP1, SERPINF1, ITPRIP, TMED10, VLDLR,MAPK8, APLP2,
and MAPK1.

ELISA experiments were performed to examine the protein
levels in blood samples from AD patients and healthy controls.

Figure 3 shows that the expression levels of five proteins were
significantly changed in AD samples vs. controls, among which
GSN and TIMP1were increased in AD samples, while BDNF,
VLDLR and APLP2 were decreased. Furthermore, comparison
analyses were carried out on the results of computational
prediction and experimental validation (Table 2). We found that

these five proteins were consistent in their change trend among

prediction and validation. In order to investigate whether age
and gender would affect our validation results, further statistical

Frontiers in Neurology | www.frontiersin.org 5 January 2019 | Volume 9 | Article 1158

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Yao et al. Blood Biomarkers for Alzheimer’s Disease

TABLE 1 | The list of 35 AD-related blood-secretory proteins.

Uniprot ID Protein name Gene name

P17655 Calpain-2 catalytic subunit CAPN2

P19438 Tumor necrosis factor receptor superfamily member 1A TNFRSF1A

P02654 Apolipoprotein C-I APOC1

P01033 Metalloproteinase inhibitor 1 TIMP1

P02787 Serotransferrin TF

Q15165 Serum paraoxonase/arylesterase 2 PON2

Q16875 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 PFKFB3

Q8IWB1 inositol 1,4,5-trisphosphate receptor interacting protein ITPRIP

Q9UQE7 Structural maintenance of chromosomes protein 3 SMC3

P25774 Cathepsin S CTSS

P49716 CCAAT/enhancer-binding protein delta CEBPD

Q9Y2G2 Caspase recruitment domain-containing protein 8 CARD8

P36894 Bone morphogenetic protein receptor type-1A BMPR1A

P49755 Transmembrane emp24 domain-containing protein 10 TMED10

Q9Y2J8 Protein-arginine deiminase type-2 PADI2

P28482 Mitogen-activated protein kinase 1 MAPK1

P16298 Serine/threonine-protein phosphatase 2B catalytic subunit beta isoform PPP3CB

P98155 Very low-density lipoprotein receptor VLDLR

P23560 Brain-derived neurotrophic factor BDNF

Q00005 Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform PPP2R2B

P29120 Neuroendocrine convertase 1 PCSK1

O76003 Glutaredoxin-3 GLRX3

P05019 Insulin-like growth factor I IGF1

Q01581 Hydroxymethylglutaryl-CoA synthase, cytoplasmic HMGCS1

Q8NBU5 ATPase family AAA domain-containing protein 1 ATAD1

Q96FJ0 AMSH-like protease STAMBPL1

O14975 Very long-chain acyl-CoA synthetase SLC27A2

P02753 Retinol-binding protein 4 RBP4

P40938 Replication factor C subunit 3 RFC3

O00451 GDNF family receptor alpha-2 GFRA2

Q06481 Amyloid-like protein 2 APLP2

P45983 Mitogen-activated protein kinase 8 MAPK8

P53779 Mitogen-activated protein kinase 10 MAPK10

P06396 Gelsolin GSN

P36955 Pigment epithelium-derived factor SERPINF1

analyses were made on the concentrations of these five proteins
according to the different age stages and genders of samples with
AD and healthy controls (Figures S2, S3). We found that almost
all these five proteins were significantly changed in samples of
AD vs. control at different age stages and genders. Even though
APLP2 is not changed with statistical significance in samples of
AD vs. control at age stage 70–89, and BDNF and APLP2 are
not significantly changed in male samples of AD vs. control, they
still have downward trend in AD samples compared to controls,
indicating that age and gender do not affect our experimental
validation results.

ROC curve analyses were used to evaluate the performance
of the five significantly changed proteins in distinguishing AD
samples from controls (Figure 4). We found that VLDLR had the
most discriminative ability with the area under the curve (AUC)
of 0.932 (sensitivity 80.8%, specificity 96.7%), the AUC of TIMP1

was 0.903 (sensitivity 80.0%, specificity 100%) and the AUCs of
GSN, BDNF andAPLP2were 0.826, 0.714, and 0.682 respectively.
Since VLDLR and TIMP1 were with AUCs larger than 0.85,
suggesting that they are more powerful in identifying ADs from
controls, and might serve as potential protein biomarkers for AD
in blood. Even though the AUCs of GSN, BDNF, and APLP2 were
less than 0.85, they could also provide important information for
AD diagnosis and therapies.

