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A B S T R A C T   

Background: Various mortality prediction models for Transcatheter Aortic Valve Implantation 
(TAVI) have been developed in the past years. The effect of time on the performance of such 
models, however, is unclear given the improvements in the procedure and changes in patient 
selection, potentially jeopardizing the usefulness of the prediction models in clinical practice. We 
aim to explore how time affects the performance and stability of different types of prediction 
models of 30-day mortality after TAVI. 
Methods: We developed both parametric (Logistic Regression) and non-parametric (XGBoost) 
models to predict 30-day mortality after TAVI using data from the Netherlands Heart Registra
tion. The models were trained with data from 2013 to the beginning of 2016 and pre-control 
charts from Statistical Process Control were used to analyse how time affects the models’ per
formance on independent data from the mid of 2016 to the end of 2019. The area under the 
Receiver Operating Characteristics curve (AUC) was used to evaluate the models in terms of 
discrimination and the Brier Score (BS), which is related to calibration, in terms of accuracy of the 
predicted probabilities. To understand the extent to which refitting the models contribute to the 
models’ stability, we also allowed the models to be updated over time. 
Results: We included data from 11,291 consecutive TAVI patients from hospitals in the 
Netherlands. The parametric model without re-training had a median AUC of 0.64 (IQR 
0.54–0.73) and BS of 0.028 (IQR 0.021–0.035). For the non-parametric model, the median AUC 
was 0.63 (IQR 0.48–0.68) and BS was 0.027 (IQR 0.021–0.036). Over time, the developed 
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parametric model was stable in terms of AUC and unstable in terms of BS. The non-parametric 
model was considered unstable in both AUC and BS. Repeated model refitting resulted in sta
ble models in terms of AUC and decreased the variability of BS, although BS was still unstable. 
The refitted parametric model had a median AUC of 0.66 (IQR 0.57–0.73) and BS of 0.027 (IQR 
0.020–0.035) while the non-parametric model had a median AUC of 0.66 (IQR 0.57–0.74) and BS 
of 0.027 (IQR 0.023–0.035). 
Conclusions: The temporal validation of the TAVI 30-day mortality prediction models showed that 
the models refitted over time are more stable and accurate when compared to the frozen models. 
This highlights the importance of repeatedly refitted models over time to improve or at least 
maintain their performance stability. The non-parametric approach did not show improvement 
over the parametric approach.   

1. Introduction 

Aortic stenosis is the most common valvular disease in developed countries. If symptomatic, the stenosis requires valve intervention 
[1]. Transcatheter Aortic Valve Implantation (TAVI) has become the routine treatment for aortic stenosis even for low and inter
mediate risk patients [2–4]. Besides the improvements of the procedure and technology involved [5,6], such as using smaller sheaths 
and organizing specialized teams for the procedure, a strict patient selection is being followed to select patients who are likely to 
benefit from TAVI [7]. 

The TAVI candidate selection is performed by a multi-disciplinary team, where multiple risk scores, such as STS (Society of 
Thoracic Surgery) [8] and EuroSCORE [9,10] are considered. Although those scores are not TAVI specific, they are well accepted 
parametric models and used for early-mortality estimation after cardiac surgery. Other instruments, such as FRANCE2 [11], ACC-TAVI 
[12], and also non-parametric models [13,14] aimed at predicting mortality specifically after TAVI have been introduced. The external 
validation of such models, in which patients originate from other settings and countries, has shown worse performance than on the 
internal validation obtained on the original dataset [15–17]. Such models only achieved improved performance when refitted (or in 
general updated) for that specific centre [18,19]. 

The TAVI patient selection process and the procedure itself are changing over time, and it is still unknown if there is a performance 
drift in the accuracy of the mortality prediction models over time in the same setting. With that, it is not clear if the prediction of 
models developed a while ago are stable and fit for continuous use without refitting. Although a limited prospective validation was 
performed in a previous study [18], only a single test set was used by the authors and the performance change and model’s stability 
were not assessed repeatedly over time. In addition, the evaluated risk scores were developed using a parametric model and it is 
unclear how non-parametric models (such as boosting trees) behave on the same TAVI mortality prediction task. Therefore, an 
investigation is needed to assess the stability of models over long periods of time. Statistical Process Control (SPC) is a monitoring and 
alerting instrument that combines graphical and statistical inferences that can be used to monitor the accuracy and errors of the 
prediction models over time [20,21]. With this approach, the model’s stability over time can be visualized and statistically assessed. 
We aim to explore how time affects the performance and stability of both a parametric and a non-parametric prediction model for 
30-day mortality after TAVI. To this end, we used a large dataset from all heart centres in the Netherlands to train the models and use 
SPC to monitor their stability and performance prospectively. 

