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ABSTRACT The adaptation of CRISPR/SpCas9 technology to mammalian cell lines is transforming the study of
human functional genomics. Pooled libraries of CRISPR guide RNAs (gRNAs) targeting human protein-coding genes
and encoded in viral vectors have been used to systematically create gene knockouts in a variety of human cancer and
immortalized cell lines, in an effort to identify whether these knockouts cause cellular fitness defects. Previous work has
shown that CRISPR screens are more sensitive and specific than pooled-library shRNA screens in similar assays, but
currently there exists significant variability across CRISPR library designs and experimental protocols. In this study, we
reanalyze 17 genome-scale knockout screens in human cell lines from three research groups, using three different
genome-scale gRNA libraries. Using the Bayesian Analysis of Gene Essentiality algorithm to identify essential genes,
we refine and expand our previously defined set of human core essential genes from 360 to 684 genes. We use this
expanded set of reference core essential genes, CEG2, plus empirical data from six CRISPR knockout screens to guide
the design of a sequence-optimized gRNA library, the Toronto KnockOut version 3.0 (TKOv3) library. We then
demonstrate the high effectiveness of the library relative to reference sets of essential and nonessential genes, as well
as other screens using similar approaches. The optimized TKOv3 library, combined with the CEG2 reference set,
provide an efficient, highly optimized platform for performing and assessing gene knockout screens in human cell lines.
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The generation of gene knockouts is a cornerstone of functional
genomics research. The application of CRISPR technology to induce
targeted DNA double-strand breaks in mammalian cells (Jinek et al.
2012), coupled with the ability of the endogenous cellular DNA repair
machinery to introduce indels when repairing these lesions, has led to
the rapid development of pooled-library CRISPR knockout screens in
mammalian cells for functional genomics, chemogenomics, the identi-
fication of cancer cell vulnerabilities, and other applications (Hart et al.
2015; Koike-Yusa et al. 2014; Shalem et al. 2014;Wang et al. 2014, 2015,
2017; Parnas et al. 2015; Tzelepis et al. 2016; Aguirre et al. 2016).

CRISPR screens represent a major advance over pooled-library
shRNA screens (Evers et al. 2016), the prior state-of-the-art in mam-
malian functional screening approaches, in both sensitivity and speci-
ficity. The current designs of large-scale CRISPR experiments benefited

from the many lessons learned in shRNA screening. In particular, the
design of early CRISPR libraries to include several guide RNAs
(gRNAs) targeting each gene has been driven by experience with
pooled-library shRNA screens (Kaelin, 2012; Echeverri et al. 2006),
as well as the unknowns surrounding the application of CRISPR tech-
nology in human cells on a large scale. Integrated analysis of multiple
reagents targeting the same gene should overcome the noise introduced
by variable reagent effectiveness and the unknown frequency and im-
pact of off-target effects.

With several panels of whole-genome cell-line screens published
(Aguirre et al. 2016; Hart et al. 2015; Tzelepis et al. 2016; Wang et al.
2015, 2017), the opportunity now exists to undertake a meta-analysis as
a means to uncover the drivers of screen quality and variability. Thus,
we reanalyzed sets of CRISPR screens conducted in adherent and
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suspension cell lines, using three different large-scale libraries, and
evaluated each for quality and consistency. Based on these observations,
we refined our list of core essential genes (CEG), i.e., the set of genes
that are likely to be essential in all human cell lines. We evaluated the
impact of experimental design, including library size, number of rep-
licates, and use of nontargeting controls, on screen performance. Fi-
nally, we derived a sequence signature for highly effective gRNAs and
designed an optimized, genome-scale CRISPR library for efficient
screening of human cell lines.

MATERIALS AND METHODS
The supplementalfileHART_data_and_python_notebooks.tgz is avail-
able at http://tko.ccbr.utoronto.ca/ for download, and contains python
notebooks and all required data to generate the figures presented here.
As such, it contains a near-complete, granular description of the
computational methods applied in this study. Detailed experimental
methods and a summary of computational methods are included
below.

Analysis of screens from various libraries
gRNA readcount data were downloaded fromHart et al. (2015), Koike-
Yusa et al. (2014), Tzelepis et al. (2016), and Wang et al. (2015). Fold-
changeswere calculated by normalizing each sample to 10million reads
and calculating log2 (experimental/control) for each replicate of each
sample at each timepoint. Control was either the gRNAcounts from the
genomic DNA collected after infection (TO) or library plasmid pool,
depending on the experimental design. A pseudocount of 0.5 reads was
added to all readcounts to prevent discontinuities from zeros. gRNA
with ,30 reads at the T0 timepoint were excluded from the fold-
change calculation.

