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Abstract

Background: Monitoring systems have been developed during the COVID-19 pandemic enabling 

clinicians to remotely monitor physiological measures including pulse oxygen saturation (SpO2), heart 

rate (HR), and breathlessness in patients after discharge from hospital. These data may be leveraged to 

understand how symptoms vary over time in COVID-19 patients. There is also potential to use remote 

monitoring systems to predict clinical deterioration allowing early identification of patients in need of 

intervention.

Methods: A remote monitoring system was used to monitor 209 patients diagnosed with COVID-19 in 

the period following hospital discharge. This system consisted of a patient-facing app paired with a 

Bluetooth-enabled pulse oximeter (measuring SpO2 and HR) linked to a secure portal where data were 

available for clinical review. Breathlessness score was entered manually to the app. Clinical teams were 

alerted automatically when SpO2<94%. In this study, data recorded during the initial ten days of 

monitoring were retrospectively examined, and a random forest model was developed to predict 

SpO2<94% on a given day using SpO2 and HR data from the two previous days and day of discharge.

Results: Over the 10-day monitoring period, mean SpO2 and HR increased significantly, while 

breathlessness decreased. The coefficient of variation in SpO2, HR and breathlessness also decreased 

over the monitoring period. The model predicted SpO2 alerts (SpO2<94%) with a mean cross-validated 

sensitivity of 66±18.57%, specificity of 88.31±10.97% and area under the receiver operating 

characteristic of 0.80±0.11. Patient age and sex were not significantly associated with the occurrence 

of asymptomatic SpO2 alerts. 

Conclusion: Results indicate that SpO2 alerts (SpO2<94%) on a given day can be predicted using 

SpO2 and heart rate data captured on the two preceding days via remote monitoring. The methods 

presented may help early identification of patients with COVID-19 at risk of clinical deterioration 

using remote monitoring.

Keywords: Predictive model; Remote monitoring; COVID-19; Hypoxia; Breathlessness; Heart rate.
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1. Introduction

The COVID-19 pandemic has resulted in significant morbidity and mortality, placing a major 

strain on healthcare systems worldwide. Symptoms of COVID-19 can persist for weeks or months, and 

a long lasting sequelae of COVID-19 infection, or ‘long covid’, is now a recognised diagnosis [1–3]. 

While initial COVID-19 symptoms are frequently mild, clinical deterioration to severe disease is 

common in certain populations and predicting those who will deteriorate can be difficult [4]. In patients 

with COVID-19 recently discharged from hospital, remote monitoring can enable early recognition of 

patient deterioration and facilitate reassessment and readmission if necessary [5–7]. Remote monitoring 

may also allow identification of patients experiencing low oxygen saturation levels in the absence of 

signs of respiratory distress [8–11].

Previously reported systems for remote monitoring of patients with COVID-19 following 

hospital discharge have used mobile apps [6,7] and daily surveys [5,12] to monitor oxygen saturation 

(SpO2), heart rate (HR), body temperature, and self-reported symptoms [5]. To enable early detection 

of worsening clinical status, the monitoring systems sent automatic alerts to the clinical team if SpO2, 

HR, temperature or breathlessness score passed defined thresholds [5–7]. These systems enabled early 

identification of patients who required additional assessment or intervention, supporting hospital 

discharge during a period of intense demand on hospital capacity, and demonstrated high levels of 

patient adherence.

Clinical remote monitoring systems, however, have not yet been harnessed to investigate how 

symptoms and vital sign measures change over time in patients with COVID-19, or to develop methods 

to predict clinical deterioration which may enable more efficient remote monitoring of large patient 

groups. Machine learning models have been used to predict clinical deterioration in patients hospitalised 

with COVID-19 based on clinical and laboratory data [13–20], and hospitalisation and illness in 

individuals with COVID-19 using wearable sensors [21,22]. Models using clinical data from patients 

hospitalised with COVID-19 have also been used to predict intensive care unit admission [13,14], in-

hospital mortality [13–15], clinical deterioration defined as either intubation, intensive care unit 

admission, in-hospital mortality, or a high National Early Warning Score [16–20]. Low SpO2 and 
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elevated respiration rate have also been reported as risk factors for in-hospital death using multivariate 

regression [15,23]. Prior to hospitalisation, models have been reported to predict COVID-19 infection 

[21], hospitalisation [22] and sickness on a given day [22] in individuals with COVID-19 based on 

respiration and HR measures using large datasets obtained from consumer wrist-worn devices. A 

method to predict clinical deterioration in patients with COVID-19 following discharge from hospital 

using objective remote monitoring data, such as SpO2 and HR, has not yet been reported.