2. Methods 

2.1. Study population 

We included all patients registered in the Netherlands Heart Registration (NHR)1 who underwent a TAVI procedure between 
January 2013 and December 2019 in the Netherlands. The NHR is a national registry that includes data from all the sixteen-heart 
intervention centres in the Netherlands, containing demographics, clinical characteristics, intervention, and procedure details [22]. 
The NHR Transcatheter Heart Valve Interventions registration committee gave permission for this analysis in January 2021. 

For this study, the outcome used is the 30-day mortality after the TAVI procedure. Two of the sixteen centres were excluded given 
that less than 5% of the 30-day mortality status of their patients was available when conducting the study. In addition, patients without 
a mortality status or that had a concomitant procedure (e.g., pacemaker implantation) were not included. 

In order to analyse the studied population, general statistics were computed for all variables. Mean and standard deviation was 
computed for data with normal distribution and median and interquartile range for non-normally distributed data. Chi-square or Two- 
sample T-test was used as appropriate. 

2.2. Variables 

We included all variables that were available in the NHR and that had been already used in TAVI risk scores and other studies 

1 https://nederlandsehartregistratie.nl. 
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[13–19]. Among the variables, demographic data such as age, sex, and body mass index (BMI) were included. Also, clinical history and 
screening variables, including the estimated Glomerular Filtration Rate (eGFR), the New York Heart Association (NYHA) score, chronic 
lung disease, dialysis, systolic pulmonary arterial pressure, creatinine, diabetes mellitus (DM), left ventricular ejection fraction, and 
recent myocardial infarction were included. In terms of the procedure, its acuity, the chosen access route, critical preoperative state 
and, year of the procedure were included. All used variables were acquired before the TAVI procedure was performed. 

The eGFR and creatinine were clipped for values larger than 60 mL/min/1.73 m2 and 250 μmol/L, respectively based on expert 
opinion. Also, DM was represented by three categories: no DM, with untreated DM, and with DM being treated with insulin. Addi
tionally, the procedure acuity and access route were dichotomized to elective/non-elective and femoral/non-femoral access 
respectively. 

To deal with the missing values, an iterative multiple imputation method (MissForest) was used to impute data. For this step, only 
the data from the training set was used to train the imputation model, which was later used to impute the data on the test set. Dummy 
variables were created by leaving one category out for the NYHA score, year of the procedure, and DM categories. 

2.3. Prediction models 

We evaluated two well-established parametric and non-parametric techniques: logistic regression (LR) and extreme gradient 
boosting (XGB). LR is a parametric approach and has one coefficient assigned for each variable of the model, allowing a relatively easy 
interpretation and low model complexity. On the other hand, XGB is a non-parametric approach, based on building an ensemble of 
decision trees. With that, predictions of multiple trees are combined into a single prediction. The models were developed using the 
scikit-learn [23] and XGBoost [24] Python libraries. 

Both models had their hyperparameters tuned using a grid-search approach with the training data in a stratified 10-fold cross- 
validation (CV). Specifically, different sets of parameters were assessed to find the optimum model, such as the error used for 
training the LR model, and the tree depth for XGB. All hyperparameters assessed are listed in the Supplementary Material Table S1. The 
hyperparameter set with the highest average Area Under the Curve (AUC) of the receiver operating characteristics curve across the 
tuning data, which is held out of the training set, of all folds was selected and used to train the models. In order to visualize the 
agreement between predicted mortality risk and real mortality, a calibration plot was created for all prediction models. 

The reporting methods of this analysis adhere to the reporting guidelines (TRIPOD). The statement can be found in the Supple
mentary Material Table S2. 

