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A B S T R A C T

Sensory perceptual processing deficits, such as impaired visual object identification and perceptual closure, have
been reported in schizophrenia. These perceptual impairments may be associated with neural deficits in visual
association areas, including lateral occipital cortex and inferior temporal areas. However, it remains unknown if
such deficits can be found in the intrinsic architecture of the visual system.

In the current study, we measured perceptual closure performance and resting-state functional connectivity
using functional magnetic resonance imaging (FMRI) in 16 schizophrenia patients and 16 matched healthy
controls. We estimated intrinsic functional connectivity using self-organized grouping spatial ICA, which clusters
component maps in the subject space according to spatial similarity. Patients performed worse than controls in
the perceptual closure task. This impaired closure performance of patients was correlated with increased severity
of psychotic symptoms. We also found that intrinsic connectivity of the visual processing system was diminished
in patients compared to controls. Lower perceptual closure performance was correlated to lower visual cortical
intrinsic connectivity overall.

We suggest that schizophrenia is associated with impaired intrinsic connectivity of the visual system, and that
it is a potential mechanism leading to impaired visual object perception. These findings contribute to increasing
evidence for impairments of higher visual functions in schizophrenia.

1. Introduction

Although schizophrenia has traditionally been conceptualized as a
disorder of fronto-limbic-striatal (Meyer-Lindenberg and Weinberger,
2006) or fronto-thalamo-cerebellar (Andreasen, 1999) circuitry, recent
research has also zoomed in on dysfunctions of sensory processing
systems. Particularly, there is substantial evidence for impaired visual
processing in schizophrenia patients. Studies over the recent years have
demonstrated deficits in early visual processing pathways in schizo-
phrenia, including dysfunctions in (subcortical) magnocellular path-
ways and orientation-specificity (Butler et al., 2007, 2005; Martinez
et al., 2008; Yoon et al., 2009). Patients also show impaired perfor-
mance on a number of tasks of visual object recognition, such as visual
illusions, Gestalt images and perceptual closure (Doniger et al., 2001;
Sack et al., 2005; Uhlhaas et al., 2006a). These findings may point to a
particular dysfunction in visual perception, as it has been suggested that
the magnocellular pathway may play an important role in the top-down
modulation of object-based visual perception (Bar, 2003).

Impairments in visual object processing may be related to core
pathological mechanisms in schizophrenia. Many visual tasks on which
patients with schizophrenia perform poorly contain elements of con-
textual processing of sensory information (Javitt, 2009; Silverstein and
Keane, 2011). Patients with schizophrenia show impaired performance
when contextual information is noisy (Uhlhaas et al., 2006b; Yoon
et al., 2009) or incomplete (Doniger et al., 2000; Sack et al., 2005),
which indicates that these patients have difficulty integrating top-down
contextual processing with bottom-up sensory information. Impaired
visual processing has also been observed in sub-clinical at-risk popula-
tions (Kim et al., 2010; Oertel et al., 2009), which could indicate that
visual impairments share a genetic commonality with other pathogenic
mechanisms in schizophrenia. Finally, one study showed improved
performance on visual processing tasks after three weeks of clinical
treatment, together with alleviation of symptoms (Uhlhaas et al., 2005).
Thus, impairments in visual processing may be a core feature in the
pathology of schizophrenia.