In this study, SpO2, HR and breathlessness data recorded using a remote monitoring system in 

209 patients with COVID-19 following discharge from hospital were retrospectively examined. A 

predictive model was developed to identify patients at risk of experiencing low SpO2 (<94%) requiring 

assessment and possible readmission. The associations between age and sex, and symptom presentation 

when SpO2 was less than 94% were also investigated.

2. Methods

2.1 Remote monitoring system

During 2020, a remote monitoring system was used by the Health Service Executive in Ireland 

as an early discharge pathway for patients with COVID-19 [6]. On discharge from hospital, patients 

with COVID-19 were provided with a Bluetooth Smart Pulse Oximeter (NoninConnect 3230, Nonin 

Medical Inc., Plymouth, MN, USA) linked to a mobile application to monitor SpO2, HR and self-

reported breathlessness (patientMpower Ltd, Dublin, Ireland). Recorded data were encrypted and sent 

to a secure cloud database accessible only to the hospital-based COVID-19 monitoring teams. The 

mobile application sent a prompt to check SpO2 at rest, four times daily for 14 days after hospital 

discharge, and patients could enter additional data/measurements at will. SpO2 and HR were measured 

by the pulse oximeter, and data were automatically captured by the mobile application. A prompt also 

asked if the patient felt more breathless than usual. If the patient selected “yes”, they were asked to rate 

their breathlessness using a visual analogue scale, ranging from 1 (no symptoms) to 10 (worst ever). A 

clinical alert was generated if SpO2 was <94%, with an SMS text sent to the hospital monitoring team 

for clinical follow-up. Age and sex were optional entries in the monitoring system.
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2.2 Dataset

Data recorded by patients with COVID-19 who used the remote monitoring system following 

discharge from six Irish hospitals in the period 1st April – 30th June 2020 were examined retrospectively 

in this study. During this period, 209 patients (aged > 18 years) agreed that their de-identified data could 

be used for research purposes (via an ‘opt in’ statement in the mobile app), and their de-identified data 

were shared with the researchers. Ethical approval was obtained from the Human Research Ethics 

Committee at University College Dublin and a consent declaration for the retrospective analysis of these 

data was obtained from the Health Research Consent Declaration Committee.

2.3 Data analysis

SpO2, HR and breathlessness data from the first ten days after hospital discharge were 

examined. For each patient, the mean and coefficient of variation (CV) of all SpO2, heart rate and 

breathlessness measures were calculated for each day. The minimum SpO2, and the maximum HR and 

breathlessness scores were also calculated daily for each patient. Linear mixed-effects models were 

used to examine the effect of time (days since discharge) on these nine variables, with a random 

intercept for each patient. The threshold for significance was p<0.005, adjusted using Bonferroni’s 

method accounting for multiple comparisons [24].

For every patient, each day was categorised as an alert day (SpO2<94%), or a non-alert day 

(SpO2≥94%). An SpO2 threshold of 94% was chosen for consistency with the clinical remote 

monitoring system used to record the data [6], and with the threshold for clinical alerts used by other 

remote monitoring systems for patients with COVID-19 who have been discharged from hospital [5,7]. 

However, it should be noted that in hospitalised patients with COVID-19, lower SpO2 thresholds would 

be more appropriate to define clinical deterioration [25] . Alert days were further categorised as 

symptomatic or asymptomatic, using heart rate and breathlessness scores recorded while the patient was 

resting. On an alert day, if breathlessness (breathlessness score >1) or an elevated heart rate (>100 bpm) 

were recorded, this day was considered a symptomatic alert day. If breathlessness was not reported 

(breathlessness score = 0) and an elevated heart rate was not detected (<=100 bpm) on a day when 

SpO2<94% was recorded, the day was considered an asymptomatic alert day.
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To investigate how age and sex are associated with the occurrence of asymptomatic alerts, three 

patient groups were examined: patients who experienced at least one asymptomatic alert day (Asym), 

patients who experienced symptomatic alert days, and did not experience any asymptomatic alert days 

(Sym), and patients who did not experience any alert days during the ten days (NoAlert). Age and 

biological sex were compared across patient groups using linear mixed-effect models, with a random 

effect for patients, and fixed effects for patient group (Asym/Sym/NoAlert), age and sex. Differences 

in overall mean HR and overall mean SpO2 between patient groups were also examined, with age and 

sex considered fixed effects with a random subject-specific intercept. The threshold for significance 

was p<0.015, adjusted using Bonferroni’s method accounting for the four models developed [24].