2.4. Model validation 

2.4.1. Internal validation 
Internal validation was performed to evaluate the models regardless of any temporal shifts in the data and have forms a reference 

for the temporal analysis. To this end, the data from all the treatment years were gathered together and a 10-fold CV imputation model 
was created based on the training folds and later used to impute the corresponding conducted as described above. The imputation 
model was created based on the training folds and later test set. 

The average AUC, with standard deviation (SD), was used to evaluate the models. While the AUC is commonly used for the 
evaluation of clinical models, it is not sensitive to changes in the prevalence of the event. Hence, the Brier Score (BS), which is sensitive 
to prevalence and calibration was also selected as a measure of the accuracy of the predicted probabilities. The higher the AUC and the 
lower the BS, the better. 

2.4.2. Temporal validation 
Temporal validation was conducted to simulate the models’ predictive performance over time, reproducing how they would 

perform if used in a real-life scenario with prospective patients. To this end, all patients were gathered together and sorted by their 
procedure date. We require a sufficient number of points to be monitored (about 25) and use the formula limit n > 9*(1 − p)/p, where 
p is the average (mortality percentage in our case). This formula is applied in the more rigorous p-chart to ensure a positive lower 
control. In our case p = 3.36% requiring a sample size of at least 239 patients. The data was split into 38 mutually exclusive groups. 
Except for the first group, with 320 samples, all remaining groups had 297 samples each. 

2.5. Group analysis and pre-control charts 

For context, we first visualize changes in 30-day mortality ratio and age over time. These are the most important and intuitive 
variables. Then, we prepare the data for the SPC analysis using pre-control charts. SPC is a graphical framework in which progression 
of a key measurement is plotted over time and, additionally, provides rules to judge the stability of the process by assessing whether the 
variation in the measurements reflects expected natural variation or a structural change. In our case, the analysed process represents 
the performance in terms of the AUC and Brier score of the parametric and non-parametric TAVI mortality prediction models over 
time. A structural change indicated instability. There are various types of control charts. 

In this study, we use pre-control charts (also called zone charts) which show the process along with acceptable control limits on a 
graph. Their aim is to monitor a process for early detection of shifts, allowing for prompt corrective actions. Although they can be less 
reliable than the more elaborate traditional control charts, they are much more intuitive to use and can be effective, especially in low- 
risk (manufacturing) processes. Zone charts divide the chart into three zones based on specification limits in a “traffic light” design. 
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The green zone, defined by mean ± 2 SDs of the process, indicates a stable process. The yellow (warning) zone, within 2–4 SDs of the 
mean, indicates a stable process if no two or more consecutive points fall in this zone. The red zone, >4 SDs, indicates an unstable 
process if any point falls in this zone. 

The acceptable limits can be pre-specified, like in industrial applications. The process can be run already after five consecutive 
points fall in the green zone to ensure that the process is stable and then normally about 25 points are monitored [25]. For a prediction 
model, the acceptable performance limits can be derived from the model’s early demonstrated performance. Because we have enough 
data points, for 38 groups, and to include enough variability in the process in order to lower type 1 errors, we require 8 consecutive 
points (i.e., groups) to fall in the green zone in this study before we calculate the mean and standard deviation of the process, which are 
used in judging the nature of the variation in the remaining points. This evaluation strategy, starting from a stable process, is more 
challenging than fitting the model say on data of the first year and monitoring the process where it could be shown to be unstable 
already in its first monitored points. 

Two experiments were performed: a) without re-training the model on each iteration frozen model and b) re-training the model on 
each successive iteration (model refitting). This is done to compare the stability between the fixed model and a model with repeated 
refitting over time. For the frozen model, the model was trained once and evaluated on all subsequent parts individually. The model 
refitting, on the other hand, has the testing data from the previous iteration added to the training data on each new iteration and has all 
the coefficients re-estimated. Fig. 1 shows a representation of both experiments. All statistical analysis were performed with Python 
(version 3.8.8). To implement the models, the scikit-learn (version 0.24.1) and XGBoost (version 1.3.3) libraries were used. 

3. Results 

In total, data from 12,440 TAVI patients matched our inclusion period 2013–2019 and were considered for this study. For the 
analysis, data from 11,291 patients were included after excluding 837 patients for not having 30-day mortality information, 309 for 
belonging to the two centres with a high missing rate of mortality information, and 3 patients for having an additional procedure (i.e., 
not isolated TAVI). 