Fold-changes were processed with the Bayesian Analysis of Gene
Essentiality (BAGEL) algorithm (Hart and Moffat 2016), using the
essential and nonessential training sets defined in Hart et al. (2014).
The resulting Bayes Factors (BFs) for all screens are included in Sup-
plemental Material, Table S1.

After theCoreEssentialGenes 2.0 (CEG2) setwas defined, BFs for all
screens were recalculated using this new reference set (Table S2).

Identification of CEG2
Of the 17 gRNA screens initially evaluated, three were withheld for later
evaluation and analysis. Two others were excluded for relatively poor
performance. For the remaining 12 screens, the BF and the number of
gRNAs targeting the gene were considered. Note that the number of
gRNAsmay vary by cell line and by library since only gRNAs with.30
reads in the T0 control sample were used for each cell line screen.

A gene was defined as effectively assayed if it was targeted by at least
three gRNAs in a given screen. The CEG2 set was defined as genes

effectively assayed in at least seven cell lines, with a strict BF threshold
of$6 in 85% of cell lines in which they were assayed. Since most genes
were assayed in either seven or 12 cell lines, this effectively means that
core essentials are hits in six of seven or 11 of 12 screens.

The strict BF$ 6 threshold corresponds to a posterior probability of
�90%. To calculate posterior odds from a BF, it is necessary tomultiply
by a ratio of priors. Based on significant empirical screening evidence,
we estimate�10% of genes to be essential in a given cell line; the prior
ratio P(essential)/P(nonessential) is therefore 0.1/0.9, which in log2 is
�23. Therefore, a BF of three corresponds to a posterior log odds of
�0, or posterior probability of essentiality of 50%, the threshold we
generally apply for identifying essential genes (provided a FDR thresh-
old is also met). A BF of six therefore has posterior log odds of three, or
posterior probability of �90%.

Evaluation of gRNA per gene
The Sabatini library in Wang et al. (2015) contains 10 gRNA per gene.
For each of the five screens in four cell lines (KBM7 is screened twice), a
subset of guides was randomly selected and BFs for all genes were
calculated from the subset. This process was repeated 10 times for each
count of k = 2 to k = 7 gRNA per gene. Performance for each iteration
was evaluated by counting the fraction of core essentials recovered and
the overall number of hits called at a defined threshold (BF. 3, FDR,
5%). The mean and SD (n = 10 replicates) at each kwere calculated and
plotted in Figure 2.

Evaluation of replicates per screen
TheTorontoKnockOut version 1.0 (TKOv1) screen inRPE1 cells (Hart
et al. 2015) and Yusa library screen in HL60 cells (Tzelepis et al. 2016)
were conducted with similar three-replicate experimental designs. We
ran BAGEL on each replicate independently, and on all three combi-
nations of two replicates, and evaluated performance of each as for
gRNA per gene.

Nontargeting vs. nonessential controls
The Sabatini library contains �1000 nontargeting gRNA controls
(Wang et al. 2015). We compared the distribution of fold-changes
for gRNA nontargeting controls to the distribution of fold-changes
for gRNA targeting gold-standard nonessential genes. Statistical signif-
icance was calculated by T-test.

Identifying sequence signatures
To identify a sequence signature that predicts high-performing guides,
we evaluated data from TKOv1 screens. From the base 90k TKOv1
library (Hart et al. 2015), we identified genes in the new CEG2 set that
were targeted by six gRNAs each. gRNAs were ranked by log fold-
change, and the three gRNAs with the best (most negative) fold-change
were identified, as well as the worst (remaining three gRNA). Then, the
frequency of each nucleotide at each position in the 20-mer guide se-
quence was calculated for all best guides targeting all selected genes, and
the same was done for the worst guides. The worst frequency was
subtracted from the best, resulting in a D-frequency table. This process
was repeated independently for each replicate at the endpoint for six
TKOv1 90k library screens (DLD1, GBM, HAP1, HCT116, RPE1, and
RPE1dTP53) for a total of 16 samples.

The D-frequency tables were summed across the 16 samples and
scaled so that the most extreme value (C18) equals one. As TKOv1
explicitly excludes gRNA with T in the last four positions, no score is
discovered here; wemanually set the score to21 at these four positions.
The final score table is in Table S4. To calculate the sequence score of

Copyright © 2017 Hart et al.
doi: https://doi.org/10.1534/g3.117.041277
Manuscript received March 15, 2017; accepted for publication June 12, 2017;
published Early Online June 26, 2017.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
Supplemental material is available online at www.g3journal.org/lookup/suppl/
doi:10.1534/g3.117.041277/-/DC1.
1Corresponding authors: Department of Bioinformatics and Computational Biology,
The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit
1410, Houston, TX 77030. E-mail: ghart1@mdanderson.org; and Donnelly Centre,
University of Toronto, Donnelly Centre, Room 802, 160 College Street, Toronto,
ON M5S3E1, Canada. E-mail: j.moffat@utoronto.ca

2720 | T. Hart et al.

http://tko.ccbr.utoronto.ca/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.041277/-/DC1/TableS1.txt
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.041277/-/DC1/TableS2.txt
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.041277/-/DC1/TableS4.txt
https://doi.org/10.1534/g3.117.041277
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.041277/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.041277/-/DC1
mailto:ghart1@mdanderson.org
mailto:j.moffat@utoronto.ca


any candidate gRNA sequence, simply add the nucleotide scores at each
position of the gRNA.