Impairments in visual object perception can be investigated using
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perceptual closure tasks. Perceptual closure is the ability to recognize
visual objects or shapes from incomplete or obstructed visual informa-
tion (Snodgrass and Feenan, 1990). In perceptual closure tasks,
participants must identify visual items that are partially obstructed or
that miss visual details. Previous neuroimaging studies showed that
performance in such tasks is associated with activity in object-related
processing areas, including the lateral occipital cortex and inferior
temporal areas (Doniger et al., 2000; Ploran et al., 2007; Sehatpour
et al., 2006). Schizophrenia patients have shown impaired perceptual
closure performance in a number of tasks (Doniger et al., 2001; Oertel
et al., 2009; Sack et al., 2005). For example, in one study (Sack et al.,
2005), schizophrenia patients and healthy participants had to identify
partially occluded visual objects and written words within a pre-fixed
time interval. Patients identified significantly fewer visual items than
did healthy controls. In another study, Doniger et al. (2001) used a
perceptual closure task in which the occluded visual object was
revealed in a step-wise fashion, such that the image appeared more
completed with each step. This process stopped when the participant
correctly identified the image or when the image was completely
revealed. In their task, schizophrenia patients required significantly
more visual information to recognize the objects than did healthy
controls. An event-related potential (ERP) study further showed that
patients' impaired perceptual closure performance was associated with
a diminished closure-related negativity, of which the neural source has
been attributed to visual association areas (Doniger et al., 2002).

However, to date it remains unknown whether impaired perceptual
closure is associated to impaired connectivity of the visual system in
schizophrenia patients. One approach to address this issue is to
compare intrinsic brain activity in patients and controls to perceptual
closure performance. There is growing evidence that the intrinsic
functional architecture, which is commonly measured using resting-
state paradigms, is disrupted in schizophrenia (Alderson-Day et al.,
2016; Bassett and Bullmore, 2009; Menon, 2011; van de Ven, 2012).
Many of these studies have focused on higher-order brain networks that
are associated with executive functioning and cognitive control. There
is very little known about intrinsic abnormalities of visual cortical
processing in schizophrenia patients. One resting state study (Liang
et al., 2006) found widespread decreases and increases in intrinsic
functional connectivity in patients, compared to controls, which
included connections between visual and non-visual brain areas.
However, no details about altered connectivity within visual cortex
were reported. A second study (Hoptman et al., 2010) analyzed
differences in low frequency amplitude (< 0.1 Hz) of resting state
activity in patients and healthy controls, which strongly contributes to
the functional magnetic resonance (FMRI) resting state signal (Cordes
et al., 2001; Fox and Raichle, 2007; van de Ven et al., 2004) and may
have a neural underpinning (Leopold et al., 2003; Shmuel and Leopold,
2008). Hoptman et al. (2010) found decreased amplitude of low
frequency oscillations in visual cortex in patients, compared to controls,
which could indicate impaired visual cortex functioning in patients.
However, analysis of functional connectivity within visual RSN was not
performed.

In addition, several FMRI resting-state studies have also shown that
individual differences in connectivity strength within and between
RSNs may be associated to individual behavioral performance on a
number of tasks. For example, intrinsic connectivity strength of
executive and cognitive control RSNs have been found to correlate
with behavioral or self-report measures of attentional or executive
abilities (Reineberg et al., 2015; Seeley et al., 2007). Other studies have
demonstrated that larger improvements after learning a sensory (Lewis
et al., 2009; Urner et al., 2013) or motor skill (Albert et al., 2009;
Taubert et al., 2011; Zhang et al., 2014) are associated with larger
increases in intrinsic connectivity within and between sensory, motor
and higher-order RSNs after learning. Thus, it is possible that altera-
tions in intrinsic visual cortical connectivity may be associated with
corresponding changes in perceptual closure performance. However, it

remains unknown whether schizophrenia patients show impaired
intrinsic connectivity of visual areas and if it is behaviorally relevant
for higher-order visual processing.

In the current study, we compared functional connectivity of the
visual RSN in schizophrenia patients and healthy controls to perceptual
closure performance obtained outside of the scanner environment. We
expected to replicate previous findings of impaired perceptual closure
performance in schizophrenia patients, compared to healthy controls.
Further, we hypothesized that patients show reduced functional con-
nectivity within striate and extrastriate cortex, compared to healthy
controls, and that reduced intrinsic visual cortical connectivity is
associated with impaired perceptual closure performance.

