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Microbial community networks across body sites
are associated with susceptibility to respiratory
infections in infants
Marta Reyman1,2,5,7, Melanie Clerc3,6,7, Marlies A. van Houten2, Kayleigh Arp1,4, Mei Ling J. N. Chu1,4,

Raiza Hasrat1,4, Elisabeth A. M. Sanders 1,4 & Debby Bogaert 1,3✉

Respiratory tract infections are a major cause of morbidity and mortality worldwide in young

children. Concepts such as the gut-lung axis have highlighted the impact of microbial com-

munities at distal sites in mediating disease locally. However, little is known about the extent

to which microbial communities from multiple body sites are linked, and how this relates to

disease susceptibility. Here, we combine 16S-based rRNA sequencing data from 112 healthy,

term born infants, spanning three body sites (oral cavity, nasopharynx, gut) and the first six

months of life. Using a cross-niche microbial network approach, we show that, already from

the first week of life on, there is a strong association between both network structure and

species essential to these structures (hub species), and consecutive susceptibility

to respiratory tract infections in this cohort. Our findings underline the crucial role of

cross-niche microbial connections in respiratory health.
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The human microbiome is widely recognised as an impor-
tant mediator of health and disease, making it the subject
of extensive study. The microbiome is highly variable

between individuals but also within one individual when studied
over time or across body sites1. Exposures to a wide range of
environmental factors, such as delivery mode, antibiotics, and
diet, have been shown to contribute to this variation2. In general,
microbiome research has focused on the relation between the
microbial community composition of a single anatomical niche
and health or disease parameters.

However, it is becoming increasingly clear that direct or
indirect effects of microbial communities at distal body sites exist
and can also have major implications for both development, as
well as severity of a number of diseases locally3. One well-
established example of cross-niche microbial interaction is the
gut-lung axis. It has been shown that microbial components and
metabolites in both the gut and lung are capable of modulating
immunity not only locally but also systemically4. Additionally,
specific taxa in both the gastrointestinal and respiratory tract are
associated with lung diseases such as asthma, chronic obstructive
pulmonary disease, and respiratory tract infections (RTIs)4.

Next to variation in species presence/absence and abundance
within niches, other features such as the microbial network
structure may also contribute to susceptibility to RTIs. Com-
monly, studies of microbiome networks have been restricted to
microbial networks within a single niche5,6. For instance, a study
performed in patients suffering from inflammatory bowel disease
(IBD) showed that the community structure of the microbial
network within the gut was distorted in IBD patients7. However,
it has been hypothesised that the structure of the network formed
by the microbes within a specific niche might not only affect local
disease development and/or severity but might also have more
systemic effects related to disease8. Even though examples for
such effects are emerging from the literature, we currently lack a
conceptual understanding if and to what extent variation in the
structure of cross-niche microbial networks might also affect
disease susceptibility locally. Understanding these relationships
would substantially increase our ability to formulate holistic
hypotheses about the development and improvement of inte-
grated diagnostic and treatment approaches for a wide range of
diseases.

Here, we, therefore, investigate the structure of microbial
networks across different body sites in order to identify signatures
in the overall microbial community network in infancy that can
be associated with susceptibility to RTIs in the first year of life. To
do so, we used 16S rRNA sequencing data from samples of a
Dutch cohort of 112 healthy, term born infants collected long-
itudinally over the first 6 months of life and spanning three body
sites (oral cavity, nasopharynx, and gastrointestinal tract). We
aimed to (1) compare the development of the microbial com-
munities per niche over time, (2) build cross-niche microbial
networks, (3) identify hub species within the networks, and (4)
study network structure and hub species in relation to RTI sus-
ceptibility during the first year of life. Using this stepwise
approach, we found a strong association between cross-niche
network structure and hub species and consecutive susceptibility
to respiratory tract infections.

Results
Niche comparison. Of the 1,250 available samples obtained from
the three niches at 1 week, 2, 4, and 6 months of life of 112
healthy infants, 1,248 samples fulfilled our quality threshold (433
faecal samples, 430 nasopharyngeal samples, and 385 saliva
samples). Sequencing of these samples resulted in 58,608,834 high
quality reads with a minimum Good’s coverage of 99.47%

(median 99.97%). The overall Operational Taxonomical Unit
(OTU)-table, including the samples of the three niches collected
at the four time points, contained 1,148 bacterial OTUs dis-
tributed over 18 bacterial phyla, with Firmicutes being the most
abundant phylum and Streptococcus the most abundant genus.

In the oral cavity, the most abundant genus over the first
6 months of life was Streptococcus, while this was Moraxella for
the nasopharynx and Bifidobacterium for the gut. Observed
species richness was highest in the nasopharyngeal samples, with
895 OTUs identified, compared to 746 OTUs in the saliva and
595 OTUs in the faecal samples. In addition, the nasopharynx
also contained the highest number of unique OTUs (defined as
observed in a single niche only), namely 232, followed by 121 in
the gut and only 38 in the oral cavity. In other words, the oral
niche contained a relatively high number of observed species but
few unique OTUs, and so it seems to be a reservoir sharing many
OTUs with the nasopharynx and gut. Although highly variable in
abundance, a total of 331 overlapping OTUs were observed in all
three niches, including the top 10 most abundant OTUs in the
overall dataset of the combined niches: Streptococcus (1),
Bifidobacterium (2), Moraxella (3), Staphylococcus (4), Coryne-
bacterium propinquum (5), Streptococcus salivarius (6), Dolosi-
granulum (7), Escherichia coli (9), Veillonella (10), and
Haemophilus (8).