The mean age of the included patients was 79.72 ± 6.86 and 50.21% of the patients were female. The baseline and procedural 
characteristics of the population used in this study, as well as the descriptive statistics, can be found in Table 1. Mean mortality is 410/ 
(410 + 10881) corresponding to 3.36%. 

3.1. Internal validation 

In the internal validation, with the inclusion of all 11,291 patients at the same time and a 10-fold CV, both the LR and XGB achieved 
a mean AUC of 0.68 and, respectively, a mean BS of 0.034 and 0.036 (Table 2). The calibration plots are available in the Supplementary 
Material Fig. S1. 

In Fig. 2, the 30-day mortality and age of the patients are plotted over time. They demonstrate downward trends. When preparing 
data for the temporal validation for the pre-control charts (visible in the Supplementary Material Fig. S2), we observed that the first 4 
performance points (2013–2014), also showed a trend, and were hence excluded. The subsequent 8 groups did show stable perfor
mance and hence were used to train the frozen model and the initial model that will subsequently be refitted. This left 26 points for 
monitoring. 

Fig. 3 displays the performance of the LR and XGB frozen models. While the AUC was considerably stable for the LR model and 
remained stable after 2017 for the XGB, BS was mostly in the red zone (>4 SD) for both models. Fig. 4 displays the progress of per
formance over time when using the model refitting approach (note that the zone limits are continuously updated as well). Both LR and 
XGB models were stable in their AUC, but instability in BS is observed at the beginning. The AUC limits of the refitted LR model slightly 
changed compared to the frozen model. The AUC of the XGB model and BS of both models had their range visibly increased. This 
indicates a larger standard deviation which reflects larger uncertainty detected over time. The frozen parametric model had a median 
AUC of 0.64 (IQR 0.54–0.73) and BS of 0.028 (IQR 0.021–0.035) while the frozen non-parametric model had a median AUC of 0.63 
(IQR 0.48–0.68) and BS of 0.027 (IQR 0.021–0.036). Regarding model refitting, the parametric model had a median AUC of 0.66 (IQR 
0.57–0.73) and BS of 0.027 (IQR 0.020–0.035) while the non-parametric had a median AUC of 0.66 (IQR 0.57–0.74) and BS of 0.027 

Fig. 1. Schematic representation of the experiments with a frozen model and model refitting scenario. The frozen model was kept unchanged for all 
iterations while model refitting implied re-training the model in every new iteration. 
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(IQR 0.023–0.035). 
Fig. 5 shows the calibration curves (all points combined), with the frozen and model refitting approaches, for both LR and XGB 

models. The frozen LR and XGB models are completely overestimating the predicted mortality risk. The model refitting approach does 
achieve a more balanced calibration. The calibration plots, assessed over time, are available in the Supplementary Material Fig. S3 (for 
LR) and Supplementary Material Fig. S4 for (XGB). Additionally, the selected hyperparameters are available in Supplementary Ma
terial Table S3 and Table S4. 

4. Discussion 

Without repeated refitting over time, the parametric TAVI mortality prediction model was considered stable regarding discrimi
nation (in terms of the AUC) but unstable regarding the accuracy of the predicted probabilities (in terms of the BS). The non-parametric 
model was unstable in both AUC and BS. When models were repeatedly refitted over time, both parametric and non-parametric models 

Table 1 
Characteristics of the 11,291 TAVI patients stratified by their 30-day mortality survival status. Values are represented as mean and standard deviation 
(SD), median and interquartile range (IQR), number (n), or percentage (%).    

Grouped by 30-day 
mortality      

Missing Non-surv. Surv. p-value 

n   410 10881  
Age (yr), mean (SD)  0 80.3 (7.2) 79.7 (6.9) 0.095 
Sex, n (%) Male 0 191 (46.6) 5430 (49.9) 0.205  

Female  219 (53.4) 5451 (50.1)  
BMI (kg/m2), mean (SD)  143 26.5 (5.6) 27.3 (4.9) 0.010 
Year of procedure, n (%) 2013 0 60 (14.6) 723 (6.6) <0.001  