2. Methods

2.1. Participants

The study included sixteen right-handed schizophrenia patients of
the Department of Psychiatry of the University Hospital of Goethe
University, Frankfurt, Germany and sixteen control participants
matched for handedness, age, gender and parental years of education.
The fMRI data have been described in a previous study (Rotarska-
Jagiela et al., 2010). Because of the rationale of this previous study,
patients were included if they met diagnostic criteria for paranoid
schizophrenia according to the DSM IV and had a history of auditory
hallucinations. Table 1 lists demographic and clinical data of the
participants. Participants with a history of other psychiatric or neuro-
logical disorders or drug abuse were excluded. The diagnosis of
schizophrenia was confirmed with Structured Clinical Interview for
DSM IV (Wittchen et al., 1997). Current psychopathology in the patient
group was assessed using PANSS (Fiszbein et al., 1987). The local ethics
committee of the University Hospital approved the study. Written
informed consent was obtained from all participants.

2.2. Assessment of visual perceptual closure

To assess visual perceptual closure, we assessed objective perfor-
mance on two speed-of-closure tests, which we have used in previous
studies (Oertel et al., 2009; Sack et al., 2005). The perceptual closure
tests are part of a larger general intelligence test battery (Horn, 1983)
that comprises high retest reliability (rtt = 0.95). We assessed object-
based perceptual closure speed (OPC, retest reliability, rtt = 0.71) and
verbal-based perceptual closure speed (VPC, rtt = 0.88). The OPC
consists of 40 sketches of common objects (e.g. car, apple, house), in
which some pictorial parts are erased, and participants are required to
recognize and name the respective objects. The VPC consists of 40
visually degraded words, in which each word contains one false letter,

Table 1
Demographic variables, symptom ratings and behavioral measures. Numbers in rounded
brackets are standard deviations (SD).

Patients Controls Comparison P

Demographics
Gender (M/F) 8/8 8/8 n.s.
Age in years 36.1 (7.9) 37.0 (7.8) n.s.
Parental years of education 12.2 (2.0) 13.1 (3.0) n.s.
Years of education 13.8 (3.5) 17.0 (1.8) < 0.01
Symptoms (PANSS)
Positive 14.7 (5.6)
Negative 15.9 (4.9)
General 29.9 (10.8)
Behavioral tests
Mean perceptual closure (OPC and

VPC)
19.3 (5.8) 23.4 (3.2) 0.023

Psychomotor Speed in sec 47.8 (33.6) 30.1 (13.4) n.s.
Semantic knowledge (items correct) 29.1 (5.1) 28.1 (4.3) n.s.
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which has to be identified and crossed out. Performance for each of the
tests is limited to a time constraint of 1 min. Perceptual closure
performance is scored as the number of correctly identified items
within the restricted time. Because performance on the two speed-of-
closure tests are commonly highly correlated, as was the case in our
study (r = 0.65, P < 0.001), the scores were averaged between the
two tests to obtain a single measure of perceptual closure.

The perceptual closure tests contain elements of psychomotor speed
and semantic knowledge. To control for possible group effects in these
cognitive domains, we also assessed the German equivalent
(Gaussmann et al., 1978; Oswald, 1986) of the Trail Making Test A
(TMT-A (Reitan, 1958)) and the German equivalent (Gaussmann et al.,
1978) of the Spot-the-Word-Test (SWT (Baddeley et al., 1993)). In the
TMT-A, the material comprises two matrices of numbers that are
arranged in random order and participants must connect the numbers
in ascending order. Psychomotor speed performance is scored as the
mean speed in seconds to complete the matrices. In the SWT,
participants must identify a word amongst nonsense-word distractors.
Semantic knowledge is scored as the number of correctly identified
words. Both psychometric tests possess high test-retest reliability
(TMTA: rtt = 0.95; SWT: rtt = 0.87). All tests were completed within
seven days prior to scanning.