The score tablewas evaluated against the 85k supplementaryTKOv1
library, whichwas only applied toHCT116 andHeLa.We calculated the
sequence score for all gRNA targeting essential genes, then compared
the fold-change distribution of gRNA in the top quartile of scores to the
gRNA in the bottom quartile. We repeated this process for the Yusa,
Sabatini, and GeCKO v2 libraries.

Toronto KnockOut version 3 library design
Genemodels for protein-coding genes were derived fromGencode v19
gene models (all genomic analysis was done with hg19). Coding exons
were numbered in ascending order from the transcription start site.

The genomewas scanned and a list of all candidate gRNA targeting all
genes was generated, for all candidate gRNA such that the SpCas9 cut site
would be in a coding region. Candidate gRNAs were then filtered for the
following criteria: 40–75% GC content, no homopolymers of length of
four or greater, no restriction sites forAgeI (ACCGGT),KpnI (GGTACC),
BveI/BspMI (ACCTGC), BsmI (GAATGC), or BsmBI (CGTCTC), and
no common SNP (db138) in either the PAMor the protospacer sequence.

Remaining gRNAs were mapped to hg19 with Bowtie (with NGG
PAM sequence appended), allowing up to two mismatches outside the
PAM “n” position. Guide sequences were excluded if there was any
match within either exonic or intronic sequences of an off-target gene.
Guide sequences were then assigned to class 1 in the very rare case
where the sequence matches the target gene more than once and does
not have any predicted off-target cut sites. Remaining guides were
assigned as class 2 (hits targeted gene once, no off-targets; common),
class 3 (up to two off-target hits within two mismatches, if off-target
sites are in intergenic regions; very common), or class 4 (up to three off-
target intergenic hits). The sequence score was also calculated for each
guide, with the median sequence score across all guides being�21. In
general, a small number of intergenic off-target cut sites has been
shown to have negligible impact on cellular fitness relative to guides
targeting known nonessential genes (Hart et al. 2015; Koike-Yusa et al.
2014). The Toronto KnockOut version 3 (TKOv3) library exploits this
observation by allowing one to two predicted intergenic off-target cut
sites if the sequence score of the primary target site is particularly high.
Guides were further binned into ranks, as shown in Table 1.

To select guides for the library, we began with the rank 1 candidate
gRNAs.Then for each exon,we selected the single candidate gRNAwith
the top sequence score and added it to the library. This process was
repeated four times, to allow up to four gRNAs per gene, with the
competing goals of maximizing gRNA quality and exon coverage
while allowing multiple gRNAs per exon if the gRNAs are high
quality. The process therefore selects high-scoring guide sequences
for four different exons, if available. If not, high-scoring guides
targeting already-targeted exons are prioritized above low-scoring
guides targeting different exons. These steps were repeated for each
subsequent rank, with the results shown in Table 1. An additional
142 control sequences targeting EGFP, LacZ, and luciferase were
also added, for a final library size of 71,090 gRNAs.

Genome-scale lentiviral gRNA construction
All 71,090 gRNAs were synthesized as 58-mer oligonucleotides on one
microarray chip (Custom Array) and amplified by PCR as a pool. The
PCR products were purified using QIAquick nucleotide removal kit
(Qiagen) and cloned into a modified version of the all-in-one lentiviral
vector lentiCRISPRv2 (Addgene),which contains the fSpCas9 gene. The
lentiCRISPRv2 vector was digested with FastDigest Esp3I (Thermo
Fisher Scientific) and treated with shrimp alkaline phosphatase
(NEB) for 30 min at 37�, heat-inactivated for 10 min at 65�, and gel-
purified using the QIAquick Gel Extraction kit (Qiagen). Using a one-
step digestion and ligation reaction, purified library PCR pool was
cloned into the digested lentiCRIPSRv2 vector at a ratio of 1:5 vector-
to-insert molar ratio. The ligation reaction was precipitated using Pellet
Paint Co-Precipitant (EMD Millipore) and 1 ml of the precipitated
ligation was transformed into Endura ElectroCompetent cells (Luci-
gen). To yield a 1200-fold representation of the library, 10 identical
ligation reactions were pooled and purified followed by 40 parallel
transformations. Outgrowth media from transformations were pooled
and plated onto 100 15-cm LB-carbenicillin (100 mg/ml) plates. Colo-
nies were scraped off plates, pooled, and the plasmid DNA was extract-
ed using the QIAfilter Plasmid Mega kit (Qiagen).