2014  61 (14.9) 973 (8.9)   
2015  55 (13.4) 1305 (12.0)   
2016  57 (13.9) 1450 (13.3)   
2017  60 (14.6) 1898 (17.4)   
2018  60 (14.6) 2073 (19.1)   
2019  57 (13.9) 2459 (22.6)  

eGFR (mL/min/1.73m2), mean (SD)  36 55.3 (21.6) 60.5 (29.3) <0.001 
NYHA class, n (%) 1 1151 32 (8.8) 1067 (10.9) <0.001  

2  62 (17.1) 2718 (27.8)   
3  216 (59.7) 5377 (55.0)   
4  52 (14.4) 616 (6.3)  

Chronic lung disease, n (%) No 37 298 (73.8) 8627 (79.5) 0.006  
Yes  106 (26.2) 2223 (20.5)  

Procedure acuity, n (%) Elective 220 312 (80.6) 9733 (91.1) <0.001  
Emergency  4 (1.0) 19 (0.2)   
Urgent  71 (18.3) 932 (8.7)  

Dialysis, n (%) No 212 387 (97.7) 10,570 (98.9) 0.042  
Yes  9 (2.3) 113 (1.1)  

TAVI access route, n (%) Direct aortic access 15 56 (13.7) 781 (7.2) <0.001  
Other access  2 (0.5) 15 (0.1)   
Subclavian access  31 (7.6) 623 (5.7)   
Transapical  53 (13.0) 679 (6.2)   
Transf., other  37 (9.1) 684 (6.3)   
Transf., 
percutaneous  

179 (43.9) 6104 (56.2)   

Trasnf., surgical  50 (12.3) 1982 (18.2)  
Critical preoperative state, n (%) No 94 382 (96.2) 10,747 (99.5) <0.001  

Yes  15 (3.8) 53 (0.5)  
Systolic pulmonary arterial pressure (mmHg), median 

(IQR)  
2084 25.0 

[25.0,38.5] 
25.0 
[25.0,31.2] 

0.001 

Non-surv: Non-survival, Surv: Survival, BMI: Body Mass Index, NYHA: New York Heart Association Functional Classification, TAVI: Transcatheter 
Aortic Valve Implantation, SD: Standard Deviation, IQR: Interquartile Range. 

Table 2 
Evaluation of the models trained without temporal assessment (internal validation) with standard 
deviation. AUC = Area Under the Receiver Operating Characteristic curve, BS = Brier Score.  

Model/Metric AUC BS 

Logistic Regression 0.68 ± 0.07 0.034 ± 0.001 
XGBoost 0.68 ± 0.05 0.036 ± 0.001 

Group analysis and pre-control charts. 
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were considerably more stable and had only a few points in the yellow and red zones. 
TAVI procedures are over time offered to younger patients and patients with lower risk. Therefore, the mortality outcomes 

improved over time and the average age and mortality of the analysed TAVI population declined over time. When not refitted, this 
decline in mortality results in the tendency of the prediction models to overestimate the mortality probability, which in turn leads to 
unstable models. When we performed the model refitting, which also updates the limits, a widening in these limits was clearly visible 
reflecting the larger uncertainty because of the higher variation in the data. It is important to note that the AUC is much less affected by 
the mortality prevalence than the BS. This explains why the BS become quickly unstable in the frozen models. 

Regarding TAVI mortality prediction models, Al-Farra et al. [18] performed a prospective analysis of mortality prediction models 
and highlighted the importance of performing model refitting to overcome performance drifts. In this latter study, two parametric 
models were analysed and the prospective data was treated as a single dataset, while we divided the prospective data into multiple 
groups and we used SPC. Also, recent studies using national registries from Germany and Switzerland [26,27] analysed temporal 
trends over the TAVI procedures, confirming the reduction in mortality we found. However, the accuracy and stability of the risk scores 
over time were not considered in these studies, nor was SPC used. Using pre-control charts to investigate stability over time on 

Fig. 2. Mean 30-day mortality and age over time of TAVI patients. A linear trend is presented in red. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Temporal validation of the frozen LR (left) and XGB (right) models. For the LR model, the AUC is considered stable and most of the BS points 
are inside the red zone, hence the BS is unstable. Regarding the XGB model, an AUC point and most of the BS points are inside the red zone, hence 
the process is unstable. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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prediction models had been used by Minne et al. [28,29] for evaluating pre-existent models for the prediction of mortality in the 
intensive care unit. Similar to our results, they found a significant difference within BS over time, while the AUC remained stable. 
However, they did not find time trends in the mortality or age of the observed patients. Also, the authors used a first-level recalibration 
approach, instead of re-training the model, to deal with the effects of time on the data. Although effective in their study, it was also 
suggested that more rigorous approaches, such as model refitting that we used, might be needed. 