Supplementary Fig. 1 shows the succession patterns of the 15
most abundant OTUs in each niche, highlighting the gradual
increase of Bifidobacterium (2) over time in the gut (Supplemen-
tary Fig. 1a). In the nasopharynx, the initial high abundance of
Staphylococcus (4) at 1 week of life was gradually replaced by an
increasing abundance of C. propinquum (5), Dolosigranulum (7),
Moraxella (3), and Haemophilus (8) (Supplementary Fig. 1b).
Lastly, the figure highlights an overall dominance of Streptococcus
(1) in the oral cavity (Supplementary Fig. 1c). Observed species
richness increased over time in both faecal and saliva samples,
though this effect was most pronounced in saliva (linear mixed
effect model including age and diversity per niche: p < 0.0001 for
both niches; Supplementary Fig. 2).

Microbial community development over time (shown in
Fig. 1a) was most stable for the oral cavity in early-life, although
this was overtaken by higher stability in the gut at the later time
points (median Bray–Curtis [BC] dissimilarity between month 4
and 6 for faecal samples 0.18 versus 0.29 for saliva, Wilcoxon test,
p < 0.0001; Fig. 1b). The microbial community composition in the
nasopharynx showed the lowest temporal stability compared to
the other two niches over the first 6 months of life. As expected,
the community composition differed significantly between the
three niches at all time points, although niche composition was
most similar at the earliest time point, in line with the mutual
origin of initial microbial seeding at birth. This was followed by a
gradual deviation into niche-specific communities over time
(calculating the association of niche with composition using
PERMANOVA, week 1: R2 31.8%, month 2: R2 47.8%, month 4;
R2 57.5%, month 6: R2 56.3%, all p-values < 0.0001).

Characteristics explaining the overall community composition
across niches and time points were in order of importance, niche
itself (R2 42.4%, adjusted p-value 0.00079), followed by age with a
much smaller effect size (R2 1.8%, adjusted p-value 0.00079), and
presence of siblings <5 years, pets, breastfeeding at time of
sampling, season of birth, mode of delivery, exposure to
antibiotics in the month prior to sampling, day care attendance,
pacifier use, and duration of hospital stay after birth (Supple-
mentary Table 1). When studying the niches separately and cross-
sectionally per time point, we observed different effect sizes of
associations between environmental variables and microbial
community composition (Supplementary Table 2). In total, we
identified eight covariates to be associated with the
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nasopharyngeal microbiome (among others presence of siblings
<5 years, breastfeeding at sampling and season of birth), seven
covariates for the faecal microbiome (among others mode of
delivery, breastfeeding at sampling and day care attendance), and
only three covariates for the salivary microbiome composition
(breastfeeding at sampling, antibiotic use 1 month prior to
sampling and season of birth).

Network analysis. We identified a total of 107 niche indicator
OTUs (defined as characteristic, but not exclusive, for a particular
niche), with 18 niche indicator OTUs specific for the nasophar-
ynx, 37 for the gut and 52 for the oral cavity. Participants were
divided into three groups based on the distribution of the number
of RTIs they experienced over the first year of life (0-2 RTIs, 3-4
RTIs, 5–7 RTIs). After selecting the 100 most abundant OTUs per
niche and per RTI group, we constructed for each of the three
RTI groups a cross-niche microbial network per time point using
the SpiecEasi pipeline9. We studied the formation of bacterial
clusters within these cross-niche networks, and whether clusters
were indicative of a specific niche or not, based on the proportion
of niche indicator OTUs the clusters contained. In the results

below, we will further refer to the cross-niche networks as
networks.

We found that at 1 week of age, the network of the least
susceptible group (0–2 RTIs) was structured into six clusters (one
indicative of nasopharynx, one saliva, two faeces, and two mixed),
while the network of the average susceptible group (3–4 RTIs)
contained seven clusters (one nasopharynx, one saliva, two faeces,
and three mixed) and the network of the most susceptible group
(5–7 RTIs) contained nine clusters (two nasopharynx, two saliva,
three faeces, and two mixed; Supplementary Fig. 3). The number
of clusters per network generally decreased over time with cluster
sizes increasing (Fig. 2a, b). However, cluster sizes in the networks
from the 5–7 RTI group showed a trend towards less increase
over time compared to clusters from networks from the 0–2 RTI
group (negative binomial GLM: 5–7 RTI group estimate=− 0.3,
p= 0.071), which coincided with a higher number of clusters
retained in the 5–7 RTI networks. This resulted in the networks of
the lowest and average susceptible RTI groups each defined by
four clusters each, whereas the network from the most susceptible
group still contained six clusters at the age of 6 months,
suggesting more fragmented networks. The two extra clusters
identified in the most susceptible group had a saliva and faecal

Fig. 1 Development of the microbiota community composition for individual niches over time. Non-metric multidimensional scaling (nMDS) plot (a),
based on Bray–Curtis (BC) dissimilarity between samples, visualising the overall gut microbial community composition stratified for each niche per time
point. Each data point represents the microbial community composition of one sample. The ellipses represent the standard deviation of data points
belonging to each group, with the centre points of the ellipses calculated using the mean of the coordinates per group. The stress of the ordination was
0.18. In panel b the temporal community stability for each niche is shown. As a measure of microbiota stability, we calculated the Bray–Curtis distance
between consecutive sample pairs belonging to each individual per time interval, i.e., between week 1 and month 2, between month 2 and month 4, and
between month 4 and month 6. Boxplots with medians are shown; the lower and upper hinges correspond to the first and third quartiles (the 25th and 75th
percentiles); the upper and lower whiskers extend from the hinge to the largest and smallest value no further than 1.5*IQR from the hinge; outliers are
plotted individually. Fec faeces, np nasopharynx, sal saliva. Temporal stability was highest for the saliva samples in early-life, which was later overtaken by a
higher stability in consecutive faecal samples (median BC dissimilarity between months 4 and 6 for faecal samples 0.18 versus 0.29 for saliva, Wilcoxon
test, p < 0.0001).
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origin, thereby split the oral and gut communities into two
communities each (Supplementary Fig. 3). Figure 3 depicts the
networks of each RTI group at time point week 1.