Cell culture
HEK293T cells were maintained in Dulbecco’s modified Eagle’s me-
dium (DMEM) with high glucose and pyruvate supplemented with
10% FBS and 1% penicillin/streptomycin (Thermo Fisher Scientific).
HAP1 cells were obtained from Horizon Discovery and maintained in
Iscove’s Modified Dulbecco’s Medium supplemented with 10% FBS
and 1% penicillin/streptomycin. All cells were maintained in humidi-
fied incubators at 37� and 5% CO2.

Lentivirus production
TKOv3 library lentivirus was produced by cotransfection of lentiviral
vectors psPAX2 (packaging vector) andpMDG.2 (envelope vector)with
TKOv3 lentiCRISPRplasmid library, usingX-tremeGene 9 transfection
reagent (Roche). Briefly, HEK293T cells were seeded at a density of 9 ·
106 cells per 15-cm plate and incubated overnight, after which cells
were transfected with a mixture of psPAX2 (4.8 mg), pMDG.2 (3.2 mg),
TKOv3 plasmid library (8 mg), and X-tremeGene 9 (48 ml), in accor-
dance with the manufacturer’s protocol. At 24 hr after transfection, the
medium was changed to serum-free, high BSA growth medium
(DMEM, 1% BSA, 1% penicillin/streptomycin). Virus-containing me-
dium was harvested 48 hr after transfection, centrifuged at 1500 rpm
for 5 min, and stored at 280�. Functional titers in HAP1 cells were
determined by infecting cells with a titration of TKOv3 lentiviral library
in the presence of polybrene (8 mg/ml). At 24 hr after infection, me-
dium was replaced with puromycin (2 mg/ml) containing medium to
select for transduced cells, and incubated for 48 hr. The multiplicity of
infection (MOI) of the titrated virus was determined at 72-hr after
infection by comparing the percent survival of infected cells to non-
infected control cells.

n Table 1 Number of guide RNAs ranked by sequence score (SeqScore) and included in the TKOv3

Rank Class SeqScore No. of Candidate Guides No. of gRNAs Added Cumulative gRNAs in Library

1 1 .0.0 1501 679 679
2 1,2,3 .0.85 286,415 63,834 64,513
3 1,2,3,4 .0.85 307,059 1069 65,582
4 1,2,3 0.0–0.85 304,477 3476 69,058
5 1,2,3,4 21.0–0.85 837,136 1890 70,948
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Pooled genome-wide CRISPR dropout screens in
HAP1 cells
A total of 50 · 106 HAP1 cells were infected with TKOv3 lentiviral
library (71,090 gRNAs) at an MOI of �0.3 to achieve �200-fold cov-
erage of the library after selection. At 72 hr after infection, selected cells
were split into three replicates containing 15 · 106 cells each, passaged
every 3–4 d, and maintained at 200-fold coverage. A total of 15 · 106

cells were collected for genomic DNA extraction at day 0 and at every
passage until day 18 after selection, or �15 doublings.

GenomicDNAwas extracted fromcell pellets using theQIAampBlood
Maxi Kit (Qiagen), precipitated using ethanol and sodium chloride and
resuspended in EB buffer. gRNA inserts were amplified via PCR using
primers harboring Illumina TruSeq adapters i5 and i7 barcodes, and the
resulting librarieswere sequencedonanIlluminaHiSeq2500.Eachreadwas
completed with standard primers for dual indexing with Rapid Run V1
reagents.Thefirst20cyclesof sequencingweredarkcycles,orbaseadditions
without imaging. The actual 26-bp read begins after the dark cycles and
contains two index reads, reading the i7 first, followed by i5 sequences.

Data availability
The TKOv3 library is available upon request, and for research use from
Addgene. All data and supporting information is available at http://tko.
ccbr.utoronto.ca/ for download.

RESULTS

An updated set of gold-standard CEGs: CEG2
We applied our BAGEL analysis pipeline (Hart and Moffat 2016) to
panels of pooled-library CRISPR dropout screens from three different
groups, each of which used their own custom library (Hart et al. 2015;
Koike-Yusa et al. 2014; Tzelepis et al. 2016; Wang et al. 2015) (Table
S1). Additional genome-scale pooled screens were recently published,
but those were not included in this initial analysis (Aguirre et al. 2016;
Wang et al. 2017). Using the previously published reference sets of
essential and nonessential genes (Hart et al. 2014), we classified essen-
tial and nonessential genes from seven adherent cell lines screened with
the TKOv1 library (Hart et al. 2015; Steinhart et al. 2017), four suspen-
sion cell lines using the Sabatini library (Wang et al. 2015), and five
suspension plus one adherent line screened with the Yusa library
(Koike-Yusa et al. 2014; Tzelepis et al. 2016), for a total of 17 whole-
genome screens (Figure 1A and Table S1). Although the screens were
performed with different libraries and carried out in different labora-
tories, the experimental designs are largely similar, with each screen
involving a pooled lentiviral library infection of a large number of cells,
serial passaging over 2–3 wk, PCR amplification of gRNA integration
events, and comparison of the relative abundance of endpoint gRNAs
to those of a control timepoint collected shortly after infection.