2.4. Predictive model development 

A random forest classifier was developed to predict SpO2 alerts (SpO2<94%) on a given day 

(DayA) in the period Day3-10 (Day1 was the day of hospital discharge), using SpO2 and HR data from 

the discharge day and the two days preceding DayA (DayA-1, DayA-2), and validated internally using ten-

fold cross-validation.

For the 196 patients who used the monitoring system for at least 3 days, 22 features were 

extracted and considered during sequential feature selection. For discharge day, the day before (DayA-

1) and two days before (DayA-2) the day of interest (DayA, where A = 3-10): mean, CV and minimum 

SpO2, mean, CV and maximum HR (18 features). The difference in mean and CV SpO2 (SpO2 mean 

diff and SpO2 CV diff), and difference in mean and CV HR (HR mean diff and HR CV diff), between 

DayA-1 and DayA-2 were also examined (4 features). Pearson’s correlation coefficient was calculated for 

each possible pair of features.

During the eight-day period (days 3-10), 70 patients experienced SpO2 alerts across 149 

monitoring days. To develop a model to predict SpO2 alerts days, validated using cross-validation, data 

for these 149 alert days were used with data for 157 monitoring days with no SpO2 alerts, Figure 1. The 

70 participants who experienced an alert during the monitoring period recorded data on 354 days where 

an SpO2 alert did not occur. Ninety-seven of these 354 days were identified with no SpO2 alerts on the 

two preceding or two subsequent days (from 34 participants). Data for 60 monitoring days (from 49 
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patients) were also randomly selected from the 126 patients (865 days) who did not experience any 

alerts, Figure 1. The final model development dataset included 306 patient days, with data from 119 

patients.

Ten-fold cross-validation was used to develop the predictive model, and to assess model 

performance, with feature selection and model optimisation performed within each fold[26,27]. Data 

were stratified into ten folds, ensuring that data for each individual participant were present in one fold 

only (9 folds included data for 12 participants, and 1 fold included data for 11 participants). The number 

of patients days in each fold ranged from 25-37 days, with a mean (standard deviation) of 30.6 (3.9) 

days.

Sequential forward feature selection was implemented within 10-fold cross-validation to select 

the optimum combination of five features to predict days with SpO2 alerts. Bayesian optimisation was 

used to tune the number of learning cycles for each random forest classifier. These measures were 

implemented to increase the interpretability and robustness of the final model. A final model was then 

developed by resubstituting all data.

Model performance was assessed using the mean area under the receiver operating 

characteristic (AUC ROC), sensitivity and specificity across all folds. Sensitivity, or the true positive 

rate, was calculated as the number of correctly predicted alerts divided by the total number of alerts. 

Specificity, or one minus the false positive rate, was calculated as the number of correctly predicted 

non-alert days, divided by the total number of non-alert days. The specificity of the predictive model 

was additionally examined using the remaining data for 805 patient days recorded by participants who 

had no alerts during the monitoring period (Figure 1). 

Data analysis and model development were conducting using custom-developed scripts in 

Matlab (Mathworks, Natick, MA, USA).
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Figure 1. Flowchart illustrating breakdown of remote monitoring data, and selection of data for model 

training. Data used during cross-validation are shown using shaded blocks.

3. Results

3.1. Data summary
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Data for up to ten days following discharge were examined, resulting in 1368 patient days. On 

the day of hospital discharge, 209 patients used the remote monitoring system, with this number 

reducing over the ten-day period to 134 active users on day 10 (Figure 2). Over the ten-day monitoring 

period, the total dataset included 1378 days with breathlessness scores entered by 190 patients, 1775 

days with SpO2 measurements by 209 patients, and 1763 days with HR measurements by 206 patients. 

196 patients used the remote monitoring system for at least three days (Table 1), with SpO2 and HR 

data for these patients used to develop a model to predict SpO2 alerts.

Age and sex were optional entries in the monitoring system, 114 patients reported both their 

age and sex (39.5±13.9 years; 74 female), Table 1. The effects of age and sex on SpO2 alerts were 

examined using data for these 114 patients. 