2.3. Image acquisition

MRI measurements were performed on a 3 Tesla Siemens Allegra.
T1-weighted anatomical data were obtained using 3D Modified Driven
Equilibrium Fourier Transform (MDEFT) sequence (Deichmann et al.,
2004; Lee et al., 1995) with 176 slices and 1 × 1 × 1 mm3 voxel size.
Functional T2*-weighted resting-state images were acquired using an
EPI sequence (TR/TE 1000/30 ms, flip angle 60°, 16 slices, 400
volumes, 3.1 × 3.1 × 5 mm3). Participants were instructed to lie still
during image acquisition with their eyes open and fixate a white cross
presented in the center of the visual field.

2.4. Data preprocessing and analysis

The data were analyzed using BrainVoyager QX (Goebel et al.,
2006) and in-house software that used functionalities of the NeuroElf
toolbox (www.neuroelf.net) implemented in Matlab (The MathWorks,
Natick, MA, U.S.A.). Functional data were preprocessed using slice scan
time correction, spatial smoothing with a 6 mm FWHM Gaussian
kernel, linear trend removal and high pass filtering of 0.0025 Hz per
functional run. The data were aligned to anatomical images and
resampled to 3 × 3 × 3 mm3 in a standardized 3D Talairach space.
Anatomical images were averaged across participants, and an average
brain volume mask was created.

2.5. Functional connectivity analysis

Analysis of resting-state functional connectivity was conducted
using self-organized grouping sICA (sogICA) (Esposito et al., 2005;
van de Ven et al., 2008) to decompose individual time series into 45
spatial components and temporal profiles (using Infomax algorithm
(Bell and Sejnowski, 1995)) and cluster the results in the subject space
to obtain group representations of the spatial modes. Spatial compo-
nents and associated temporal profiles were Z-normalized (McKeown
et al., 1998). Component clustering in the subject space was performed
using hierarchical clustering with spatial similarity as input to the
clustering algorithm to obtain 45 clusters of 32 spatial maps. Each
participant contributed one spatial map to a cluster. For each cluster, a
representative cluster spatial map was obtained by calculating one-
sample t-tests of the component values for each voxel (i.e., ignoring
group member ship of the cluster members). We then selected by visual
inspection the spatial cluster map that best represented early visual
cortex, referred to here as the visual RSN, for further analysis.

Importantly, this selection was made at the end of the sogICA clustering
procedure in order to minimize subjective selection of individual
components (Esposito et al., 2005; van de Ven et al., 2008).

We then regressed the temporal profile of the individual compo-
nents of the visual RSN in a multiple regression analysis for each
participant's resting-state time series. Visual RSN regressors were
supplemented with FMRI covariates that included time series sampled
from the ventricles and from white matter, global signal and six head-
volume rotation and translation parameters for each participant (Birn
et al., 2006; Fox et al., 2005). The regression fits of the visual RSN were
interpreted as linear fits of functional connectivity. Analysis of the
absolute values of the six head movement parameters revealed no
systematic differences between the two groups (P > 0.6).

A multi-subject representation of the visual RSN was calculated by a
one-sample t-test of functional connectivity maps. The statistical
summary map was thresholded for visualization at a false-discovery
rate (FDR (Genovese et al., 2002)) of q = 0.01 and a minimum region-
size threshold of 270 mm3 (arbitrarily chosen to minimize isolated
voxels and bias results towards contiguous clusters surviving the FDR
correction). This map also served as a statistical voxel map to
empirically restrict voxel-based analysis of functional connectivity to
visual RSN areas.