Figure 1 (A) List of CRISPR knockout screens used for this study. (B) Precision-recall curves for the screens in (A) using gold standards defined in
Hart et al., 2014. Dashed lines represent low-performing screens that were excluded from further analysis. (C) Number of genes assayed by at
least three gRNA per gene, across the 12 screens. (D) Number of genes classified as essential (BF $ 6, FDR # 3%) across the 12 screens. (E)
Fraction of screens in which a gene is classified as essential. Genes assayed in at least seven screens and essential in 85% of screens (red) are
CEG2. (F) CEG2 (n = 684) is substantially larger and only overlaps CEG1 (n = 360; Hart et al. 2014) by �50%. (G) Functional characterization of
CEG2 (Core-v2) vs. CEG1 (Core-v1).
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We removed two screens for relatively poor performance (HeLa and
MV411) and withheld an additional three for validation studies (HT29,
RPE1, and K562) (Figure 1B). With the remaining 12 high-performing
screens (including five adherent and seven suspension cell lines), we
defined an updated set of CEGs. We defined a gene as being effectively
assayed in a cell line if it was targeted by at least three independent
gRNAs; most genes were assayed in all 12 screens, based on library
representation (Figure 1C). Genes that were assayed in at least seven
out of 12 cell lines andwere classified as essential (BF$ 6 at FDR# 3%;
Figure 1D) in all, or all but one of them (maximum of one putative false
negative allowed), were defined as CEG2 (Figure 1E and Table S2).

ComparedwithourpreviouslydefinedCEG1set,whichwerederived
from a panel of pooled-library shRNA screens (Hart et al. 2014), CEG2
is 90% larger (n = 684 for CEG2 vs. n = 360 for CEG1; Figure 1F),
largely due to the increased sensitivity of CRISPR screens in identify-
ing essential genes at moderate expression levels (Hart et al. 2015).
However, the CRISPR-derived CEG2 set only includes half of the
shRNA-derived CEG1 set (183 of 360). We expect that some of the
shRNA-specific hits are true essential genes; for example, .20 genes
coding for ribosomal subunits are included in this list. These genes are
not well assayed in most CRISPR libraries due to the difficulty in identi-
fying unique gRNA sequences with low probability of off-target cleavage.
However, 131 of the 177 shRNA-only genes are assayed in all
12 CRISPR screens; of these, 26 (20%) were never classified as essential
in any CRISPR screen and an additional 24 (18%) were scored as
essential in one to three CRISPR screens. This suggests that the
shRNA-only genes may contain a significant number of false positives,
possibly resulting from off-target effects on other essential genes. In
contrast, the 501 CRISPR-only additions to the CEG2 set are highly
conserved, constitutively expressed, and are central in protein–protein
interaction networks (Figure 1G).

With a strict set of genes included inCEG2,we exploredhowvarying
experimental design affected the sensitivity of genome-scale CRISPR
screens. We determined the minimum number of gRNAs per gene
necessary for a high-quality screen, using the CEG2 as positive controls,
after recalculating BFs for all screens using the new training set (Table
S3). Using data from the Sabatini screens, which used a library of

10 gRNAs per target gene, we randomly selected subsets of two to seven
gRNAs per gene and reran the screens in silico. At a fixed BF threshold,
the fraction of core essentials (Figure 2A) and total number of hits
increased continuously as the number of gRNAs per gene was in-
creased, although at a diminishing rate (Figure 2B). Most of the in-
creased performance was gained with four gRNAs per gene; additional
gRNAs per gene added,5%more hits per gRNA added to the screens.

We also considered the number of replicates for each experiment.
Using TKOv1 data from a screen of HAP1 cells and Yusa data from
HT29 colorectal cancer cells, which were each performed with three
replicates, wemeasured the performance of one, two (all combinations),
or three replicates on screen performance. As expected, additional
replicates consistently increased the fraction of core essentials (Figure
2C) and the total number of genes called as hits in each screen, but
again with diminishing returns: the second replicate increased the
number of hits by 9–14%, while the third added ,5% (Figure 2D).
These results indicate that there are rapidly diminishing returns for
additional gRNAs per gene and more than two replicates.