Figure 2. The number of patients, N, who entered data for SpO2, heart rate, and breathlessness, and who 

experienced an SpO2 alert (SpO2 < 94%), in the 10 days following hospital discharge.

Full cohort 
(N=209)

Cohort with 3+ 
days (N=196)

Cohort with age and 
sex (N=114)

Days included Discharge-Day 10 Day 3-10 Discharge—Day 10

Patients with no alerts 116 126 60 (NoAlert)

Patients with asymptomatic alerts 39 26 21 (Asym) 

Patients with only symptomatic alerts 54 44 33 (Sym) 

Patients with symptomatic alerts* 68 54 41

Symptomatic due to breathlessness 55 45 34
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Symptomatic due to elevated HR 44 31 27

Symptomatic due to concurrent elevated HR and breathlessness 28 22 17

Patients with both symptomatic and asymptomatic alerts** 14 10 8

Symptomatic due to breathlessness 10 5 7

Symptomatic due to elevated HR 9 7 5

Symptomatic due to concurrent elevated HR and breathlessness 4 0 3

Table 1. Summary of recorded SpO2 alerts in the full cohort, and in the subset of the cohort where age and sex 

data are available. * This group consists of all the patients who experienced only symptomatic alerts, together 

with a subset of the patients who experienced asymptomatic alerts. ** This group consists of a subset of the 

patients who experienced asymptomatic alerts.

3.2 Data analysis

Descriptive statistics of the daily mean and minimum SpO2, and mean and maximum heart 

rate and breathlessness, for the ten days after hospital discharge are presented in Table 2.

Mean and minimum SpO2, and mean and maximum heart rate, increased significantly over the 

ten days following hospital discharge (p<0.005 for all), while the mean and maximum breathlessness 

decreased over the ten days (p<0.005 for both), Figure 3. The CV of SpO2, HR and breathlessness 

decreased significantly over the ten days, Figure 3.

The effect of patient group (Sym, Asym, NoAlert), age and sex on overall mean SpO2 and 

overall mean heart rate are presented in Table 3, Figures 4a and 4b. The effect of patient group on age 

and sex are also presented in Table 3, Figures 4c and 4d.

Mean Median SD Min Max Alert and symptomatic days (%)

Mean SpO2 (%) 96.99 97.33 1.56 86.25 100
Minimum SpO2 (%) 95.94 96.00 2.51 80.00 100.00 20.79 % (SpO2 < 94%))
Mean HR (bpm) 78.15 77.25 12.21 51.00 121.00
Maximum HR (bpm) 85.47 84.00 14.99 52.00 130.00 16.28 % (HR > 100bpm)

)Mean breathlessness (/10) 0.50 0.00 1.20 0.00 8.33
Maximum breathlessness 

(/10)

0.71 0.00 1.59 0.00 9.00 19.30 % (Breathlessness > 1)

Table 2. Descriptive statistics calculated using all monitoring data collected during the first ten days after 

hospital discharge: 1378 days with breathlessness scores entered by 190 patients, 1775 days with SpO2 

measurements by 209 patients, and 1763 days with HR measurements by 206 patients. Note that the percentage 

of days when SpO2 < 94% includes day 1 and day 2, which are not included in the predictive model 



11

development. SD = standard deviation of all calculated data points. Min = minimum value calculated. Max = 

maximum value calculated.

Figure 3 Data for all patients for the first ten days after discharge from hospital. Mean, coefficient of variation 

(CV) of all SpO2, heart rate and breathlessness data, and minimum SpO2, maximum heart rate and maximum 

breathlessness, for each day across all patients are presented. The mean and standard error of each feature across 

all patients are presented.

Response variable Overall effect 
of group

NoAlerts vs Sym NoAlerts vs Asym Sym vs Asym Effect of age Effect of sex

Mean SpO2 (%) <0.001 <0.001 <0.001 0.03 <0.001 0.51

Mean HR (bpm) 0.02 0.005 0.37 0.15 0.82 0.50

Age (years) 0.07 0.06 0.06 0.78 - -

Sex (M/F) 0.72 1 0.44 0.49 - -

Table 3. The effect of patient group (Sym/Asym/NoAlert) on mean SpO2, mean HR, age and sex. Mean SpO2 and 

mean heart rate are calculated for each patient using all data for that patient during the monitoring period. 