2.5.1. Global and local connectivity
Group differences of connectivity were assessed at the global (that

is, map-based) and local level (that is, voxel-based). For the global-level
analysis, we calculated a spatial goodness-of-fit (SGI) index (Esposito
et al., 2008; Greicius et al., 2004) as the spatial correlation of an
individual's visual RSN to a leave-one-out template of the multi-subject
visual RSN (Esposito et al., 2008). In the leave-one-out procedure, the
template was calculated as the mean of the visual RSNs of all
participants with the exception of the one to which the template is
compared to. The ensuing correlation values were normalized using
Fisher's Z transformation and then used as a dependent variable in
subsequent analyses with Group as independent factor.

For the local-level analysis, the distributions of voxel-based con-
nectivity values were analyzed with Group as independent factor in a
voxel-by-voxel manner. Only voxels that were tagged by the thre-
sholded multi-subject map were investigated, which amounted to<
15% of all brain voxels. The resulting statistical map was thresholded
at q(FDR) = 0.05.

To simplify the ROI analysis, we pooled voxel clusters according to
early vs. higher-level visual areas, which largely coincides with the
psychophysical results of visual perceptual deficits in schizophrenia
(e.g., (Silverstein and Keane, 2011)). Voxel clusters at or near the
calcarine fissure were pooled into an early visual ROI. Voxel clusters in
extrastriate and inferotemporal areas were pooled into a higher-visual
ROI.

2.5.2. Associations with perceptual closure
We analyzed associations between visual RSN and perceptual

closure using correlation analysis at the global and local level. Within
the patient group, we also correlated symptom ratings with the
perceptual closure scores.

2.5.3. Associations with psychopathology
Finally, we analyzed whether psychopathology was associated with

visual RSN connectivity in patients by correlating the symptom ratings
for positive, negative and general symptoms to functional connectivity
coefficients at the global and local level. This analysis was conducted as
an exploratory analysis, following up on previously reported correla-
tions between intrinsic connectivity and psychopathology ratings (e.g.,
(Oertel-Knöchel et al., 2014; Shinn et al., 2013; Whitfield-Gabrieli
et al., 2009)).
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3. Results

3.1. Behavioral test performance

Behavioral test scores of one control participant were not logged
correctly, and were therefore excluded from analysis. Table 1 provides
an overview of the demographic values and behavioral performance on
the perceptual closure, psychomotor speed and semantic knowledge
tests. Patients did not significantly differ from the control group on age,
gender, handedness and parental years of education. However, patients
had lower years of education than controls (P = 0.004).

Patient performance on perceptual closure was worse (mean [SD]
= 19.3 [5.8]) compared to control participants (23.4 [3.2]), and this
difference was significant (T[29] = 2.4, P = 0.023). Perceptual closure
scores did not correlate with years of education (P > 0.4). Further,
patients performed slower on the psychomotor speed test (mean [SD]
= 47.8 [33.6]) compared to controls (30.1 [13.4]), but this difference
did not reach significance (P = 0.068). Finally, performance on the
semantic knowledge test was not significantly different (P = 0.59).

Because of the significant difference in years of education and the
close-to-significant effect on psychomotor speed, we removed the
covariance of these measures from the subsequent functional connec-
tivity analyses by means of least squares regression.

3.2. Visual RSN

A multi-subject map of the visual RSN of patients (one-sample t-test,
thresholded at q = 0.05 and minimum region-size threshold of
270 mm3) showed significant functional connectivity in bilateral striate
and extrastriate visual cortex, including medial and lateral occipital
gyri, inferior temporal areas and parahippocampal gyri (see Fig. 1).
This map was very similar to the multi-subject map of the control
participants, as indicated by the high spatial correlation between the
two maps (r = 0.70). We used the one-sample t-test map of all
participants combined as a voxel mask for subsequent analyses.