Finally, we examined the use of nontargeting controls vs. controls
that target known or suspected nonessential genes. We identified
1014 nontargeting control guides in the Sabatini library and compared
their performance with control guides targeting nonessential genes that
we have previously defined (Hart et al. 2014). To our surprise, non-
targeting controls showed significantly different fold-change distribu-
tions than those of guides targeting nonessential genes (Figure 3, A–D).
Since fold-change is calculated by normalizing read counts and then
comparing frequencies, the largest population of minor-phenotype
gRNAs will have calculated fold-changes of �0. With approximately
eightfold more gRNAs targeting nonessential genes than nontargeting
controls, the larger population has a fold-change distribution centered
at �0, while the smaller population appears to have a positive fold-
change. In truth, the nontargeting controls likely reflect wild-type
growth, while the nonessential controls reflect some small fitness defect
from SpCas9-induced cleavage and double-strand break repair, without
any locus-specific phenotype. Guides targeting genes with a knockout
fitness phenotype will have some combination of locus-specific and
nonspecific fitness defect. Locus-specific effects might include the

Figure 2 Effect of experimental design on screen
performance. (A and B) Effect of number of gRNA
per gene. (A) Subsets of the Sabatini library were
randomly selected and evaluated using BAGEL.
The fraction of CEG2 detected is plotted as a
function of the number of gRNA per gene. Error
bars represent SD of 10 random samples from the
Sabatini library. (B) Incremental increase in the
total number of essential genes per screen vs. in-
cremental increase in the number of gRNA per
gene. (C and D) Effect of number of replicates
per experiment. The TKOv1 screen in HAP1 cells
and the Yusa screen in HT29 cells, each screened
at multiple timepoints, were reanalyzed using all
combinations of one, two, or three replicates per
screen. (C) The fraction of CEG2 reference essen-
tials identified vs. the number of replicates. (D)
The incremental increase in total number of es-
sential genes as the number of replicates is
increased.
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toxicity induced by multiple double-strand breaks in highly amplified
regions (Aguirre et al. 2016;Munoz et al. 2016), but this effect should be
mitigated by using a large set of negative control genes that are well-
distributed across the genome. Overall, when globally screening for
gene-specific fitness effects, it appears that gRNAs inducingDNAdouble-
strand breaks without a gene-specific growth phenotype are a more ro-
bust negative control set than nontargeting gRNAs.

Designing an optimized library
Given a set of expected outcomes, i.e., that all CEGs should drop out of a
population in a pooled-library screen, we sought to design a sequence-
optimized gRNA library that takes advantage of the experimental de-
sign characteristics outlined above. Though a variety of small- and
medium-scale experiments have been used to guide gRNA selection
algorithms (Doench et al. 2016; Haeussler et al. 2016; Heigwer et al.
2014, 2016; Hsu et al. 2013; Liu et al. 2016; Park et al. 2016), to our
knowledge our design is based on the largest available set of empirical
screening results. Using endpoint data from six TKOv1 screens (DLD1,
GBM, HAP1, HCT116, RPE1, plus RPE1dTP53, an RPE1-derived cell
line), we selected CEGs targeted by six gRNAs that are each represented
by at least 30 reads in the T0 control sample (n = 263–360 genes). We
rank-ordered the gRNAs for each gene by fold-change and separated
the top three (best) and bottom three (worst) into separate lists (num-
bering 789–1077 gRNA each). We calculated the nucleotide frequency
at each position among the best and worst guides across all the screens,
subtracted the worst from the best, and normalized the table such that
the maximum score at a nucleotide position = 1 (see Materials and
Methods). As expected, the most influential position for gRNA se-
quence activity is a strong bias toward C at position 18 (Figure 4A
and Table S4).

To validate the scoring scheme, we used data from TKOv1 screens
that included the 85k supplemental library (HCT116 and HeLa cell
lines), which added an additional six gRNAs per gene for most genes
(Hart et al. 2015).We assigned a total score to each gRNA based on the
sum of the scores at each nucleotide position in the table, where positive
scores indicate a better match to the ideal sequence in the score table
and negative scores indicate a worse match. We then took the subset of
guides targeting core essentials and looked at the fold-change distribu-
tion in the top and bottom quartiles of scores within that subset. High
scores clearly predicted better performing guides [P-value = 1.04 ·
10238 (HCT116) and 4.83 · 10250 (HeLa), T-test; Figure 4, B and C]
while havingminimal difference on nonessential genes in both samples

Figure 3 Nonessentials vs. nontargeting controls. The distribution of
observed fold-changes of gRNA targeting nonessential genes (black)
is compared to the distribution for nontargeting control gRNA (green),
in the Sabatini screens of Jiyoye (A), K562 (B), KBM7(C), and Raji (D)
cells; P-value from T-test. For reference, the fold-change of gRNA
targeting essential genes is also shown (red).