We then studied the similarity of clusters over time as a
measure of temporal network stability (Fig. 4). The mean
similarity over time differed between RTI groups, with
45.6% ± 4.9 SE similarity over time for the least susceptible group,
51.8% ± 5.1 SE for the average susceptible group and
29.0% ± 3.2 SE for the most susceptible group (Kruskal–Wallis
test: X2= 15.7, p= 0.0004, Fig. 4d). Specifically, the similarity of
clusters in the networks of the most susceptible group was lower
compared to the other two RTI groups (Dunn post-hoc test, 0–2
vs 3–4 RTIs: p= 0.328, 0–2 vs 5–7 RTIs: p= 0.012, 3–4 vs
5–7 RTIs: p= 0.0006; Fig. 4d). In stratified analyses per niche, we
found significant differences in cluster similarity between RTI
groups for saliva clusters (similarity over time 44.0% ± 9.9 SE in
the 0–2 RTI group, 78.9% ± 6.7 SE in the 3–4 RTI group, and
19.6% ± 4.5 SE in the 5–7 RTI group, Kruskal–Wallis test
X2= 19.1, p < 0.0001, Supplementary Fig. 4). In addition, we
found non-significant trends for the association between RTI
susceptibility and loss in cluster similarity for faecal clusters
(similarity over time 49.9% ± 11.1 SE in the 0–2 RTI group,
49.4% ± 9.3 SE in the 3–4 RTI group, and 41.0% ± 6.9 SE in the
5–7 RTI group, Kruskal–Wallis test X2= 1.00, p= 0.612,

Supplementary Fig. 4) and nasopharyngeal clusters (similarity
over time 54.5% ± 5.8 SE in the 0–2 RTI group, 42.7 % ± 7.4 SE in
the 3-4 RTI group, and 35.3% ± 6.2 SE in the 5–7 RTI group,
Kruskal–Wallis test X2= 4.28, p= 0.118). Overall, this suggests
reduced cluster stability over time in networks from children
from the 5–7 RTI group.

Hub species. To identify OTUs with an important role for the
network structure, we calculated the degree, betweenness cen-
trality and closeness centrality for each of the OTUs in each
network (only considering main clusters). Table 1 lists the 134
hub species found, also reporting whether they were niche indi-
cator species or not, and for which RTI network (least, average, or
most susceptible) they were identified as being important. We
identified only 5 OTUs (Akkermansia (280), Moraxella (190),
Actinomyces (58), Veillonella (10) and Prevotella melaninogenica
(22)) as hub species in all three RTI groups, indicating that dif-
ferent OTUs are central to the network structure of the different
RTI groups.

To assess whether the identified hub species were high or low
abundant species, we calculated summary statistics for all hub
species split by the RTI group(s) for which they were identified as
hub species (Supplementary Table 3). The mean abundance of
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Fig. 2 Cluster number and size of the cross-niche microbial networks built per RTI group. Number of main clusters (a) and mean size of main clusters
(b) over time. Number of clusters at week 1 were n= 22 (n=6 for 0–2 RTIs, n= 7 for 3–4 RTIs and n= 9 for 5–7 RTIs), n= 20 at month 2 (n= 6 for
0–2 RTIs, n= 7 for 3–4 RTIs and n= 7 for 5–7 RTIs), n= 16 at month 4 (n= 6 for 0–2 RTIs, n= 4 for 3–4 RTIs and n= 6 for 5–7 RTIs) and n= 14 at month
6 (n= 4 for 0–2 RTIs, n= 4 for 3–4 RTIs and n= 6 for 5–7 RTIs). Boxplots with medians are shown; the lower and upper hinges correspond to the first and
third quartiles (the 25th and 75th percentiles); the upper and lower whiskers extend from the hinge to the largest and smallest value no further than 1.5
*IQR from the hinge. RTI stands for number of respiratory tract infections experienced over the first year of life.

Fig. 3 Cross-niche networks for each RTI group at week 1. Microbial cross-niche networks using data from the nasopharynx, gut, and oral cavity (a–c).
Nodes represent individual OTUs and were coloured depending on their indicator species identity (orange= faeces-specific, green= nasopharynx-specific,
blue= saliva specific, white= not niche-specific). Shaded areas around groups of nodes represent clusters defined by walktrap community analysis and are
shaded depending on their niche identity (orange= faeces-specific, green= nasopharynx-specific, blue= saliva specific, grey=mixed cluster/not niche-
specific).
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hub species in the 0–2 RTI group networks was
0.0150% ± 0.54 SD (range 0–55.6%), 0.34% ± 3.8 SD for the
3–4 RTI group (range 0–99.5%) and 0.12% ± 1.8 SD (range
0–96.5%) for the 5–7 RTI group underlining hub OTUs
are often low abundant species. Furthermore, most hub species
were not identified as niche indicator OTUs. This suggests that
niche indicator OTUs are less relevant for the microbial network
structure and vice versa, that hub species are less niche-specific.