We assessed between-group effects on a global and local level. For
the global level, the spatial goodness-of-fit index (SGI) was significantly
(T[29] = 2.5, P = 0.017) lower for patients (mean [SD] = 0.47
[0.22]) compared to controls (0.65 [0.17]) (see Fig. 2A). This result
indicated that within the visual RSN the degree of network-wide
functional connectivity in patients was less strong or consistent than

in controls.
At the local level, the voxel-by-voxel group comparison within the

visual RSN revealed several voxel clusters of significant difference in
connectivity around the calcarine fissure, the anatomical marker for
striate cortex, lateral occipital cortex and inferior temporal gyri,
extending into parahippocampal regions. Table 2 lists the coordinates
and sizes of the clusters. The regional results reflected widespread
changes within the visual RSN, which mostly was in the direction of
decreased connectivity in patients compared to controls, thereby
corroborating the global connectivity results. That is, visual cortex
connectivity in schizophrenia is reduced in strength, rather than
increased network heterogeneity. To focus the analysis on key visual
sensory processing areas, we pooled areas according to homologue
location in the left and right hemisphere for cuneus (region-of-interest
for early visual processing) and inferior temporal gyrus (region-of-
interest for higher order visual processing), which we used for further
analysis.

3.3. Association with perceptual closure

Initial correlation analysis between perceptual closure scores and
the global network index showed that higher global connectivity was
associated with increased perceptual closure performance across both
groups (SGI, r = 0.55, P = 0.002). However, because both measures
significantly differed between the two groups, we regressed out the
Group factor from both measures. The correlation between the two
corrected measures remained significant (r = 0.41, P = 0.011) (see
Fig. 2B).

We also correlated the perceptual closure scores with the functional
connectivity values of the two bilateral visual RSN regions. A significant
correlation was found for bilateral ITG (r = 0.53, P < 0.001) and for
bilateral cuneus (r = 0.39, P = 0.014), indicating that higher connec-
tivity was associated with better perceptual closure performance. To
rule out the possibility that these correlations were confounded by
Group factor, we regressed out Group factor and recalculated the
correlations for both regions. We again found a significant correlation
corrected for Group in bilateral ITG (r = 0.40, P = 0.014; see Fig. 2D)
but not for early visual cortex (Fig. 2C).

Finally, we assessed how perceptual closure performance correlated
with symptom ratings. Perceptual closure performance in patients
correlated negatively with positive symptom severity (r =−0.66,

Fig. 1. Visual RSN group maps. Shown are the thresholded (q(FDR) = 0.05) one-sample t-test maps of the visual RSNs for healthy control participants (A) and schizophrenia patients (B)
superimposed on the average anatomical image of all participants. White number at left-top of each panel indicates Talairach Z coordinate. Left hemisphere is depicted on the left of each
image.
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P = 0.005), such that higher positive symptom severity was associated
with decreased perceptual closure performance. We did not find
significant associations between perceptual closure and negative or
general symptom ratings (Ps > 0.05). Moreover, perceptual closure
performance in patients was not associated with patient age (P > 0.6),
illness duration (P > 0.8) or medication (dosage in chlorpromazine
equivalent mg/day, mean [SD] = 651.5 [296.3], P > 0.9).

3.4. Association between intrinsic connectivity and psychopathology

We found no significant correlations between positive, negative or
general PANSS scores and global or local functional connectivity.

4. Discussion

We compared perceptual closure performance and functional con-
nectivity of the visual RSN in schizophrenia patients to that of matched
healthy control participants. We found that patients performed worse
on perceptual closure than did healthy controls, independent of
psychomotor speed or semantic knowledge. This finding corresponds
to previous reports of impaired perceptual closure in schizophrenia
(Doniger et al., 2001; Oertel et al., 2009; Sack et al., 2005; Uhlhaas and

Mishara, 2007).
Moreover, we found that strength of functional connectivity was

diminished throughout the visual RSN in patients compared to controls,
including early and higher-level visual areas. These findings correspond
to a previous report of reduced low frequency amplitudes during resting
state in patients with schizophrenia and schizoaffective disorder
compared to healthy controls (Hoptman et al., 2010). Our results
expand on these findings by showing that resting state FMRI can
identify aberrant functional connectivity beyond moments of task-
related visual perception.