Further Validation of Potential Protein
Biomarkers for AD by Western Blot
Analyses
Based on the ELISA analyses, VLDLR and TIMP1 were chosen
for further validation of their abilities in identifying the samples
of AD patients by Western blot analyses. The serum samples
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FIGURE 2 | The protein-protein interaction network of the 35 proteins. The red notes are 35 proteins worked as candidates, and the blue notes are AD pathology

related proteins worked as targets.

of 5 AD patients and 5 age- and gender-matched healthy
controls were used to detect the expression levels of these two
proteins. After densitometry analysis on Western blots, VLDLR
and TIMP1 were found down- and up-regulated in AD patients
respectively as shown in Figure 5, which confirmed the results
obtained in the ELISA experiments.

DISCUSSION

AD is the major cause of dementia. However, there are no valid
biomarkers for AD diagnosis in blood so far. In this study,
we searched for potential protein biomarkers of AD in blood
through computational prediction combined with experimental
verification. Based on this strategy, we predicted 296 AD-
related blood-secretory proteins, which were predominant
enriched in protein phosphorylation, microtubule-based process,
mitochondria and MAP kinase activity. As widely known, AD is

characterized by neurodegenerative plaques and neurofibrillary
tangles in brain (44). Tau protein is microtubule-associated
phosphoprotein, whose homeostasis plays a critical role in
maintaining the microtubule stability. Hyperphosphorylation
of tau has been confirmed to cause dynamic instability
and disintegration of microtubule, and then formation of
neurofibrillary tangles, which would result in neurodegeneration
in the end (45). In addition, reactive oxygen species (ROS) have
been reported to involve in the AD pathology mechanisms (46).
Mitochondria are the most important places to generate ROS
in AD. Some evidence indicated that mitochondria dysfunction
in the patients of AD enhanced the oxidative stress and the
cellular apoptosis (44). Since these predicted proteins were
mainly involved in the processes related to AD pathogenesis (47),
we considered that these proteins might be associated with AD
pathology.

After careful analyses on these 296 proteins, 10 proteins
were chosen for experimental validation by ELISA. Five proteins
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FIGURE 3 | Validation of the 10 selected proteins between AD samples and health controls by ELISA experiment. (A) The concentration of protein GSN in serum

samples of AD and control. (B) The concentration of protein BDNF in serum samples of AD and control. (C) The concentration of protein TIMP1 in serum samples of

AD and control. (D) The concentration of protein SERPINF1 in serum samples of AD and control. (E) The concentration of protein ITPRIP in serum samples of AD and

control. (F) The concentration of protein TMED10 in serum samples of AD and control. (G) The concentration of protein VLDLR in serum samples of AD and control.

(H) The concentration of protein MAPK8 in serum samples of AD and control. (I) The concentration of protein APLP2 in serum samples of AD and control. (J) The

concentration of protein MAPK1 in serum samples of AD and control. *p < 0.05 vs. controls; **p < 0.05 vs. controls; ***p < 0.0005 vs. controls.
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TABLE 2 | The results of 10 proteins in computational prediction and experimental validation.

Proteins Computational result Experimental result

Up/down Means of protein concentrations Means of relative protein concentrations P-value FDR

Control AD Control AD

GSN Up Up 3512.06 (ng/ml) 5661.87 (ng/ml) 56470.35 (ng/g) 94026.19 (ng/g) 0.0004 0.0013

BDNF Down Down 15.55 (ng/ml) 12.04 (ng/ml) 231.09 (ng/g) 183.97 (ng/g) 0.0042 0.0105

TIMP1 Up Up 1.65 (ng/ml) 5.18 (ng/ml) 26.49 (ng/g) 96.86 (ng/g) 0.0001 0.0005

SERPINF1 Down Down 789.96 (ng/ml) 515.23 (ng/ml) 13508.58 (ng/g) 9117.03 (ng/g) 0.0345 0.0575