The hub species unique to the 0–2 RTI networks included
previously reported respiratory health-associated OTUs such as
Neisseria lactamica (47), a low abundant lactic acid-producing
Dolosigranulum pigrum (147), and Corynebacterium (162 and
111) OTUs. Also, OTUs associated with the production of
butyrates, such as Ruminococcus bromii (112), Megasphaera (133
and 383), and Anaerostipes (142), were found to be hub species in
the 0–2 RTI networks. Alternatively, hub species in the 5–7 RTI
networks included OTUs previously associated with poorer

respiratory health, such as the proteobacterial OTUs Haemophi-
lus (8, 215, 413), Haemophilus haemolyticus (663), and Neisseria
(469, 527, 949, 1,000), and the anaerobic Lachnospiraceae (144,
230, 302). Additionally, Actinobaculum schaalii (408) is often
associated with (invasive) infections, the proinflammatory
Ruminococcus gnavus (24) and the faecal pH increasing
Peptostreptococcaceae (75 and 117) were hub species for the
networks of infants who experienced 5–7 RTIs. Also, cariogenic
species such as Bifidobacterium dentium (28) and Parascardovia
denticolens (486) were identified as hub species in the 5–7 RTI
networks.

Discussion
Previous studies from this healthy Dutch birth cohort showed
already that the nasopharyngeal, oral, and gut microbiota indi-
vidually develops along specific trajectories, and that various
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OTUs shared between two clusters (1 represents complete overlap between all OTUs of two clusters, whereas 0 represents no OTUs being shared
between two clusters). Each cluster is labelled with a unique number to distinguish between clusters with the same niche-identity, the time point of the
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communities from multiple body sites are linked and related to disease susceptibility, Reyman and Clerc et al. combined 16S-based rRNA sequencing data
from 112 healthy, term born infants, spanning three body sites (oral cavity, nasopharynx, and gut) over the first 6 months of life. They demonstrate a strong
association between network structure and species and susceptibility to respiratory tract infections, suggesting a crucial role of cross-niche microbial
connections in respiratory health.
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Table 1 Hub species for all RTI cohorts.

OTU Hub ID Niche indicator No. thresholds met

Actinomyces_58 All Sal 1
Akkermansia_280 All None 1
Moraxella_190 All None 1
Prevotella_melaninogenica_22 All Sal 1
Veillonella_10 All Sal 1
7B_8_687 0–2 None 2
Acinetobacter_calcoaceticus_146 0–2 None 1
Aggregatibacter_354 0–2 None 1
Alloscardovia_316 0–2 None 2
Altererythrobacter_748 0–2 None 1
Anaerostipes_142 0–2 None 1
Blastococcus_281 0–2 None 2
Blastococcus_707 0–2 None 1
Blautia_212 0–2 None 1
Chroococcidiopsis_338 0–2 None 1
Chroococcidiopsis_593 0–2 None 3
Chryseobacterium_299 0–2 None 1
Corynebacterium_111 0–2 None 2
Corynebacterium_162 0–2 None 1
Craurococcus_sp_HM28_1_726 0–2 None 1
Cupriavidus_31 0–2 None 1
Curvibacter_286 0–2 None 1
Dorea_86 0–2 None 1
Erysipelotrichaceae_149 0–2 None 2
Lachnospiraceae_176 0–2 None 2
Limnobacter_245 0–2 None 2
Megasphaera_133 0–2 None 2
Megasphaera_sp_TrE9262_383 0–2 None 1
Moraxella_131 0–2 None 1
Neisseria_lactamica_47 0–2 None 1
Pseudobutyrivibrio_195 0–2 None 2
Rubellimicrobium_596 0–2 None 1
Ruminococcus_bromii_L2_63_112 0–2 None 2
Sphingomonas_573 0–2 None 1
Subdoligranulum_71 0–2 None 1
Varibaculum_199 0–2 None 1
Escherichia_Shigella_267 0–2 Fec 1
Comamonadaceae_118 0–2 Np 1
Dolosigranulum_pigrum_ATCC_51524_147 0–2 Np 1
Enhydrobacter_138 0–2 Np 1
Pseudomonas_158 0–2 Np 1
Haemophilus_211 0–2 Sal 1
Helcococcus_179 0–2 and 3–4 None 2
Scardovia_wiggsiae_F0424_127 0–2 and 3–4 None 2
Bifidobacterium_2 0–2 and 3–4 Fec 2
Rothia_259 0–2 and 3–4 Sal 1
Streptococcus_1 0–2 and 3–4 Sal 1
Actinomyces_100 0–2 and 5–7 None 1
Blautia_308 0–2 and 5–7 None 1
Moryella_119 0–2 and 5–7 None 1
Gallibacterium_Salpingitidis_141 0–2 and 5–7 Sal 1
Akkermansia_210 3–4 None 1
Akkermansia_40 3–4 None 1
boneC3G7_70 3–4 None 2
Clostridium_colinum_487 3–4 None 1
Clostridium_nexile_166 3–4 None 2
Corynebacterium_500 3–4 None 2
Corynebacterium_aurimucosum_ATCC_700975_260 3–4 None 2
Haemophilus_226 3–4 None 1
Lachnoanaerobaculum_115 3–4 None 1
Lactobacillus_plantarum_337 3–4 None 1
Modestobacter_323 3–4 None 1
Moraxella_204 3–4 None 1
Morganella_294 3–4 None 1
Neisseria_345 3–4 None 2
Peptococcus_like_sp_oral_clone_I070_371 3–4 None 2
Propionibacterium_312 3–4 None 2
Sphingomonas_228 3–4 None 1
Turicella_264 3–4 None 2
Zymomonas_335 3–4 None 2
Bifidobacteriaceae_213 3–4 Fec 1
Clostridium_sensu_stricto_1_33 3–4 Fec 1
Collinsella_220 3–4 Fec 1
Eggerthella_189 3–4 Fec 2
Klebsiella_13 3–4 Fec 1
Corynebacterium_350 3–4 Np 1
Moraxella_3 3–4 Np 1
Alloprevotella_23 3–4 Sal 1
Bergeyella_108 3–4 Sal 1
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environmental factors are associated with the microbial com-
munity composition and development of these three niches in the
first months of life. Also, associations between the microbiome
development of each of these separate niches and respiratory
health have been observed, with an accelerated maturation of the
nasopharyngeal microbiome being associated with the number of
RTIs experienced in the first year of life, a loss of topography of
the upper respiratory microbiome (oropharynx and nasophar-
ynx) being shown to precede RTIs and an association is found
between the faecal microbiota composition at one week of life
with the number of RTIs experienced in the first year of life10–12.
Although this suggests an interplay between the microbial com-
munities across these niches, this has previously not been studied.
Here, we investigated cross-niche infant microbiota composition
and development and its relationship with susceptibility to RTIs
within the first year of life. We show multiple pieces of evidence