Strengths of this study include the use of a large national registry with more than 10,000 patients, with real recent data over many 
years. In addition, we compared two methods: a parametric (LR) and a non-parametric method (XGB). Furthermore, instead of simply 

Fig. 4. Temporal validation of the model refitting for LR (left) and XGB (right). While the AUC is stable for both models, some of the BS points are in 
the red zone at the beginning, hence the BS is unstable. Note that the zone limits are recalculated per model refitting on a successive group. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Calibration plots of the LR and XGB models. The plots were generated after the combination of all data points.  
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analysing a frozen model with prospective data, we proposed a model refitting approach and evaluated its performance. Finally, we 
used two important performance measures: AUC for gauging discrimination and the Brier score for measuring the accuracy of the 
predicted probability. We also looked at the implications of (in)stability in terms of calibration graphs. As far as we know, this is the 
first study performing temporal analysis of TAVI mortality prediction models with such techniques. 

This study also has some limitations. This data is from a national registry and has multiple centres. The centres might have different 
standards for patient selection or the performance of the procedure and this information was not taken into account directly (the centre 
was not used as a feature). In addition, the analysed data is from a country with a mainly Caucasian population, so a country-specific 
analysis. Also, a fixed number of samples per group was used to better understand how the models change over time and this leads to a 
different number of groups per year/month. Considering the clinical implementation of this study, one would have to wait until the 
number of procedures is reached to include a new group. Regarding the technical implementation, there are several approaches that 
could have been used to update the coefficients dynamically [30,31] that were not explored in this initial study. Finally, in this work, 
we only validated the models on one future subgroup but did not attempt to evaluate it on the accumulated subgroups until a specified 
time. 

Our work shows the importance of taking time into account when using mortality prediction models. Specifically, in our large 
dataset, the stability of both parametric and non-parametric models was considered poor, mainly for the BS. This demonstrates the 
danger of only considering AUC when evaluating prediction models, which is a common practice, and the importance of analysing 
multiple metrics when evaluating models. With model refitting, the stability increased for both parametric and non-parametric models. 
However, this improved stability came at the cost of more uncertainty in performance. We found that it might be risky to use a model 
for longer periods without refitting (or updating in general), independent of whether it is a parametric or non-parametric model. The 
frozen models were poorly calibrated and, also with model refitting, the calibration was still insufficient. An underestimation or 
overestimation of the predicted probability is seen in the calibration plots for both models. Finally, we would like to highlight the 
importance of inspecting the confidence intervals (reflecting honesty in uncertainty) rather than the absolute improvement of the 
models’ performance. 

Future work can investigate differences between centres. Also, in order to avoid the necessity of having enough patients to compose 
a new group, Individual Control Charts, which are able to analyse individual measurements, could be explored. In addition, a subgroup 
analysis could provide insight into specific groups that markedly diverge from the rest of the population. Furthermore, one hypothesis 
is that the older data might harm the model and can be ignored, or given less weight, over time once it might be too different from the 
current population. Moreover, a different evaluation strategy can be explored in which the frozen model is incrementally validated on 
the accumulated subgroups until some time instead of validating on one subgroup. Finally, reproducing this experiment with a 
different (TAVI) population or risk scores, such as STS or EuroSCORE, warrants further research. 

5. Conclusion 

In our study, the prediction models that were refitted over time were more stable and accurate compared to the frozen models. It 
highlights the importance of repeatedly refitting (or, in general, updating) the models over time to improve their performance stability. 
Although the refitted models were more stable, the calibration was still poor and it came also at the cost of more uncertainty in 
performance. There were no clear benefits in using the non-parametric model over the parametric model. The trained models, when 
not refitted, were unstable and presented a higher overestimation of 30-day mortality after TAVI than the models that were refitted 
over time. 
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