Significant differences (p<0.015) are indicated using bold font.
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Figure 4. (a) Mean SpO2, (b) mean heart rate and (c) age data for each patient group. (d) Percentages of male 

and female patients in each group.

3.3. Predictive model

Sequential forward feature selection selected five features for inclusion in the final model (from 

highest to lowest feature importance): SpO2 min DayA-2, SpO2 min DayA-1, SpO2 CV diff, HR CV DayA-

2, HR CV DayA-1.

The random forest classifier predicted an SpO2 alert on a given day with a mean sensitivity of 

66.00±18.57 % and mean specificity of 88.31±10.97 %, and mean AUC ROC of 0.80±0.11 across ten-

fold cross-validation, Figure 5. The mean specificity of the predictive model on all unseen non-alert 

days was 88.72±1.99 %.

Seventy-two out of 101 symptomatic alert days were correctly predicted as alert days, 32 out 

of 48 asymptomatic alert days were correctly predicted as alert days, and 147 out of 157 non-alert days 

were classified correctly.

Correlation analysis revealed that several SpO2 and HR features were strongly correlated with 

each other, with Rho > 0.8 or Rho < -0.8, Table 4.



13

Figure 5. (a) Receiver operating characteristic (ROC) for the predictive model. The mean ROC across all cross-

validation folds is illustrated using a solid line, and the standard deviation is illustrated as a shaded area. (b)-(f) 

The five features included in the final predictive model, for patient days when SpO2 was >= 94% (non-alert 

days) and days when SpO2 < 94 % (alert days).
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Feature Rho > 0.8 Rho < -0.8

SpO2 mean Discharge SpO2 min Discharge

SpO2 mean DayA-2 SpO2 min DayA-2

SpO2 mean DayA-1 SpO2 min DayA-1

SpO2 CV Discharge SpO2 min Discharge

SpO2 CV DayA-2, SpO2 min DayA-2

SpO2 CV DayA-1 SpO2 min DayA-1

SpO2 min Discharge SpO2 mean Discharge SpO2 CV Discharge

SpO2 min DayA-2 SpO2 mean DayA-2. SpO2 CV DayA-2

SpO2 min DayA-1 SpO2 mean DayA-1 SpO2 CV DayA-1

HR mean Discharge HR max Discharge

HR mean DayA-2 HR mean DayA-1, HR max DayA-2

HR mean DayA-1 HR mean DayA-2, HR max DayA-1

HR max Discharge HR mean Discharge

HR max DayA-2 HR mean DayA-2.

HR max DayA-1 HR mean DayA-1.

Table 4. SpO2 and heart rate features with strong positive (Rho>0.8) or negative (Rho<-0.8) correlations. Features 

included in the final random forest model are in bold font.

4. Discussion

A model to predict SpO2 alerts (<94%) in patients with COVID-19 in the ten days following 

hospital discharge was developed using random forest classification. The model utilised patient-

recorded SpO2 and HR features measured on the two preceding days, and the day of discharge. The 

random forest model provides a method to predict low pulse oxygen saturation a day in advance of the 

SpO2 event occurring. Model performance was assessed using cross validation, with a mean ROC AUC 

of 0.80, true positive rate of 66% and a low false positive rate of 11.69%. The presented method could 

allow early intervention to prevent further clinical deterioration and assist clinical teams to remotely 

triage patients following hospital discharge.

Prediction of low SpO2 in patients with COVID-19 using remote monitoring data after hospital 

discharge has not previously been reported. However, several studies have presented models to predict 

clinical deterioration in hospitalised patients with COVID-19 [13–20], or in non-hospitalised 

individuals with COVID-19 [21,22]. A range of machine learning techniques models using clinical and 

laboratory data (including SpO2) obtained on hospital admission have been reported, including logistic 
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regression [14,16,17], deep learning [13], random forests [16,20] or gradient boosting models such as 

XGBoost [16,18,20]or CatBoost [19,20]. The random forest algorithm was used in this study due to its 

interpretability, and the performance of previously reported models based on ensembles of decision 

trees to predict clinical decline in hospitalised patients with COVID-19 [18–20] and to detect COVID-

19 infection in non-hospitalised individuals with COVID-19 [21]. The random forest model presented 

here, with a ROC AUC of 0.80, performed comparably to previous studies predicting clinical 

deterioration in patients or non-hospitalised individuals with COVID-19 [13–16,18–23]. To 

demonstrate the generalisability of predicting low SpO2 in COVID-19 patients following hospital 

discharge using the methods presented, three alternative machine learning algorithms were also 

implemented (Supplementary Material): logistic regression with LASSO regularisation, support vector 

machine, and adaptive boosting. These alternative models achieved cross-validated ROC AUCs of 

0.75±0.11 for logistic regression, 0.79±0.06 for adaptive boosting and 0.83±0.07 using support vector 

machines (Supplementary Material), indicating that the performance of the presented method would 

generalise to other classification algorithms.