that support a link between network structure and RTI suscept-
ibility, which are (1) the increase in network fragmentation
(increased number of clusters) with increase in RTI susceptibility,
(2) the decrease in network stability (decrease in cluster simi-
larity) with an increased RTI susceptibility, and (3) the identifi-
cation of hub species associated with respiratory health in the
least susceptible RTI group vs. identification of hub species
associated with (respiratory) dysbiosis in the most susceptible RTI
group. To our knowledge, this is the first study using a cross-
niche microbial network strategy to study the composition of the
wider infant microbiome in relation to (respiratory) health.

In the rapidly developing early-life microbiome, we observed
that the anatomical niche was by itself the most important
explanatory variable for the microbial community composition,
suggesting that the niche environment is the main driver of the
composition of the local microbiome. This has already been

Table 1 (continued)

OTU Hub ID Niche indicator No. thresholds met

Lachnoanaerobaculum_128 3–4 Sal 1
Lactobacillales_63 3–4 Sal 1
Rothia_126 3–4 Sal 1
Rothia_16 3–4 Sal 1
Rothia_192 3–4 Sal 1
Rothia_287 3–4 Sal 1
Solobacterium_moorei_232 3–4 Sal 1
Streptococcus_20 3–4 Sal 1
Veillonella_66 3–4 Sal 1
Collinsella_110 3–4 and 5–7 None 1
Lachnospiraceae_98 3–4 and 5–7 None 2
Campylobacter_123 3–4 and 5–7 Sal 1
Veillonella_sp_DNF00869_15 3–4 and 5–7 Sal 1
Actinobaculum_schaalii_FB123_CNA_2_408 5–7 None 1
Bacteroides_84 5–7 None 2
Capnocytophaga_196 5–7 None 2
Erysipelotrichaceae_102 5–7 None 1
Erysipelotrichaceae_231 5–7 None 2
Flavonifractor_200 5–7 None 1
Fusicatenibacter_saccharivorans_44 5–7 None 1
Haemophilus_haemolyticus_663 5–7 None 1
Lachnospiraceae_144 5–7 None 2
Lachnospiraceae_230 5–7 None 2
Lachnospiraceae_302 5–7 None 1
Lactobacillus_fermentum_91 5–7 None 1
Moraxella_153 5–7 None 1
Moraxella_412 5–7 None 1
Moraxella_494 5–7 None 1
Neisseria_1000 5–7 None 1
Neisseria_469 5–7 None 2
Neisseria_527 5–7 None 1
Neisseria_949 5–7 None 1
Neisseria_meningitidis_830 5–7 None 1
Parascardovia_denticolens_F0305_486 5–7 None 1
Peptoniphilus_sp_S7MS8_148 5–7 None 1
Peptostreptococcaceae_117 5–7 None 1
Peptostreptococcaceae_75 5–7 None 1
Prevotella_sp_oral_clone_ID019_94 5–7 None 1
Ruminococcaceae_160 5–7 None 2
Ruminococcaceae_358 5–7 None 1
Streptococcus_Salivarius_subsp_thermophilus_364 5–7 None 1
Subdoligranulum_249 5–7 None 1
Bacteroides_74 5–7 Fec 1
Bifidobacterium_dentium_Bd1_28 5–7 Fec 1
Blautia_19 5–7 Fec 1
Collinsella_26 5–7 Fec 1
Erysipelotrichaceae_78 5–7 Fec 1
Parabacteroides_distasonis_82 5–7 Fec 1
ratAN060301C_27 5–7 Fec 1
Ruminococcus_gnavus_CC55_001C_24 5–7 Fec 1
Haemophilus_8 5–7 Np 1
Actinomyces_sp_oral_clone_DR002_81 5–7 Sal 1
Haemophilus_215 5–7 Sal 1
Haemophilus_413 5–7 Sal 1
Veillonella_156 5–7 Sal 2

Np nasopharynx, sal saliva, Fec faeces, None no niche indicator OTU.
The column niche indicator shows whether an OTU is also a niche indicator OTU. Hub ID indicates for which RTI group (or combination of RTI groups) an OTU is a hub species. Rows are ordered firstly
by hub ID, then niche indicator (None, faeces, np or saliva), then on OTU in alphabetical order.
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found in other studies8, but we also identified additional envir-
onmental drivers of microbiota composition and development,
among others mode of delivery, feeding type and the presence of
siblings <5 years in the household11–13.