Further, our finding of decreased functional connectivity in early as
well as higher-order visual areas fits to previous reports of impaired
visual sensory processing. Reports of diminished magnocellular path-
way responses (Butler et al., 2007, 2005; Martinez et al., 2008),
impaired performance in visual contextual tasks (Dakin et al., 2005;
Yoon et al., 2009) and visual illusions (Kantrowitz et al., 2009) indicate
deficits in neural pathways at the level of primary visual cortex or
before, at subcortical levels. At the same time, schizophrenia patients
have also shown impairments for stimuli of higher-order perceptual
organization, such as in Gestalt perception of faces (Butler et al., 2008;
Uhlhaas et al., 2006a) or perceptual closure of objects (Doniger et al.,
2001; Oertel et al., 2009; Sack et al., 2005). The functional relevance of
visual cortical connectivity is further supported by the observed
correlation between perceptual closure scores and functional connec-
tivity strength in higher-level but not in early visual areas. The
perceptual closure tests included degraded visual objects and word
forms, which are processed in inferior temporal areas rather than in
early visual cortex (Grützner et al., 2010; Ploran et al., 2007; Sehatpour
et al., 2006). It is conceivable that performance on perceptual
organization tasks that tap into subcortical and early visual processes
(e.g., (Butler et al., 2007; Martinez et al., 2008)) may show a stronger
correlation with intrinsic connectivity in early visual areas, rather than
inferior temporal cortical connectivity. Yet, it is also likely that a deficit
at one level of the visual hierarchy influences processing at another
level. For example, deficits in magnocellular pathways can result in

Fig. 2. Visual RSN and perceptual closure. (A) Spatial Goodness-of-fit index (SGI) of visual RSN was lower for patients (black bar) than for healthy controls (gray bar). (B) SGI values
correlated with perceptual closure performance across both groups. SGI and perceptual closure scores were corrected for Group because both showed a significant difference between
groups (see main text). (C, D) Regional functional connectivity values in inferior temporal areas (D), but not in early visual areas (C), correlated with perceptual closure performance.
Connectivity values and perceptual closure scores were corrected for Group. Error bars indicate 1 SEM. Thick regression line indicates a significant linear association (P < 0.05).

Table 2
Visual RSN regional differences. Clusters were obtained from a between-group voxel-by-
voxel analysis of the visual RSN (thresholded at q(FDR) = 0.05). Coordinates are in
standardized Talairach space. Contrast specifies the direction of the effect.

ROI L/R x y z [mm] Size [mm] Contrast

Cuneus L 6 −79 22 192 C > P
R −15 −85 4 99 C > P

ITG L −18 −61 −5 27 C > P
R 12 −58 −8 10 C > P

MTG R 42 −70 22 46 C < P
PCC L −9 −43 7 34 C < P
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noisy processing at higher levels of visual representation (Demb et al.,
1998), while top-down processing such as visual attention can alter
processing at primary visual (Kastner and Ungerleider, 2000) and even
subcortical levels (O'Connor et al., 2002). Our study did not use other
perceptual tasks that may be sensitive to higher or lower levels of visual
processing, which precludes further insight into this issue. Future
studies are required to test the functional specificity of intrinsic visual
cortical connectivity and its role in the pathophysiology of schizo-
phrenia.