Remote monitoring also provides an opportunity to examine how HR, SpO2 and breathlessness 

vary in the period following hospital discharge. Mean HR significantly increased over the ten day period 

examined. Consistent with this, a previous study reported that heart rate in individuals with COVID-19 

decreased until approximately 13 days after symptom onset, and increased after this point [22]. Mean 

SpO2 also significantly increased, while breathlessness significantly decreased, consistent with 

symptom improvement following discharge for the cohort in general. The CV of daily SpO2, HR and 

breathlessness measures decreased over the ten days, indicating increased stability in these measures 

over time.

No significant effects of age or sex on the occurrence of asymptomatic hypoxia in COVID-19 

were observed. A previous study of 195 patients with COVID-19 at a hospital emergency department 

reported silent hypoxia in 25 (13%) of patients [25]. In the current study, 39 patients (19%) experienced 

asymptomatic SpO2 alerts at least once during the ten days after discharge. The slightly higher 

preponderance of asymptomatic alerts is potentially due to differences in clinical setting, inpatient vs 
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post discharge, and resulting differences in SpO2 thresholds, 94% for early identification of clinical 

decline after hospital discharge in this study, consistent with previous studies monitoring patients after 

hospital discharge [5,7], while a lower threshold of 90% was used in the previous hospital-based study 

[25]. The inclusion of elevated HR (>100 bpm) as a symptom of respiratory distress in this study, 

consistent with previous studies on post-discharge monitoring in COVID-19 [5], may also have 

contributed to this difference.

The generalisability of the presented predictive model is limited by the cohort size, particularly 

in the subset of the cohort who provided demographic information. However, the cross-validated 

classification results indicate potential as a clinical tool which warrants trialling in a larger cohort. It 

should be noted that several features were highly correlated, Table 4, indicating that alternative feature 

combinations may produce similar performance to those reported. There was a possibility for data entry 

errors for breathlessness scores, however, the Bluetooth connection of the pulse oximeter reduced the 

input errors in SpO2 and HR measures. While the accuracy of SpO2 compared to blood oxygen 

saturation in COVID-19 has been reported to be adequate, with a reported bias of 0.4% [32], physiologic 

or mechanical artifacts with vital sign alerts have also been reported, together with methods to identify 

erroneous alerts [33].

This study demonstrates the feasibility and effectiveness of predicting SpO2<94% in recently 

discharged COVID-19 patients on a given day, based on data for the two previous days and the day of 

hospital discharge. The presented model may provide a useful tool to enhance remote monitoring 

systems, providing early identification of patients at risk of low pulse oxygen saturation.
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Summary table

What was already known on this topic?

 There is a risk of clinical deterioration after hospital discharge in patients with COVID-19, and 

remote monitoring of vital signs may provide a method to improve patient outcomes during this 

period. 

 Pulse oxygen saturation (SpO2) below 94% indicates hypoxia and clinical deterioration in 

patients with COVID-19.

 Not all COVID-19 patients experience breathlessness, or elevated heart rate during low SpO2 

events.

 A model to predict low SpO2 events following hospital discharge using a remote monitoring 

system has not previously been presented.

What has this study added to our knowledge?

 Changes in SpO2, heart rate and breathlessness measures after hospital discharge in COVID-19 

have been reported for the first time.

 Age and sex did not affect symptom presentation during low SpO2 (<94%) events. 
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 A new model to predict low SpO2 (<94%) in COVID-19 patients after hospital discharge, based 

on remote monitoring data for the two previous days is reported.
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Highlights

 SpO2, heart rate and breathlessness post hospital discharge in COVID-19 are examined.

 Age and sex did not affect symptom presentation during low SpO2 in COVID-19.

 Low SpO2 post hospital discharge in COVID-19 predicted using random forest model.
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