Building cross-niche microbial networks allowed us to addi-
tionally investigate the connections between local and distal
microbial communities across the body and how this related to
respiratory health. In doing so, we were not only able to identify
clusters of OTUs in the cross-niche networks that were niche-
specific but also clusters of bacteria that were niche-independent.
The network clusters found to be dominated by niche-specific
bacteria are in line with previous results from human microbiome
network studies8.

When analysing the cross-niche network structure in relation
to RTI susceptibility, we observed that the number of clusters
within a network was highest for the most susceptible group,
while the temporal stability of clusters was lowest. This demon-
strates that increased susceptibility to RTIs might (in part) be
driven by an increase in network fragmentation, which is further
characterised by a decrease in similarity across clusters with the
same niche-specificity. Of note is the fact that we were unable to
statistically test the difference in cluster numbers across time and
RTI group, as for each of these categories, only one network could
be built given the available data. However, our finding of frag-
mentation is in line with a study focusing on the structure of
(niche-specific) gut microbial co-occurrence networks in IBD
patients, which was more distorted when compared to networks
in healthy individuals7. Further, a theoretical study by Ma et al.
supports our observation by showing that properties of critical
network structures were associated with microbiome-associated
diseases14.

When studying hub OTUs central to the respective cross-niche
networks15,16, we observed little overlap between RTI groups. In
order to place the identity of the hub OTUs that we identified into
a disease/health-related context, we performed a non-systematic
literature search for associations between hub species and
(respiratory) health. We found OTUs previously associated with
low susceptibility to, and low severity of, respiratory infections,
such as Corynebacterium, D. pigrum and N. lactamica, as hub
species in networks from our least susceptible group. Both Cor-
ynebacterium and D. pigrum have been consistently associated
with a health-associated microbiota maturation and a decreased
risk of developing RTIs in later life11,17,18. Furthermore, N. lac-
tamica has been shown in human challenge studies to inhibit
colonization by the pathogenic Neisseria meningitidis, which
supports that N. lactamica plays a role in a resilient microbial
community network19. Inversely, we observed hub species that
were previously associated with recurrent respiratory infections,
such as Haemophilus and Lachnospiraceae, in the networks of the
group experiencing the most RTIs, but generally not in the group
with few RTI episodes11,20–22. Therefore, our data suggest that the
presence of these bacteria is not incidental but potentially central
to a less beneficial bacterial community structure associated with
more RTI episodes.

Not only did we identify hub species that were previously
associated with respiratory health, but we also identified OTUs
that were previously associated with gut health, oral health,
immunological diseases, and infections as hub species in the
networks of infants experiencing either 0–2 or 5–7 RTIs. With
respect to gut health, beneficial OTUs known to produce or
enhance the production of butyrates, such as R. bromii (112),
Megasphaera (133 and 383), and Anaerostipes (142), were found
to be hub species in the networks of the least susceptible
group23–25. The short-chain fatty acid butyrate is a microbial
end-product of the human gut fermentation process and an
essential metabolite in the gut environment, being the preferred

energy source for colon epithelial cells. It has anti-inflammatory
properties and lowers the pH of the gut environment, in this way
inhibiting growth of pathogens23. Conversely, Peptos-
treptococcaceae spp. (75 and 117), previously associated with
increased faecal pH, were identified as hub species for the net-
works from the most susceptible group26. Additionally, in this
group, the mucin degrader R. gnavus (24) was identified as a hub
species. This OTU has previously been associated with a broad
range of immunological disorders, such as paediatric allergy, IBD
and psoriatic arthritis, and also with failure of faecal microbiota
transplantation27–32. Also, in the most susceptible RTI networks,
we observed A. schaalii (408), involved in urinary tract infections,
as hub species, as well as the cariogenic B. dentium (28) and P.
denticolens (486)33–35. Altogether, these observations suggest that
cross-niche bacterial networks may stand at the basis of overall
systemic susceptibility to inflammation-driven health conditions.
They further imply that the overall construction of microbial
networks, in addition to merely the presence/absence or abun-
dance of specific commensals or pathogens, can act as a driving
force behind inflammation-mediated disease.

Of note, although the more predominant OTUs were generally
niche-specific, most hub species were actually lower abundant
taxa and not associated with a specific niche. This supports the
“rare taxa” concept, which postulates that the abundance of a
species is not necessarily the best determinant for its importance
within the microbial community structure36. Studying the human
microbiome in a more system-centric context, therefore, might
provide insight into the importance and roles of lesser-known
microbes. In addition, it is important to highlight the fact that we
were able to shed some light on the degree of cross-niche con-
nectivity between microbial communities within the body.

Relationships between microbial communities across body sites
have already been pointed out, for example, by Madan et al.37,
who showed that the introduction of solid foods in children with
cystic fibrosis not only changed the microbiome composition
within the gut but also that of the respiratory tract. These con-
nections are likely a result of indirectly connected microbe-host
interactions, such as immunological pathways triggered by one
microbe that affect distally located microbes or metabolic pro-
ducts used by distally located microbes38,39, rather than direct
microbe–microbe interactions, which is due to their physical
separation, less likely. Examples for such effects of distally located
microbes affecting susceptibility to RTI’s have already been pre-
sented in the literature. Using a gain-of-function genetic mouse
model, Steed et al. were able to show that desaminotyrosine
produced by the human gut commensal Clostridium orbiscindens
augmented IFN-I signalling, thereby rendering protection from
influenza morbidity and mortality in infected mice40. In addition,
Olsen and Yamazaki present a mechanism by which systemic
diffusion of inflammatory mediators from periodontal lesions can
lead to or contribute to the development of a multitude of gas-
trointestinal conditions such as non-fatty liver disease, rheuma-
toid arthritis, or cancer41.