ITPRIP Up – 295.20 (pg/ml) 279.96 (pg/ml) 3855.06 (pg/g) 3825.37 (pg/g) 0.916 0.916

TMED10 Up – 75.51 (pg/ml) 78.10 (pg/ml) 1145.62 (pg/g) 1066.62 (pg/g) 0.1542 0.1933

VLDLR Down Down 26.36 (ng/ml) 11.77 (ng/ml) 327.92 (ng/g) 161.63 (ng/g) 0.0001 0.0005

MAPK8 Down – 2.48 (ng/ml) 2.41 (ng/ml) 37.33 (ng/g) 32.98 (ng/g) 0.1546 0.1933

APLP2 Down Down 1.80 (ng/ml) 1.68 (ng/ml) 26.62 (ng/g) 22.83 (ng/g) 0.0184 0.0368

MAPK1 Down – 5.45 (ng/ml) 5.30 (ng/ml) 70.31 (ng/g) 72.60 (ng/g) 0.7631 0.8479

In the table, up and down represent up-regulated and down-regulated proteins in the blood samples of AD patients when compared with those of controls.

FIGURE 4 | Receiver operating characteristic curve analyses on the 5

proteins. The blue line represents protein APLP2, the red line is BDNF, the

green line is GSN, the orange line is TIMP1 and the purple line is VLDLR.

(GSN, BDNF, TIMP1, VLDLR, and APLP2) were verified to be
differentially expressed in AD patients vs. controls, suggesting
that they might serve as potential biomarkers for AD in blood.
Among them, GSN, BDNF, and TIMP1 have been reported to be
potential blood protein biomarkers for AD in previous studies
(34, 38, 48, 49), while VLDLR and APLP2 were first time reported
here as potential protein biomarkers for AD in blood. To further
understand the role of these proteins in the pathogenesis of AD,
we present the relationship of these proteins with AD in details
in the following parts.

GSN was reported to be implicated in AD due to its level
changed with AD progression (50). GSN could bind amyloid

beta (Aβ) peptide, inhibit its fibrillization, solubilize reformed Aβ

fibrils, and promote its clearance from brain (51). Some studies
found that the expression level of GSN was increased in serums
of AD compared to controls (49), but others found the decreased
expression level of GSN in plasm of AD vs. controls (48). In
this study, we predicted and verified that the level of GSN was
significantly higher in serums of AD comparing with controls,
which was inferred that high expression level of GSN might
attribute to the neuroprotective response in AD subjects through
immune compensatory system.

BDNF could support the survival of existing neurons and
encourage the growth and differentiation of new neurons and
synapses (52, 53). Previous studies suggested that BDNF had
protective effects on neurons by reducing amyloid beta toxicity
(54). BDNF depletion led to an increase in the numbers and size
of the cortical amyloid plaque through analyzing on transgenic
mouse model of AD (55). It has been reported that BDNF is
lower in brain tissue of AD patients (54), which is consistent
with our analysis. Kim BY and colleagues made a comprehensive
systematic review and meta-analysis on articles and found that
BDNFwas increased in early AD serum samples and decreased in
AD with low MMSE scores respectively comparing with healthy
individuals (38). In this study, lower BDNF expression was
predicted and experimentally confirmed in blood of AD patients.

TIMP1 is a tissue inhibitor of MMP9 and plays an important
role in the development of AD for its function of inflammatory
mediation (56). MMP9 was reported to be associated with
neurodegeneration processes including extracellular Aβ

degradation, neurons degeneration and neurofibrillary tangles
formation (57), thus TIMP1 interacting with MMP9 promoted
cell proliferation of glial and enhanced the inflammatory
response to eliminate amyloid deposition from AD (56).
Meanwhile, neurotoxic Aβ fragment could induce the release
of MMP9 and TIMP1, and cause their expression changes,
which was correlated with the neurotoxicity process (58). The
imbalance of levels between MMP9 and TIMP1 in AD patients
was associated with senile plaque homoeostasis and tau oligomer
formation in brain regions. James D. Doecke and colleagues
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FIGURE 5 | Further validation of the potential protein biomarkers for AD by Western blot analyses. (A) The concentration of VLDLR was decreased significantly in AD