Figure 4 Sequence signature of high-performing guides. (A) Heatmap of the guide score derived from high-performing guides in TKOv1 screens.
(B) Across the TKOv1 supplemental library in the HCT116 screen, gRNA targeting CEG2 with sequence scores in the top quartile (red) are
compared with gRNA with scores in the bottom quartile (blue), and guides targeting nonessential genes are shown in black. (C–F) Similar plots for
TKOv1 (HeLa screen), Yusa, Sabatini, and GeCKOv2 libraries.
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(data not shown). Interestingly, no sequence bias was observed in the
Yusa screens (Figure 4D; P-value = 0.12). The Yusa library design
already includes a sequence optimization step for the last five bases
(positions 16–20, proximal to the SpCas9 PAM sequence), as well as a
modified tracrRNA scaffold; these modifications were previously
shown to eliminate sequence bias (Tzelepis et al. 2016) and our analysis
is consistent with these results. However, the score table does predict
somewhat improved guide performance in the Sabatini screens (Figure
4E; P-value = 2.0 · 10210; Wang et al. 2015) and substantially better
guides in the Achilles screens (Figure 4F; P-value = 1.35 · 10251;
Aguirre et al. 2016). Notably, the median gRNA score in the Sabatini
library is strongly positive, implying the use of similar design rules, but
the median gRNA score in GeCKOv2 is strongly negative. This obser-
vation is generally consistent with the substantially better overall per-
formance observed in the Sabatini screens relative to the GeCKOv2
screens, as well as the increased predictive power of our gRNA sequence
score for the GeCKO library.

We used the score table to design a sequence optimized CRISPR/
SpCas9 library that would enable efficient screening of cell lines (see
Materials and Methods). The TKOv3 is a one-component library (i.e.,
Streptococcus pyogenes Cas9 is part of the library vector) containing
71,090 gRNAs with four gRNAs per gene, targeting a total of 18,053
protein-coding genes. The median sequence score of the gRNA in

TKOv3 is 1.79, and 97.5% of gRNAs have a positive sequence score.
In addition, we included 142 gRNA sequences targeting EGFP, LacZ,
and luciferase for use as controls in experiments using these reporter
genes.

The TKOv3 library was subsequently used to screenHAP1 cells and
the results were compared to screens in HAP1 cells using the TKOv1
library. Importantly, bothsetsof screenswereperformedunder the same
experimental conditions: a single large-scale infection divided into three
replicates, with genomic DNA collected after six serial passages. CEG2
and previously defined reference nonessentials (Hart et al. 2014) were
subsequently used to train and test the BAGEL pipeline for both
screens, and as shown in Figure 5A, the smaller, sequence-optimized
TKOv3 library outperformed the TKOv1 library by precision-recall
analysis. The TKOv3 results also recovered more essential genes at a
strict threshold (BF . 6 and FDR , 3%; n = 1850 for TKOv3 vs. n =
1612 for TKOv1), and more of these hits intersect with a list of fitness
genes identified in the same cell line, using a comprehensive gene trap
screen (Blomen et al. 2015) [n = 1534 for TKOv3 vs. n = 1255 for
TKOv1, out of n = 2352 fitness genes at 5% FDR identified in
Blomen et al. (2015); Figure 5B].

As a further means of comparing library quality, we examined the
observed dropout of guides targeting essential and nonessential genes.
As expected, guides targeting reference nonessential genes showed a

Figure 5 Evaluation of TKOv3 library. (A) Pre-
cision-recall curves of TKOv1 and TKOv3 screens
in HAP1 cells. (B) Comparison of essential genes
in TKOv3 vs. TKOv1 and HAP1 essentials from
Blomen et al. (2015) at 5% FDR. (C) TKOv3 guides
targeting essential vs. nonessential genes in
HAP1. Guides targeting essential genes, with
fold-change ,5th percentile of guides targeting
nonessential genes, are defined as active guides.
(D) The fraction of active guides (active guides
targeting essential genes / all guides targeting
essential genes) across the five libraries tested.
(E) Distribution of sequence scores for all candi-
date gRNA sequences (n � 2.5 million) compared
to published CRISPR/SpCas9 libraries. (F) Overlap
of gRNA sequences in the top three libraries by
sequence score.
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largely symmetric distribution of (log) fold-changes centered at zero
(Figure 5C). We defined a scoring metric, the fraction of active guides,
as the percentage of gRNAs targeting reference essential genes that
show a fold-change greater than that of 95% of gRNAs targeting ref-
erence nonessential genes. The TKOv3 library shows a marked im-
provement over the TKOv1 library, as well as other latest-generation
libraries for which screening data are available (Figure 5D). All of the
libraries are substantiallymore efficient thanGeCKOv2, as evaluated by
data from Aguirre et al. (2016). This summary statistic is consistent
with a precision-recall analysis of each library, performed by analyzing
each screen with the BAGEL pipeline and using the same v2 reference
essential (i.e., CEG2) and reference nonessential gene sets.