One key strength of our study is the integrated use of micro-
biota data across different body sites to build cross-niche
microbial networks in a longitudinal fashion, using samples col-
lected from a prospectively followed birth cohort of children
recruited at a single hospital in the Netherlands. By using a cross-
niche network approach with an algorithm based on conditional
independence rather than correlation, we showed that besides the
known associations between niche-specific microbiota and
respiratory health, there is likely also an association between the
overall infant microbiome network features and respiratory
health. Furthermore, we were able to identify hub species that
were important for the network structure, which were often
niche-independent, suggesting these microbes might be missed or
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their value might be underestimated when the microbiota is
studied within a single niche. With respect to future studies, our
results demonstrate that careful consideration of the composition
and connectivity of local and distal microbial communities can
enhance our understanding of the magnitude of systemic dys-
biosis potentially underlying health and disease. However, we are
aware that experimental limitations might not always allow the
study of the composition of the infant microbiome on a systemic
scale, although studies like ours may still provide a framework to
formulate testable hypotheses that incorporate more than one
niche community.

Limitations of our study are mainly inherent to the experi-
mental design, including only children recruited at a single hos-
pital in the Netherlands, warranting the need for similar studies
covering a broader range of geographical variation. In addition,
future in vitro/in vivo studies are needed to understand the
biological mechanisms underpinning these findings. Further-
more, we potentially lack statistical power when comparing net-
work cluster similarities across RTI groups within niches, as there
were only between one and four niche-specific clusters in any one
network. Lastly, we only considered univariate relationships
between environmental factors and infant microbiome compo-
sition as a means to pre-select factors to be combined in a mul-
tivariate model. This approach allowed us to pre-screen a large
number of covariates for their potential effect on the infant
microbiome without the risk of overfitting. However, it does not
take into account potential interactions/correlations between
individual covariates.

In conclusion, we observed cohesive and stable microbial
networks across body sites already from early life on, which in
turn were associated with a lower susceptibility for RTIs in the
first year of life. In contrast, we found more fragmented and
unstable cross-niche networks over the first 6 months of life in
infants with higher susceptibility to RTIs. Finally, we identified
bacteria that were central to each of the cross-niche microbial
network structures, though these differed between RTI groups.
These bacteria were often not indicative for a specific niche within
the body, and represented low abundant species, underlining the
potential importance of low abundant bacteria for microbiome
function.

Methods
Data collection. A detailed description of the study design and inclusion criteria of
the birth cohort can be found elsewhere13. In short, we used microbiota data from
samples obtained from 112 healthy infants born at term (≥37 weeks gestational
age) recruited at a single Dutch hospital at four different time points (week 1,
month 2, month 4, and month 6) and from three different niches, namely the
gastrointestinal tract (faecal samples), the upper respiratory tract (nasopharyngeal
swabs), and the oral cavity (saliva samples). Metadata was available for the first year
of life, but matched samples collected in parallel were only available until month 6.
Written informed consent was obtained from parents of all children and the study
was approved by METC Noord-Holland (M012-015, NTR3986). Infants were
divided into three groups based on the distribution of the number of RTIs they
experienced over the first year of life (0–2 RTIs, 3–4 RTIs, 5–7 RTIs), and as
described in previous publications using data from this birth cohort Supplementary
Fig. 5)10.

16S rRNA gene sequencing. DNA extraction and library preparation of the
bacterial 16S rRNA gene V4 region was performed as described previously13.
Samples were sequenced in 27 individual library pools, each containing DNA
extraction and qPCR blanks as negative control; and a mock community (positive
control). All pools were sequenced on the Illumina MiSeq platform (Illumina Inc.,
San Diego, CA, USA). The raw sequencing reads were trimmed using Sickle v1.33
(with the quality threshold set to q= 30 and the length threshold set to 150
nucleotides)42; error corrected using BayesHammer (SPAdes v3.8.1)43 and
assembled using PANDAseq v2.1044. Following removal of chimeric sequences,
reads were grouped into Operational Taxonomic Units (OTUs) using VSEARCH
v2.0.3 with a 97% similarity threshold45. Taxonomic annotation was performed
using QIIME v1.9.1 based on the SILVA database v11946,47. We removed spurious
OTUs by filtering at a minimum relative abundance of 0.1% and presence in at
least two samples48. We combined each OTU name with a number representing its

rank in the OTU table, based on the relative abundance in the overarching dataset
to discriminate OTUs with the same taxonomic annotation.

Statistical analysis. Analyses regarding the microbiota composition have been
performed in R version 3.4.3, while network analyses have been performed in R
versions and 3.6.249.

Niche comparison. Results of analyses of observed species richness were based on
raw read counts (Supplementary Fig. 6 for rarefaction curves). Similar results were
obtained when rarefying read counts to a sequencing depth of 3,000 reads. We used
the lmer function (lme4 package)50 to study the temporal changes of species
richness within and across niches, with participants added as random effect to take
repeated measures into account. To compare compositions of microbial commu-
nities across niches, we used non-metric multidimensional scaling (nMDS) plots
based on ordinations that used the Bray–Curtis (BC) dissimilarity matrix of relative
abundance data as input (function ordinate with parameter trymax 10,000; vegan
package)51. Stability of the microbiota composition in the first 6 months of life
within each niche was visualised by measuring the BC dissimilarities between
consecutive samples of each participant, and we tested differences across niches
using Wilcoxon’s signed rank test.