Our findings of decreased connectivity in schizophrenia are in line
with a growing body of reports that show widespread impairments in
intrinsic connectivity in schizophrenia (Alderson-Day et al., 2016;
Menon, 2011; Northoff and Qin, 2011). In particular, the default-mode
network (DMN), salience network (SN) and the central executive
network (CEN) seem to be affected in psychotic patients, compared to
healthy controls, and which may be related to symptomatology and
higher-order cognitive impairments in patients (Alonso-Solís et al.,
2012; Orliac et al., 2013; Palaniyappan et al., 2013; Rotarska-Jagiela
et al., 2010; Whitfield-Gabrieli et al., 2009; Woodward et al., 2011). In
turn, aberrantly connected networks may impair sensory information
processing, thereby playing a role in perceptual impairments as well.
For example, one study showed that, in first-episode psychosis patients,
the DMN's posterior cingulate cortex was less strongly connected to
visual areas, including inferior temporal and cuneus areas, compared to
age and gender-matched controls (Alonso-Solís et al., 2012). Yet,
aberrant connectivity between visual and other RSNs in schizophrenia
is not a common finding. We also did not find aberrant connectivity
between the visual and non-visual brain areas in our study. However,
we note that differences in patient sample and analytical approaches
between the two studies make comparison of results difficult.

It is currently unknown how the association between impaired
visual processing and disrupted intrinsic functional connectivity is
related to pathogenic factors in schizophrenia. Impairments in percep-
tual organization are not generally observed in most other mental
disorders, such as bipolar disorder (Keri et al., 2005) or non-psychotic
disorders (Uhlhaas et al., 2005). Conversely, we and others previously
showed impaired perceptual closure performance in clinically unaf-
fected relatives of patients with schizophrenia (Kim et al., 2010; Oertel
et al., 2009), suggesting that closure deficits may be associated to the
pathogenic mechanism of schizophrenia. Our use of intrinsic connec-
tivity measures may be a useful method in further investigating how
perceptual processing impairments are related to schizophrenia. In-
deed, several resting-state FMRI studies showed impairments in non-
clinical at-risk groups that were similar to those observed in schizo-
phrenia patients (Oertel-Knöchel et al., 2013; Peeters et al., 2015;
Whitfield-Gabrieli et al., 2009).

Finally, we found that impaired perceptual closure performance was
associated with increased positive symptom severity in patients. It has
been suggested that perceptual closure tasks tap into processes that
integrate sensory evidence with top-down executive and memory
functions (Javitt, 2009; Silverstein and Keane, 2011), which may also
play a role in the generation of psychotic symptoms in schizophrenia
(Frith, 2000). Our finding appears in line with this postulation. Further
support comes from a previous study that used a Gestalt perception task
based on inverted faces and reported that decreased Gestalt perception
was associated with increased positive symptom ratings, including
hallucinations (Uhlhaas et al., 2006a). However, other studies that
used comparable tasks reported decreased task performance in associa-
tion with increased negative (Doniger et al., 2002) or disorganization
symptoms (Uhlhaas et al., 2006b), which suggests that the putative link
between visual impairments and positive symptoms may not be very
specific. A dedicated and high-powered study using one or more
perceptual closure tasks and detailed clinical phenotyping in schizo-
phrenia is required to resolve this issue.

We carefully controlled our study for known confounding effects.
Our results appear not to be confounded by use of antipsychotic

medication in patients, as correlations between medication dosage
and perceptual closure performance were not significant. Also, we
carefully matched the two participant groups on various demographic
variables, and controlled for confounding effects of differences in years
of education and psychomotor speed between the groups. Finally, the
confounding effects of head motion in resting state analysis has been
fiercely debated over recent years (Power et al., 2012; Turner et al.,
2015; van Dijk et al., 2012). Particularly, schizophrenia patients may
show more frequent and larger head movements compared to healthy
controls, which could spuriously amplify differences between groups
(Callicott and Weinberger, 1999). In our study, we found no clear
indication of systematically larger head movements in patients than in
controls. Also, we controlled for individual head movement in all
participants in the functional connectivity analysis, following previous
recommendations.

In conclusion, we found impaired functional connectivity in visual
RSN in schizophrenia, which was associated with impaired perceptual
closure performance. The association was strongest in higher-order
visual areas, which fits to the visual object-related nature of the closure
task that we used. Visual RSN abnormalities may be a causative factor
in explaining visual processing deficits in schizophrenia.
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