Another library targeting humangenes anddesigned fromempirical
observations is the Brunello library, described in Doench et al. (2016).
We currently have no negative selection screen data from this library to
evaluate the fraction of active guides, so as a proxy we calculated the
distribution of guide sequence scores for all gRNAs in the library.
Compared to all candidate gRNAs (all potential guide sequences target-
ing protein-coding exons with an NGG PAM and 40–75% GC content;
�2.5 million sequences), the Brunello library has a higher sequence
score than average, though not as high as either the Sabatini or TKOv3
libraries (Figure 5E). However, it should be noted that low sequence
score does not necessarily imply poor overall library performance; the
Yusa library has sequence scores comparable to those in the GeCKOv2
library but due to its other design considerations (e.g., 39 sequence bias
and use of modified tracrRNA), it shows markedly better performance
than GeCKOv2.

Given the similar sequence signatures of both TKOv3 and the
Sabatini library (Figure 5E), we examined the overlap of actual gRNA
sequences between the two collections. Over 26,000 of the �71,000
gRNA in TKOv3 are also in the Sabatini library, comprising some
37% of TKOv3 sequences. Both TKOv3 and Sabatini libraries show
markedly less overlap with the Brunello library (Figure 5F).

DISCUSSION
Gene knockout screening in mammalian cells is transforming human
functional genomics and targetdiscovery efforts, butCRISPR technology
continues toevolve rapidly.Earlyproof-of-concept screensusingpooled-
library approaches needed large numbers of gRNAs per gene to over-
come theunknownsourcesof variation ingRNAtargeting efficiency.We
analyzed panels of pooled-library screens from three different research
groups, eachusingdifferentCRISPRlibraries, to identify a setof common
hits across all tested conditions. This set of 684 genes, named CEG2, is
consistent across adherent and suspension cell lines and represents a
broader cross-section of essential cellular processes than the CEG1 set
derived from a panel of pooled-library shRNA knockdown screens.
Identification of CEG2 genes will be a useful metric for evaluating the
sensitivity of genome-scale knockout screens in human cell lines.

Since the collection of known essential genes offers a set of expected
outcomes for screens, we leveraged this knowledge to determine the
characteristics of gRNAs that maximize the discrimination of essential
genes from nonessentials. We derived a sequence signature from the
TKOv1 screens that predicts improved gRNA performance in TKOv1
screens as well as those using the GeCKOv2 and Sabatini libraries. We
findno improvementwhenweapplyour score to theYusa library,which
includes both sequence optimization and a modified scaffold, although
we do not attempt to deconvolve the relative contribution of each. We
emphasize that our findings are specific to endonuclease-competent
SpCas9, with an NGG PAM targeting coding exons.We do not address
chromatin state or other factors that might affect SpCas9 binding or the
creation and repair of double-strand breaks in other genomic contexts.

However, this approach does present a framework for librarydesign and
evaluation using other candidate CRISPR-associated endonucleases.

Wealsoevaluated theeffectofvarying thenumberofgRNAspergene
in the library, and observed that increasing library size beyond four
gRNAs per gene typically yielded a small incremental increase in the
sensitivity of the screen. Based on these observations we designed a new
library, TKOv3, which contains four sequence-optimized guides target-
ing each of 18,053 protein-coding genes. The result is a library of 71,090
gRNA sequences that is small enough to facilitate genome-scale screens
in cell lines while sensitive enough tominimize false negatives in a well-
designed screen. TKOv3 library is a one-component library, expressing
SpCas9 from the viral vector, which relaxes the requirement to knock
SpCas9 into cell lines; however, we do not have a direct comparison of
one-component and two-component libraries using the sameoptimized
sequences.

Overall, improving the accuracy and scalability of CRISPR screens
offers considerable benefits for the systematic survey of context-
dependent essential genes across tissue types, genetic mutational land-
scapes, andenvironmental stimuli. Further efficienciesmaybegainedby
exploring alternative Cas proteins, or engineering existing ones, for a
variety of functions: to increase nuclease effectiveness, to broaden the
addressable set of cleavage sites byusingalternativePAMsequences, and
especially by exploiting endogenous or engineered multiplexing capa-
bilities.ThougheachalternativeCRISPR-associatednucleasewill almost
certainly require a sequence optimization survey such as this one, the
consistency of the latest-generation SpCas9 libraries suggests thatwe are
approaching a maximally efficient SpCas9 gRNA design.
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