We used permutational multivariate analysis of variance (PERMANOVA) with
1,999 permutations to investigate the associations between microbiota composition
(response variable) and environmental covariates using the function adonis2
(vegan package)51. The covariates tested were mode of delivery (vaginal vs.
caesarean section), season of birth (summer, autumn, winter, spring), hospital stay
duration after birth in day parts, presence of siblings <5 years of age (yes vs. no),
presence of pets in the household (none, cat(s), dog(s), cat(s) and dog(s), other),
breastfeeding at sampling moment (yes vs. no), attendance of day care at sampling
moment (yes vs. no), use of pacifier at sampling moment (yes vs. no) and use of
antibiotics in the month prior to sampling moment (yes vs. no). Covariates that
were significantly associated in univariate models (per time point per niche,
Supplementary Figs. 7–12) with microbiota community composition at a
minimum of one-time point were included in a multivariate model that included
niche as well as age and subject to control for repeated measures. P-values were
adjusted for multiple testing using the Benjamini–Hochberg method52.

Network construction and cluster definition. Prior to network construction, we
split the data by RTI group and filtered the OTU tables to only include the 100
most abundant OTUs per niche, and within each RTI group in order to avoid
overestimation of the impact of very rare taxa on the overall network structure.
Because of overlapping OTUs between niches, this resulted in a final dataset that
included 220 OTUs for the 0–2 RTI group, 214 OTUs for the 3–4 RTI group and
228 OTUs for the 5–7 RTI group. All combined, we identified 315 non-redundant
OTUs, of which 149 OTUs were present in all three groups (Supplementary
Fig. 13). Using the top 100 prevalent OTUs per niche instead of the 100 most
abundant OTUs resulted in a smaller dataset of only 251 OTUs in total. Seventy-
four percent of those 251 OTUs identified using a prevalence filter were also
identified using an abundance filter, and since the overlap between the two
methods was large, we decided to continue our analysis using the abundance filter
since this resulted in a bigger number of OTUs to be available for network
construction.

We defined niche indicator OTUs as OTUs that were characteristic for a
particular niche. To identify such OTUs, we ran a niche indicator species analysis
using the function multipatt (indicspec package)53. This function calculates an
indicator value for each OTU at each niche, taking its total abundance per niche
into account. An OTU has deemed a niche indicator when it had an association
value of >0.5 with a p-value < 0.05 for one specific niche.

For network construction, we used the SpiecEasi pipeline with
Meinshausen–Buhlmann estimation (number of StARS repetitions= 50, lambda
scaling factor= 1e-2)9. This method is based on the concept of conditional
independence rather than correlation, making it less likely to detect spurious
connections between taxa that are indirectly connected but not directly connected.
Further, it uses centred log-ratio transformation of the data to overcome the
compositionality of microbiome data. In total, we constructed 12 networks (3 RTI
groups × 4 time points) using the methods described above, with the number of
OTUs remaining constant in each network. We used random walks (number of
steps= 5) to group OTUs into clusters that were closely associated using the
function walktrap.community (igraph package)54. We chose a step length of five
since the number of clusters plateaued after this value (Supplementary Fig. 14). We
considered clusters with ten or more OTUs as “main clusters”, as smaller clusters
usually contained only one or two OTUs (Supplementary Fig. 15). The OTUs
within a cluster can be either niche indicator OTUs (saliva, faeces, or nasopharynx)
or non-niche indicator OTUs. Therefore, if the composition of a cluster were
random, we would expect an equal proportion of any of these four OTU classes
within a cluster, i.e. each OTU class would have a prevalence of 25%. We
considered a cluster niche-specific if one of the OTU classes exceeded that
threshold value of 25%. This is a very conservative threshold as none of the classes
of niche indicator OTUs actually made up 25% of OTUs (between 5.7% and 11.5%
of OTUs within an RTI group). The use of this conservative threshold allowed us to
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unambiguously assign cluster identity. If there were two classes of niche indicator
OTUs that met this threshold within a single cluster, then the largest set
determined the niche annotation. If there were not enough niche indicator OTUs
that met this threshold, the cluster was defined as a “mixed (niche) cluster”.

Cluster stability analysis. We compared the composition of all clusters from each
time-specific network per RTI group using an n × n matrix, where cluster size was
not taken into account. We then calculated the difference in cluster composition
from a scale from 0 to 1, where 1 indicates complete similarity (i.e., two clusters
share 100% of their OTUs). We used ANOVA to assess whether cluster similarity
was different across niches.

Hub species analysis. To identify hub species (i.e., OTUs playing a significant role
in determining the structure of a community network), we calculated three
important network metrics for each OTU within a network at each time point: (1)
degree (the number of connections each OTU has within a network), (2)
betweenness centrality (number of shortest paths that pass through a specific OTU
within a network), and (3) closeness centrality (the reciprocal of the sum of the
length of the shortest paths between an OTU and all other OTUs in a network).
The correlation data between network metrics is shown in Supplementary Fig. 16.
We followed the definitions from Banerjee et al. and Berry and Widder by defining
hub species as those OTUs with a high degree, high closeness centrality and low
betweenness centrality15,16. We defined high degree or closeness centrality as the
top 10% of the distribution of each of those metrics and low betweenness centrality
as the bottom 10% of the distribution for betweenness. By doing so, we ensured a
selection of OTUs that were at the extremes of the distributions for all three values
(see Supplementary Fig. 17). We selected OTUs within RTI groups that met at least
one of those conditions as hub species.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequence data underlying the findings of this study have been previously deposited
in the NCBI Sequence Read Archive (SRA) database as part of other publications with
BioProject IDs PRJNA353336, PRJNA450937, and PRJNA481243. The results presented
in this manuscript are based on a subset of the sequences deposited under these
BioProjects. The source data underlying the tables and figures presented in this
manuscript are provided in Supplementary Data 1.
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