samples, with **p < 0.01 vs. control samples. (B) The concentration of TIMP1 was increased significantly in AD samples, with ***p < 0.001 vs. control samples. The

expression level of protein was normalized by the mean of the controls (n = 5), with each bar representing SEM. The upper images of Western blot analysis

correspond to the lower histograms of semi-quantification. The statistical results of the data were show as *p < 0.05, **p < 0.01, ***p < 0.001. (C) A loading control is

presented aiming to verify the normalization of protein amounts.

identified that the level of TIMP1 in plasma of AD was higher
than that in healthy controls (34). However, Lorenzl S et al did
not observe the level change of TIMP1 in plasma between AD
patients and healthy subjects (59). Herein, we found that the
level of TIMP1 was significantly up-regulated in AD serums.

VLDLR is an apolipoprotein E receptor involved in synaptic
plasticity, learning, andmemory (60). It was presented at synaptic
compartments, and could alter presynaptic composition and
postsynaptic dendritic spine formation through the Ras signaling
pathway that is associated in neurodegeneration such as AD
(60). Thus, it could be speculated that VLDLR might involve in
AD pathogenesis through Ras signaling pathway. Additionally,
VLDLR was reported to be one of receptors for AD-related risk
factor ApoE (61). ApoE4 was shown to mediate its effects in AD
pathogenesis by interfering with Reelin signaling in the brain
(62). While Reelin is the major ligand for VLDLR, so it could be
speculated that VLDLR might be involved in AD pathogenesis
through the ApoE4-Reelin pathway as well. In our study, we
found that VLDLR was down-regulated in the brain of AD
patients and its encoded protein was predicted and validated with
a lower concentration level in blood of AD patients relative to
controls.

APLP2, an APP like protein, could bind to synaptic signaling
molecules exhibiting synaptogenic activity (63). Furthermore,
APLP2 shares essential functions with APP, as it could also
interact with proteins Stub1 and CRL4 (CRBN) to facilitate
ubiquitination of proteins involved in presynaptic functions and
neurodegeneration (64). Herein, we predicted and validated that
the encoded protein of APLP2 was down-regulated in the blood
of AD patients.

As a whole, this novel biomarker discovery strategy,
namely computational prediction combined with experimental
verification, provides some potential blood biomarkers for AD.
To our knowledge, this is the first report to use such a strategy
for AD blood biomarker discovery. Meanwhile, VLDLR is the
first time reported here as potential protein biomarker for AD

in blood. In addition, this strategy for biomarker discovery
could also be used for discovering biomarkers of other nervous
system diseases such as Parkinson’s disease. Worth noting, this
method provides an effective way to find pathology-associated
biomarkers in blood, but there are still some shortages in this
strategy that could affect our results. For example, there might
be some false positive blood-secretory proteins coming from
the computational prediction, so the sensitivity of the blood-
secretory protein predictor need to be improved in the future.
Additionally, gene expression changes in ADs vs. controls could
not accurately reflect their proteins’ expression changes, so the
predicted proteins need to be validated on large scale blood
samples further.

CONCLUSION

A total of 2754 genes were identified differentially expressed in
brain tissues of AD, among which 296 genes were predicted
to encode blood-secretory proteins. GO enrichment analysis
on the predicted blood-secretory proteins suggested that they
were associated with AD and might act as candidate protein
biomarkers of AD in blood. Furthermore, ten proteins were
chosen for validation by ELISA and five proteins (GSN,
BDNF, TIMP1, VLDLR, and APLP2) were validated changed
significantly in serum samples of AD vs. controls. ROC curves
analyses on these five proteins showed that VLDLR and TIMP1
were with more power in distinguishing AD samples from
controls. Western blot analyses on VLDLR and TIMP1 were
further revealed that they might serve as potential blood
biomarkers for AD. Obviously, further studies are required to
confirm these findings.
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